
Computer Graphi
sMi
hael PrinzingerApril 14, 2007Contents0.1 De�nitions . 60.2 Bibliography . 80.3 Copyright . 91 Appli
ation 92 Math 102.1 Ve
tors . 102.1.1 Properties . 102.1.2 Operations . 102.2 Matri
es . 102.2.1 Determinants . 112.2.2 Eigenvalues & Eigenve
tors 112.3 Coordinate Systems . 132.3.1 Cartesian Coordinates . 132.3.2 Polar Coordinates . 142.3.3 Bary
entri
 Coordinates 142.3.4 Homogeneous Coordinates 142.3.5 Mappings . 152.4 Impli
it Fun
tions . 162.5 Parametri
 Fun
tions . 172.6 Curves . 182.7 Polynomials . 182.8 Linear Interpolation . 192.9 Triangles . 192.10 Quaternions . 202.11 Mis
ellaneous . 203 Raster Algorithms 223.1 Display Types . 223.1.1 Ve
tor Display . 223.1.2 Raster Display . 233.2 Line Rasterization . 231

3.3 Triangle Rasterization . 243.4 Polygon Rasterization . 253.5 Line Clipping . 263.6 Polygon Clipping . 293.7 Culling . 293.8 Antialiasing . 293.8.1 Line . 303.8.2 S
reen Based . 304 Color 314.1 Light . 314.2 RGB . 324.3 CMY . 324.4 YIQ . 324.5 HSV . 334.6 XYZ . 334.7 Alpha Blending . 344.8 Gamma . 344.9 Fog . 354.10 Color Conversion . 365 Transformation Matri
es 375.1 S
aling . 375.2 Shearing . 385.3 Rotation . 395.3.1 Arbitrary Rotations In 3D 395.4 Re�e
tion . 425.5 Translation . 435.6 Composition of Transformations 435.7 Transforming Normal Ve
tors . 445.8 Windowing Transforms . 445.9 Inverse Transformations . 455.10 Proje
tive Transformations . 455.11 Big M . 456 Viewing 466.1 Canoni
al View Volume . 466.2 Orthographi
 Proje
tion . 476.3 Viewing Dire
tion . 486.4 Perspe
tive Proje
tion . 496.5 Field Of View (Camera Transformations) 516.6 Mapping Of Z . 526.7 Clipping In Homogeneous Coordinates 536.8 Viewing Pipeline . 542

7 O

lusion & Visibility 557.1 Painter's Algorithm . 557.2 Binary Spa
e Partitioning (BSP) 557.3 Ray Tra
ing . 567.4 Z-Bu�er . 567.5 W-Bu�er . 587.6 Transparen
y . 587.7 Culling . 597.7.1 Ba
k Fa
e Culling . 607.7.2 View Frustum Culling . 617.7.3 O

lusion Culling . 637.7.4 Hierar
hi
al Z-Bu�er . 667.7.5 O

lusion Horizons . 667.7.6 Dual Ray Spa
e O

lusion Culling 688 Lighting 708.1 Light . 708.1.1 Radiometry . 708.1.2 Photometry . 738.2 Lighting . 748.2.1 Simpli�
ations . 748.3 Illumination . 758.3.1 Light Sour
es . 768.3.2 Phong Lighting Model . 778.3.3 Torran
e-Sparrow Light Model 838.4 Shading . 848.4.1 Flat Shading . 858.4.2 Gouraud Shading . 858.4.3 Phong Shading . 888.4.4 Deferred Shading . 898.5 Shadows . 908.5.1 Planar Shadows . 908.5.2 Light Maps . 918.5.3 Shadow Maps . 918.5.4 Soft Shadows . 968.6 Motion Blur . 1038.7 Re�e
tion . 1049 Ray Tra
ing 1049.1 Viewing . 1049.2 Lighting . 1059.3 Interse
tion . 1089.4 Di�erent Usage . 1119.5 Limits . 1119.6 Properties . 1123

10 Modeling 11310.1 Polygon Meshes . 11310.1.1 Indexed Fa
e Set (Shared Vertex Set) 11410.1.2 Triangle Strips . 11410.1.3 Triangle Fans . 11510.1.4 Quad Strips . 11510.1.5 Enhan
ed Indexed Fa
e List 11610.1.6 Dire
ted Edges . 11610.1.7 Normal Ve
tors . 11710.1.8 Fa
e Orientation (Ba
k Fa
e Culling) 11710.1.9 Stripi�
ation . 11810.1.10Vertex Ca
he . 12010.2 Parametri
 Surfa
es . 12110.2.1 Bézier Curves . 12310.2.2 Uniform B-Splines . 12810.2.3 NURBS . 13010.3 Constru
tive Solid Geometry (CSG) 13110.4 Subdivision Surfa
es . 13110.5 Pro
edural Models . 13110.6 Hierar
hi
al Modeling . 13110.6.1 S
ene Tree / S
ene Graph 13110.6.2 S
ene Des
ription . 13210.6.3 Class Hierar
hy . 13210.6.4 S
enegraph API . 13310.7 Level Of Detail (LOD) . 13410.7.1 LOD Creation . 13410.7.2 LOD Swit
hing . 13510.7.3 LOD Sele
tion . 13511 Texture Mapping 13611.1 Noise Textures . 13711.2 2D Texture Mapping . 13711.3 1D Texture Mapping . 14111.4 3D Texture Mapping . 14211.5 Texture Antialiasing . 14211.5.1 Sampling Theorem . 14211.5.2 Mip Mapping . 14311.5.3 Ripmapping . 14411.5.4 Summed-Area Table . 14411.6 Blending Fun
tions . 14411.7 Corresponder Fun
tions . 14411.8 Bump Maps . 14511.9 Displa
ement Maps . 14911.10Environment Maps . 14911.11Environment Bump Maps . 15311.12Intera
tive Horizon Maps . 1534

11.13Shadow Maps . 15411.14Illumination In Textures . 15511.15Multi Texturing . 15611.16Texture Ca
he . 15611.17Texture Compression . 15712 BRDF (Bidire
tional Re�e
tion Distribution Fun
tion) 15812.1 Maxims . 15812.2 Theory . 15912.3 Praxis (Implementation) . 16012.3.1 Fa
torization . 16112.3.2 Environment Map Filtering 16112.4 Pre
omputed Radian
e Transfer (PRT) 16213 Rendering Pipeline 16614 OpenGL 16815 Programmable Graphi
s Hardware 17016 History 17317 Virtual Reality 174

5

Prefa
eThis s
ript tries to merge information on
omputer graphi
s and intera
tive
omputer graphi
s from the le
tures, the exer
ises, the books: FundamentalsOf Computer Graphi
s (from Peter Shirley) and Real Time Rendering (fromMöller and Akenine-Haines) and last but not least intuition and idea that arosefrom talking to Professor Stamminger and talking to and the help from ChristianGraef and Arian Baer.In it I tried to present the information in the way we understood it with manyhints and pi
tures that help understanding it. I think it is a valuable se
ondaryresour
e, in
ase you did not understand a
ertain topi
 or want to know moreabout it.As a merge from the above sour
es the
ontents ex
eed the le
ture at manypla
es, you simply have to de
ide for yourself how mu
h you want to know andwhere to stop (I think knowing a little bit more than ne
essary does no harm,and instead you are more self
on�dent and get a better overall understandingof the general problems and methods of
omputer graphi
s, be
ause they repeatover and over again in di�erent
ontext. On
e you had this realization, you
anrest assured that you will pass the exam splendidly).0.1 De�nitionsGraphi
sComputer Graphi
s Any use of
omputers to
reate or manipulate images.Modeling mathemati
al spe
i�
ation of shape and appearan
e propertiesRendering
reation of shaded imagesAnimation illusion of motion through sequen
e of imagesIntera
tivity allowing the user to intera
t with the s
ene, immediately dis-playing the results (e.g. grab & drop) 5-6 fpsReal-Time render
hanges in the s
ene fast enough, that illusion of motion is
reated 20-60 fpsUnitsPixel PICture ELement. The smallest unit on the s
reen.Texel TEXture ELement. The smallest unit on a texture.Fragment Before the s
ene is rendered on the s
reen it often is rendered to abu�er having a greater (theoreti
ally also lesser) resolution. Sin
e some ofthe bu�ers elements are
ast to one pixel, we introdu
e the term fragmentfor disambiguation. 6

Bu�ersZ-Bu�er A bu�er identi
al to the framebu�er
ontaining depth information forevery pixel. Thus by having new obje
ts
ome into view, we
an
omparethe obje
t's pixels' depth with the value stored in the Z-Bu�er and drawor dis
ard them a

ordingly.W-Bu�er An alternative to Z-Bu�ering. Instead of depth value the homoge-neous perspe
tive w
oordinate is stored. The advantage of this methodis having uniform depth values.Sten
il Bu�er The sten
il bu�er is another dupli
ate of the framebu�er
on-taining integer values (1 byte per pixel). It is mainly used to limit thearea of rendering: Render only to pixels highlighted on the sten
il bu�er(e.g. for drawing shadows). It
an be e�
iently
ombined with the depthbu�er, for example every time a depth test fails in
rease the pixels integervalue on this position in the sten
il bu�er by 1.Framebu�er A
ertain
hunk of memory used for display on s
reen. Graphi
sintended to be written to the s
reen is written to the framebu�er.Double Bu�er Writing to the framebu�er while the monitor's photon
annonis displaying it's
ontent, leads to �i
kering and artifa
ts. Therefore ate
hnique
alled double bu�ering is
ommonly used. Graphi
s are �rstwritten to the double bu�er (another framebu�er) and on
e the photon
annon rea
hes the bottom the two bu�ers are swapped.Triple Bu�er Double Bu�ering still
an lead to artifa
ts: Image the pipelinejust writing to the double bu�er, when it is swit
hed with the framebu�er.In this
ase no �i
kering will be seen, but depending on the amount of
hange, the s
ene's integrity will be broken for an instant. Thereforetriple bu�ering was suggested. The rendering is started on the triplebu�er, on
e a s
reen update has been made, double and triple bu�er areswapped and rendering is
ompleted on the double bu�er, then in thenext step it is displayed to the viewer. Another advantage is that duringthe rendering of the double bu�er, the triple bu�er
an be
leared, whi
htakes an
onsiderable amount of time. Therefore using triple bu�eringmore frames per se
ond
an be displayed than using double bu�ering. Adisadvantage you should take into a

ount is the laten
y of 3 frames. Auser
ommand/input will only have no e�e
t on the next two frames.A

umulation Bu�er A bu�er used to gather images of an obje
t with setoperations. It is mainly used to generate motion blurs, but also for softshadows or depth antialiasing. Usually out of this set a single image withhigher pre
ision is
reated in
luding the motion blur e�e
t.G Bu�er A bu�er used for deferred shading (see 8.4.4). In short in it we storeevery pie
e of information we need for an a

urate lighting
omputation,so that we are able to perform the lighting stage anywhere in the pipeline.7

Some words on the required memory. If we assume 1280x1024 pixels with true
olor, results in 8 bit per
olor
hannel = 3.75 MB. Using double bu�ering weneed twi
e as mu
h: 7.5 MB. The Z-Bu�er with 24 bit per pixel requires 3.75MB. Adding an a

umulation bu�er with 48 bit and a sten
il bu�er with 8 bitper pixel would result in 8,75 MB. Summing up to a total of 20 MB.ComputerCPU Central Pro
essing UnitGPU Graphi
s Pro
essing UnitFLOPS Float Operations Per Se
ond0.2 BibliographyFundamentals of Computer Graphi
s by Peter Shirley (Se
ond Edi-tion)A very good book that
overs all the basi
s. If even with this s
ript you havenot
ompletely grasped a
ertain topi
 about the very fundamentals, open thebook and read the whole
hapter about it. If however this topi
 of yours is alsoto be found in the book Real Time Rendering (see below), try the other one�rst. Although Shirley and Friends give real good explanations, the authors ofthe Real Time Book even surpass his explanations.A word on the edition. The �rst edition was written by Shirley alone, these
ond one by Shirley and seven other authors, whi
h added some minor
hangesto existing
hapters and added
ompletely new
hapters on their own. So tryto get hold of the se
ond one.Real Time Rendering by Tomas Akenine-Möller and Eri
 Haines (Se
-ond Edition)In my opinion this book even surpasses Shirley's. The authors really give in-tuitive and splendid explanations going hand in hand with huge amounts ofex
ellent pi
tures, �gures and graphi
s illustrating what is being explained.Furthermore they
over the topi
s really good and
an enri
h your knowledgeabout the topi
s
overed in the le
ture. I've almost read through all the
haptersand did never regret even one. If I didn't understand a topi
 with the slides andthe le
ture, I usually did understand it after reading through the
orresponding
hapter, if existing.Other Resour
esApart from the slides you have from the le
ture, you should from time to timetry to �nd di�erent explanations of illustratory applets with google.The page of the le
ture of Professor Stamminger (Intera
tive Computer Graph-i
s http://www9.informatik.uni-erlangen.de:81/Tea
hing/SS2006/InCG/8

Material) o�ers a great fundus of additional free internet resour
es. Alsothe page of Möller's and Haines' Book (Real Time Rendering http://www.realtimerendering.
om/) and of Shirley's book (Fundamentals Of ComputerGraphi
s http://www.
s.utah.edu/~shirley/books/f
g2/) o�er ni
e slidesbased on their books and various other helpful links. Last but not least Wikipediafrequently helps with di�erent approa
hes to topi
s.0.3 CopyrightThis do
ument is to be seen as OpenSour
e and I would be happy if anyonede
ides to enri
h this s
ript by adding additional
on
epts, better explanationsor additional examples and illustrations and of
ourse
orre
ting all the mistakes,that I made. The sour
es (.lyx or .tex)
an be a
quired by writing a short e-mail to me: . However as in the GNU-Li
en
e, I hereby fobidanyone to postulate money for this do
ument or use parts from it for
ommer
ialworks. It is meant to be a free help for students all over the world and it shouldremain free.1 Appli
ationMovies
omputer generated foregrounds, Animations, spe
ial e�e
tsGamesthe drive behind graphi
s developmentComputer Aided Design (CAD)ar
hite
ture, produ
ts,
ars, planes, me
hani
al partsEdu
ation & Trainingsimulation of realisti
 environments, �ight simulatorVisualizationmedi
al appli
ations: model ling of (parts of) the human bodyVirtual Reality (VR)Immersion, response to head motion, stereo pi
tures, additional
omponents(Sound, For
e Feedba
k)
9

2 Math2.1 Ve
tors2.1.1 Propertiesorthogonal ve
tors building a right angle: ~u · ~v = 0orthonormal orthogonal ve
tors having length 1: ~u ·~v = 0 and ‖~u‖ = ‖~v‖ = 1
onstru
tion use Gram-S
hmidt Orthognoalization / Orthonormalization2.1.2 Operationslength ‖~a‖ =
√

a2
x + a2

y + a2
zs
alar produ
t ~aT ·~b = ‖~a‖
∥

∥

∥

~b
∥

∥

∥ cosφusage:
ompute the angle between two ve
tors.
~aT ·~b =





b1
b2
b3





(

a1 a2 a3

)

a1b1 + a2b2 + a3b3tensor produ
t ~a ·~bT = Mn×nusage:
ombine two ve
tors to a matrix. e.g. for
ombining two 1Dfun
tions to one 2D one (see Bézier Curves & Splines 10.2).
~a ·~bT =

(

a1 a2 a3

)





b1
b2
b3









a1b1 a2b1 a3b1
a1b2 a2b2 a3b2
a1b3 a2b3 a3b3




ross produ
t ∥∥∥~a×~b∥∥∥ = ‖~a‖
∥

∥

∥

~b
∥

∥

∥ sinφusage:
ompute a third ve
tor perpendi
ular to ~a and ~b (3D)orthogonal proje
tion ~a→ ~b = ~a·~b
‖~b‖ = ~a · cosφ2.2 Matri
es

A =

[

a11 a12

a21 a22

]Quadrati
 An×m where n = m 10

Identity An×n having 1 on the diagonal and 0 everywhere else
I2×2 =

[

1 0
0 1

]Transpose AT : An×m → Am×n swit
h rows with
olumnsAdjoint Ā. This matrix has the entries
aij := det (Aij) ·

{

−1 if (i+ j) odd
1 if (i+ j) evenwhere Aij means the matrix resulting from A when removing the ith rowand the jth
olumn. The resulting matrix is
alled the
ofa
tor matrix.Take its transpose to get the adjoint matrix Ā.The adjoint has the following ni
e property:

A · Ā = det (A) · InInverse A ·A−1 = I

A−1 =
1

det (A)
Ā2.2.1 DeterminantsVe
torsThe determinant of two ve
tors, ~a,~bis a parallelogram.

∣

∣

∣~a~b
∣

∣

∣ = xayb − yaxbHaving three ve
tors it is a
ube with parallel parallelograms as sides.
∣

∣

∣~a~b~c
∣

∣

∣ = xaybzc − xayczb − xbyazc + xcyazb + xbycza + xcybzaMatri
esThere are several methods to
ompute the determinant of a given matrix. Lookthem up in a linear algebra s
ript.2.2.2 Eigenvalues & Eigenve
torsCondition matrix A has to be quadrati
.11

Eigenvalues
A~x = λ~xwhere λ is
alled eigenvalue.

A~x = Iλ~x
(A− λI) ~x = 0










a11 − λ a12 a13 · · ·
a21 a22 − λ a23 · · ·
a31 a32 a33 − λ · · ·...  x1

x2

x3... 







solve this to get λ1 . . . λn.Eigenve
torsPlug in λ1 . . . λn into A results in the eigenve
tors.Singular Value De
omposition (SVD)For non quadrati
 matri
es.Bene�t singular values, eigenvalues, orthonormal basis, pseudo inverse,
ondi-tionSingular Values σfor symmetri
 matri
es they are equal to the eigenvaluesin
ase A is not quadrati
 we have A = MMT and thus the singular valueswould be σMMT =
√
λADe
ompose A ∈ R

n×m into A = UΣV T , where
Σ =





σ1

σ2

σ3



with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0
U ∈ Rm×n and U · UT = I (orthonormal
olumn ve
tors)
V ∈ Rn×n and V · V T = V T · V = I (orthonormal
olumn and row ve
tors)Condition κ := σ1

σnIf κ is
lose to one, the problem is well
onditioned, if it is large the problem isunstablePseudoinverse At = V Σ′UT where Σ′ results from Σ when repla
ing all sin-gular values by their re
ipro
al values (σi | 1
σi

→ Σ′
)

12

2.3 Coordinate Systemsworld without expli
itly storing the
oordinates of the origin, we usually haveone world
oordinate system, where lo
al obje
t
oordinate system will bepla
e in.lo
al a lo
al
oordinate system refers to an obje
t. If it is pla
ed in a world
oordinate system, a mapping must be made to a

ess points in the obje
trelative to the world
oordinate system.eye a perspe
tive spa
e with viewing
oordinates.s
reen the s
reen spa
e is the
oordinate system of the
omputer s
reenmapping
Figure 1: mapping from one
oordinate system into anotherThe world origin is o, the lo
al one e. The world basis ve
tors are denoted

x, y, z, the lo
al ones u, v, w. Then
e = (xe, ye, ze) = o+ xe · x+ ye · y + ze · zAdditionally the lo
al
oordinate system may be rotated. Model ling bothrotation and translation by a matrix we
an easily move forwards and ba
kwardsthrough di�erent
oordinate systems (see 5).Example





px

py

1



 =





1 0 ex

0 1 ey

0 0 1









ux vx 0
uy vy 0
0 0 1









pu

pv

1



Mapping the eye spa
e to the s
reen spa
e requires a mapping to the viewfrustum (a unit
ube) with normalized
oordinates �rst.2.3.1 Cartesian CoordinatesWe use a orthonormal basis ve
tor system, with the three basis ve
tors x-axis
(1, 0, 0), y-axis (0, 1, 0) and z-axis (0, 0, 1).

p = (x0, y0, z0) = x · x0 + y · y0 + z · z013

2.3.2 Polar CoordinatesWe use two parameters to des
ribe any point in the
oordinate system: distan
efrom the origin r and angle between
oordinate axes and the ve
tor φ.
p = (r0, φ0)2.3.3 Bary
entri
 CoordinatesMainly used for interpolating
olor values on triangles. We use non-orthogonalbasis ve
tors. a is the origin and (b− a) and (c− a) the basis ve
tors.

p = (β, γ) = a+ β (b− a) + γ (c− a)

p = (1 − β − γ)a+ βb+ γc

α ≡ 1 − β − γ

p = αa+ βb+ γcresulting in the
onstrain that α+ β + γ = 1.2.3.4 Homogeneous CoordinatesUsed for matrix transformations. They are based on proje
tive geometry and ir-repla
eable useful in graphi
 transformations. The idea is to arti�
ially in
reasethe dimension.So being in 2D, we would result in having three
oordinates
(x, y) → (x, y, 1)where 1 is the homogeneous
oordinate. See (x, y, 1) as the line α · x, α · y, α |

α ∈ R
3Dire
tion And Lo
ationThe homogeneous
oordinate w a
ts as a kind of pointer to a lo
ation (trans-lation from the origin). But often we want a ve
tor to store a dire
tion ratherthan a lo
ation. In the latter
ase we simply set w = 0 ind the �rst
ase w = 1.DehomogenizationIf our ve
tor is ~p =









x
y
z
w









, the dehomogenized ve
tor is ~p =





x
w
y
w
z
w





14

PropertiesHomogeneous
oordinates have some very useful properties justifying their usage
• any two lines interse
t in one point
• points at in�nity
• a�ne transformation be
ome linear
• preserves
ross-ratio2.3.5 MappingsCartesian -> Bary
entri

[

xb − xa xc − xa

yb − ya yc − ya

] [

β
γ

]

=

[

xp − xa

yp − ya

]Imagining a lines AC and AB passing through a bary
entri
 triangle, we
anget β, γ and α by:
β =

fac (x, y)

fac (xb, yb)

γ =
fab (x, y)

fab (xc, yc)

α = 1 − β − γwhere fab (x, y)
an impli
itly written as
fab (x, y) = (ya − yb)x+ (xb − xa) y + xayb − xbya = 0A third possibility is using areas Aa, Ab, Ac resulting from drawing lines fromthe
enter to the three points (A = Aa +Ab +Ac):

α =
Aa

A
=
~n · ~na

‖~n‖2

β =
Ab

A
=
~n · ~nb

‖~n‖2

γ =
Ac

A
=
~n · ~nc

‖~n‖2in the 3D
ase, we
an use normal ve
tors instead of the area.
15

2.4 Impli
it Fun
tionsImpli
it LinesThe
ommon line de�nition is:
y = m · x+ tthe impli
it form is easily obtained by:

y −m · x− b = 0where m is the slope (Steigung) and b the y-value, where the line
rosses the
y-axis.Sin
e this form still la
ks some lines like x = 0 where m would be in�nitelarge, we advan
e to the more general

ax+ by + c = 0Any point (x0, y0) on this line must satisfy the equation: ax0 + by0 + c = 0Distan
e Point to Line:The distan
e from point (x1, y1) to the line ax+ by + c = 0 isdistan
e =
f (x1, y1)√
a2 + b2If (a, b) is a unit ve
tor, the distan
e is dire
tly given by f (x, y).Impli
it Cir
lesA
ir
le with
enter (cx, cy) and radius r has the impli
it form

(x− cx)
2

+ (y − cy)
2 − r2 = 0Impli
it EllipsisA ellipse with
enter (cx, cy) and minor and major semi-axes a and b

(c− cx)
2

a2
+

(c− yx)
2

b2
− 1 = 0Given: fun
tion f (x, y, z), point ~p = (x, y, z)Surfa
e NormalThe surfa
e normal is given by the gradient

~n = ∇f (x, y, z) =

(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)16

Impli
it Planes
P : (~p− ~a) · ~n = 0A plane P given by three points ~a,~b,~c

~n =
(

~b− ~a
)

× (~c− ~a)

P : (~p− ~a) ·
((

~b − ~a
)

× (~c− ~a)
)

= 0Impli
it Spheres
f (x, y, z) = (x− cx)

2
+ (y − cy)

2
+ (z − cz)

2 − r2 = 02.5 Parametri
 Fun
tionsParametri
 Fun
tions use parameters to des
ribe the fun
tion.Parametri
 LinesA parametri
 line passing through points p0 = (x0, y0) and p1 = (x1, y1)
an bewritten as
[

x
y

]

=

[

x0 + t (x1 − x0)
y0 + t (y1 − y0)

]

p (t) = p0 + t (p1 − p0)Parametri
 Cir
lesA
ir
le with
enter (cx, cy) and radius r
an be written as
[

x
y

]

=

[

cx + r · cosφ
cy + r · sinφ

]Parametri
 Ellipsis
[

x
y

]

=

[

cx + a · cosφ
cy + b · sinφ

]3D parametri
 surfa
es have the form
x = f (u, v)

y = g (u, v)

z = h (u, v)17

Parametri
 SpheresConsider a sphere, that's
enter is at the origin having radius r
x = r · cosφ sin θ

y = r · sinφ cos θ

z = r · cos θwhere φdenotes the longitude (angle between x-axis the y-axis and the ve
tor onthe xy-plane) and θ denotes the latitude (angle between the z-axis the xy-planeand the ve
tor). See FoCG p.41 .
θ = acos

(

z
√

x2 + y2 + z2

)

φ = acos (y, x)By that we get
~x = r ·





r · cosφ sin θ
r · sinφ cos θ
r · cos θ



+ ~c2.6 Curveslinear p (t) = c1t+ c0quadrati
 p (t) = c2t
2 + c1t+ c0
ubi
 p (t) = c3t

3 + c2t
2 + c1t+ c02.7 PolynomialsBernstein

Bn
i (x) =

(

n
i

)

(1 − x)
n−i

xiLagrange
Li (x) =

n
∏

j = 0
i 6= j

x− xj

xi − xjLegendre
Pn (x) =

1

2πi

∫

√

(1 − 2tx+ t2)t−n−1dt

18

Splines
b0 (t) =

1

6
t3

b1 (t) =
1

6
·
(

−3t3 + 3t2 + 3t+ 1
)

b2 (t) =
1

6
·
(

3t3 − 6t2 + 4
)

b3 (t) =
1

6
·
(

1 − t3
)

bn (t) = (n+ 1)

n+1
∑

i=0

ωi,n (t− ti)
nwhere

ωi,n =

n+1
∏

j = 0
j 6= i

1

tj − ti2.8 Linear InterpolationLinear Interpolation is the pro
ess of passing through a geometri
 surfa
e by aparameter t.E.g. as we have already seen:
p = (1 − t) a+ t · bis a linear interpolation. It is linear, be
ause t and t− 1 are linear polynomialsof t.Interpolating through a set of points on the x-axis having assigned a height

yi to ea
h point xi, interpolating over those height values, we get
f (x) = yi +

x− xi

xi+1 − xi

(yi+1 − yi)Conse
utively you
an think of the x-values as 3D ve
tors and the y-values as
olor values.2.9 TrianglesTriangles usually are the fundamental primitives for graphi
s programs. Most
ommonly their verti
es store a
olor value, whi
h is then interpolated a
ross thetriangle. To make this interpolation straight forward, we will use bary
entri

oordinates.Given: triangle △ABC 19

Area(2D) area = 1
2 |xayb + xbyc + xcya − xayc − xbya − xcyb|Internal Point a point p is inside the triangle if and only if 0 < α < 1,

0 < β < 1, 0 < γ < 1.Edge one point is zero, the other two between zero and oneVertex two points are zero, the other one is oneNormal Ve
tor ~n =
(

~b− ~a
)

× (~c− ~a) (a ve
tor perpendi
ular to the triangleedges)Area(3D) area = 1
2

∥

∥

∥

(

~b− ~a
)

× (~c− ~a)
∥

∥

∥2.10 QuaternionsThe quaternions H
an be seen as an extension to the body of
omplex numbers
C. Quaternions Complex Numbers

H = R × R
3

C = R × R

q = (q0, ~q) = a+ ib+ jc+ kd z = x+ iy
n+ = (0,O) n+ = (0, 0)
n· = (1,O) n· = (1, 0)

i· = 1
|q| (q0,−~q) i· = 1

|z| (x,−y)
q = |q| (cos (t) , sin (t) · ~n0) z = |z| (cos (t) , sin (t))2.11 Mis
ellaneousAngleThe angle θ of a
ir
ular ar
 of length l and radius r is equal to

θ =
l

r
[rad]Example: Cir
le

l = 2πr
θ = l

r
= 2πr

r
= 2π [rad]

20

Solid Angle

Figure 2: solid angleA solid angle is the equivalent to the angle in 3D. The angle Ω witha spheri
al area a is equal to
Ω =

a

r2
[stearradians]Example: Sphere

a = 4πr2

Ω = a
r2 = 4πr2

r2 = 4π [sr]Solid Angel Di�erential

Figure 3: Solid Angle Di�erentialFor light purposed we need to di�erentiate the solid angle:21

ar
 length [θ, θ + dθ] : rdθar
 length [φ, φ + dφ] : r sin θdφarea di�erential dA = (rdθ) (r sin θdφ) = r2 sin θdθdφangle di�erential dω = dA
r2 = sin θdθdφ [sr]We
an use this result to integrate over the entire sphere and get the solid angle

S

S =

∫ π

0

∫ 2π

0

sin θdθdφ = 4π [sr]Ratio (Teilungsverhältniss)Having three points A1, A2, A3 on a line, we have the ratio
|A1A2|
|A2A3|Crossratio (Doppelverhätniss)Having four points A1, A2, A3, A4 on a line, we
an de�ne a
rossratio
|A1A2|
|A2A3|
|A2A3|
|A3A4|3 Raster AlgorithmsPixel (pi
ture element) a single element of a raster display indexed by rowand
olumn (i, j)Raster re
tangular array of pixelsS
anline row of pixels in the raster3.1 Display Types3.1.1 Ve
tor Displayadvan
ed os
illos
ope,
ontrolled by horizontal/verti
al plate voltage,
reationof whole obje
ts (i.e. ve
tors) instead of single pixels+ high resolution, intera
tivity, s
aling- few
olors, wire frames without surfa
es, low
omplexity, expensive
22

3.1.2 Raster DisplayCathode Ray Tube (CRT) traditional monitor with blobby pixels asso
i-ated with a pat
h of phosphor, that's glow depend on the ele
tron beam'sintensity (
olor CRTs have three beams red, blue, green)Liquid Crystal Display (LCD) almost perfe
t squares a
t as �lters, whi
hvary their opa
ity to darken a ba
k light. They do this by liquifying whenshot at with heatFramebu�er memory array in whi
h an image is stored, before it is displayedon the s
reen+ �lled surfa
es,
olor variation per pixel (lighting, shading), real time refresh- aliasing: artifa
ts, moire patterns, di�
ult sele
tive update, dis
rete sampling,jaggies3.2 Line RasterizationGiven start and end point, we want an algorithm that draws a line betweenthem. Usually only integers are respe
ted (i.e. whole pixels are used for theline).Ray A

elerationDraw every pixel the line tou
hes.+ fast- uglyBresenham Algorithm (Midpoint Algorithm)Makes use of a impli
it form of the line:
f (x, y) = (y0 − y1)x+ (x1 − x0) y + x0y1 − x1y0 = 0where (x0 < x1). The key idea of the algorithm is the line's slope m

m =
y1 − y0
x1 − x0The algorithm assumes the line to pro
eed more horizontally than verti
ally fromstart to end point, so the next pixel is either on the same level (x+ 1, y) or oneabove (x+ 1, y + 1). All other
ases
an be dedu
ed straight forwardly (e.g. forthe verti
al
ase, swit
h y and x. Now the idea is to look at the midpoint betweenthose
andidates (x+ 1, y + 0.5) and
ompute whether the line goes above orbelow it and make a de
ision a

ordingly. We
an get the distan
e betweenpoint and line as explained in 2.4 by simply evaluating f (x+ 1, y + 0.5). Sin
e23

x1 > x0, (x1 − x0) will always be positive. Thus we
an read whether the line isbelow or above the point, by looking if (x1 − x0) y has in
reased or de
reased.Algorithm 1 Bresenham Algorithm
y = y0for x = x0to x1 dodraw(x, y)if(f (x+ 1, y + 0.5) < 0) then

y = y + 1For more e�
ien
y, we
an reuse previous results using the following properties
f (x+ 1, y) = f (x, y) + (y0 − y1)
f (x+ 1, y + 1) = f (x, y) + (y0 − y1) + (x1 − x0)

y = y0
d = f (x0 + 1, y0 + 0.5)for x = x0to x1 dodraw(x, y)if(d < 0) then

y = y + 1
d = d+ (y0 − y1) + (x1 − x0)else
d = d+ (y0 − y1)We still have a real operation when adding 0.5, yet the
ode uses only integersapart from that. We
an outmaneuver this by multiplying with 2.

d = 2f (x0 + 1, y0 + 0.5)

d = d+ 2 (y0 − y1) + 2 (x1 − x0)

d = d+ 2 (y0 − y1)If the line is very diagonal, it will have fewer pixels than a straight line and thusappear less bright. As a solution you may take the distan
e to the midpoint dand use it to adjust the pixels brightness a

ording to d. For grey-s
ale
olor
1√

2 cos α
has proven to be a good
ompensation.3.3 Triangle RasterizationGouraud InterpolationDetermine the triangles pixels
olors by interpolating the
olor at it's verti
es:

c = αc0 + βc1 + γc2where (α, β, γ) are the pixel's/point's bary
entri

oordinates (see 2.3.3).24

If the pixel is on the edge of two adja
ent triangles, there is no �right one� toassign it to. Therefore we just de
ide for one of them, as long as the de
ision iswell de�ned. One solution is to
hoose a random o� s
reen point, and make thede
ision depending on it's position.AntialiasingThe edges of triangles will appear pretty �jaggy� blurry on the s
reen. A simplesolution for this problem is to allow pixels to be half on (αvalue).Box Filter: One easy method is to underlay a re
tangle and use it as a�lter, where the pixel's
olor is set to the average values inside the re
tangle.3.4 Polygon RasterizationIf we are dealing with polygons in general rasterization is getting a bit thougher.Our task is still to draw all pixels within a polygon.Seed FillAlgorithm 2 Seed Fill1. draw polygon edges with the Bresenham algorithm (see 3.2)2. randomly pi
k a point within the polygon and draw it3. 	 re
ursively
he
k all neighbouring pixels for being inside and draw them- deep re
ursion (sta
k over�ow), ine�
ient, no shading2D S
an ConversionUse the edges to partition the s
reen into out
ode areas and apply α-
lipping(see 3.5), painting every pixel inside.- a lot of useless
omputation, highly ine�
ient+ slightly better when using small s
reen bounding boxes, instead of the entires
reenS
anlineThe idea is to pro
eed s
anline per s
anline from bottom to top, to �nd interse
-tions with the polygon and draw between the interse
tion points. The x-valueto start the line at
an be determined by storing the lowest x-
oordinate of theedges and keep this one up to date by adding the re
ipro
al slope 1
m

= ∆x
∆y

ea
htime we
limb a line higher. 25

Edge Table a list of all edges of the form
ylower xlower yupper 1

m
= ∆x

∆y
֌next edgethese nodes are sorted by ylower. 1

m
is the in
rement required to step a linehigher.A
tive Edge Table a list of edges that are interse
ting with the
urrent s
an-line

xinterse
t yupper 1
m

= ∆x
∆y

֌next edgesorted by xinterse
t. The
urrent interse
tion point is (xinterse
t, ys
an)Algorithm 3 S
anline1. initialize Edge Table (ET)2. set A
tive Edge Table (AET) to ∅: AET = NULL3. draw all horizontal lines4. ys
an = ylower of the �rst ET entry5. do
• move all edges with ys
an == ylower from ET to AET
• sort AET
• draw lines:� AET[0℄.x, ys
an to AET[1℄.x, ys
an� AET[2℄.x, ys
an to AET[3℄.x, ys
an� · · ·
• ys
an + +

• remove all edges with yupper ≤ ys
an from the AET
• x = x+ 1

m

	 while AET 6= ∅+ fast, e�
ient, allows a good
ombination with shading3.5 Line ClippingThe task of
lipping is, to only draw what is inside the visible area (e.g. there
tangle of the monitor). Now we haven given start and end points of lines, ifthey're both inside the
lipping re
tangle, we draw the line. Yet even if theyare both outside, it is not given, that the line between does not
ross the visiblere
tangle. 26

Cohen SutherlandWe partition the image into nine areas by lengthening the re
tangles edges.Then we assign ea
h area with an out
ode (see �gure).
Figure 4: out
odes for the
lipping re
tangleThe four Boolean
orrespond to: |x < xmin| |x > xmax| |y < ymin| |y > ymax|where

xmin, ymin, xmax, ymax refer to the lower left and the upper right
orner of the
lipping re
tangle.Algorithm 4 Cohen Sutherland1. determine the out
odes for the start and end points P1 and P22.
he
k Trivial A

ept: both points are inside
outcode (P1) ∨ outcode (P2) = 0

→ draw the entire line3.
he
k Trivial Reje
t: both points are outside in respe
t to one edge
outcode (P1) ∧ outcode (P2) 6= 0

→ draw nothing4. �nd interse
tion points S1, S2 where the line interse
ts with edges. Repla
e
Pi by the nearest interse
tion point.
	 restart at 1.

α-
lipping
α-
lipping adds an Improvement to the Cohen Sutherland algorithm by intro-du
ing Window Edge Coordinates (WEC) For both points of the line wedetermine four WECs: WECleft (P) = px − xminWECright (P) = xmax − px27

WECbottom (P) = py − yminWECtop (P) = ymax − pyIf WECE (P) < 0 then P is outside in respe
t to edge E. This
an be used foran e�
ient out
ode generation.For α-
lipping we
hoose the parameter form of a line: P1P2 = {p = p1 + α (p2 − p1) , α ∈ [0, 1]}.The value of this parameter α for getting an interse
tion point S with an edge
E
an be determined by

αS =
WECE (P1)WECE (P1) −WECE (P2)Algorithm 5 α-
lipping1.
ompute the eight WEC for P1 and P22.
ompute the out
odes (take the sign of the WECs)3.
he
k Trivial A

ept and Trivial Reje
t4. αmin = 0, αmax = 15. 	 for every E where an out
ode is set

• αS = WECE(P1)WECE(P1)−WECE(P2)

• if outcodeE (P1) → αmin = max {αmin, αS}
• else if outcodeE (P2)→ αmax = min {αmax, αS}6. if αmin > αmax → return empty lineelse → return (p1 + αmin · (p2 − p1) , p1 + αmax · (p2 − p1))If we are dealing not with an re
tangle, but with a Convex Clipping Domainwe simply apply α-
lipping with one WEC per edge. If however, we have aCon
ave Clipping Domain we have to partition it into
onvex ones andmerge the results.

Figure 5: reversed
lipping in a x-window system28

In X-window systems we often have multiple windows overlapping. In this
asewe may also apply α-
lipping, yet we have to reverse the results (do not drawwhat's inside).3.6 Polygon ClippingSimilar to line
lipping, but now we have a
omplete polygon to
lip against a
lipping re
tangle.Sutherland HodgemanThe idea is to
lip against all edges
onse
utively and when appropriate addinterse
tion points or polygon verti
es to the �nal set of verti
es. Doing this wehave to di�erentiate four di�erent
lasses:
Figure 6: Sutherland Hodgeman Classesinside/inside add Pi+1 to the set of verti
esinside/outside
ompute and add interse
tion point Soutside/inside
ompute interse
tion point S and add S and Pi+1outside/outside do nothingDoing this
he
k
onse
utively for all verti
es (P1P2 → P2P3 → · · · → PnP1)for all four edges, we
an return a set of verti
es de�ning the visible polygon.3.7 CullingWhen an entire triangle lies outside the view volume, it
an be
ulled. Cullingmeans elimination of a triangle or a whole obje
t from the pipeline. See theChapter about O

lusion & Visibility 7.7.3.8 AntialiasingIn general aliasing o

urs when Nyquist's sampling theorem was hurt (see 11.5.1),therefore the best way, if possible, is to use a higher sampling frequen
y.

29

3.8.1 LineLine's often appear often jagged having aliasing artifa
ts. Methods to
ounterthis are:
• treat them as a one pixel wide quadrilateral blended with the ba
kground
•
onsider an in�nitely thin obje
t with a halo
• use a anti aliased texture3.8.2 S
reen BasedA te
hnique often used for s
reen based antialiasing is weighted interpolation ofneighbouring pixels:

p (x, y) =

n
∑

i=1

ωic (i, x, y)where ωi are weights des
ribing the
ontribution of a neighbouring pixel and
c (i, x, y) returns the
olor of neighbouring pixel i. Note that the weights haveto sum up to 1: ∑n

i=1 ωi = 1.Other methods in
ludeFull S
ene Antialiasing (FSAA) Render the image at a higher resolutionand average neighbouring pixels. This is usually
ombines with Mip-Mapping (see 11.5.2), but instead of
hoosing the Mip-Map level by thelonger side of the parallelogram, we take the smaller side and thus
hoosea Map in higher resolution than usual, but also render the obje
t in higherresolution than the �nal image on the s
reen has. Now for every pixel inthe s
reen we
he
k the n
losest fragments in the higher resolution imageand average them to determine the pixel's value at the
urrent position.The more parallel fragment pipelines we have, the more e�
ient this nper 1 look-up
an be realized.Anisotropi
 Filtering see FSAA aboveA

umulation Bu�er Use the a

umulation bu�er (see 0.1) to use multiplepasses blending over ea
h otherMultisampling
ompute a polygon's grid
overageSto
hasti
 Sampling (Jittering) instead of sampling uniformly, sample ran-domly. This results in uniform noise added to the resulting image, but thehuman vision system is very forgiving to uniform (or white) noiseGamma Corre
tion see next
hapter 4.8
30

4 ColorColor as per
eived by human being is always a three dimensional problem, sin
ethe human eye di�erentiates three kinds of
ones for
olor per
eption and rods,sensors dete
ting brightness and darkness (Tristimulus Theory). Ours areespe
ially sensitive to red, green and blue.8 Bit Byte entries in a pseudo
olor framebu�er point to a look-up table with
olor values24/32 Bit 1 Byte per
olor (True Color)Using multipass rendering te
hniques the
olor depth be
omes espe
ially impor-tant. If the pre
ision (depth) used for one pixel's
olor is to low, nasty visiblequantization artifa
ts will o

ur.4.1 LightSeeing works with light entering the eye hitting the retina. We des
ribe thislight signal and its wavelength as the radian
e.radian
e L (λ) radian
e is the intensity of light with a
ertain dire
tion andwavelengthwavelength λ = c
f
with c as the speed of light and f as frequen
y.light has a huge spe
trum of wavelengths, of whi
h a small part are visibleas
olor. Other spe
tra are UV, infrared, mi
rowaves, radio waves, x-rays,gamma-rayshue the seen
olor, i.e. the dominant wavelength. E.g. the hue of pink is red.saturation
olor intensity (how far is it from grey of equal intensity)brightness the light energy, the emitted light. It is also
alled luminan
e.E.g. darkblue and lightblue.ResponseThe human eye per
eives light not linearly, but is more sensitive to
ertainspe
tra; whi
h also is true for
ameras. Therefore we
an de�ne a response tolight: response = k

∫

w (λ)L (λ) dλwhere w (λ) is the response fun
tion and k a hardware dependent (organi
 de-pendent)
onstant.ColorThe phenomena of
olor is based on di�erent wavelengths of light. E.g. red isaround 4.3 · 1014 outcode 31

4.2 RGB
Using red, green and blue (RGB) as basis
olors, we have an additive
olorsystem. This is suited for monitors, whi
h work with additive light.4.3 CMY
Having a
tual paint, like with printers, we fall ba
k to the well known subtra
tive
olor system. For this is is
ommon to use
yan, magenta and yellow (CMY) asthe three basis
olors.CMYKOften the CMY model is extended by the
olor bla
k. This model is mainlyused for printing devi
es, sin
e it would be more
ostly to mix bla
k out of
yan,magenta and yellow.4.4 YIQThe YIQ
olor model is traditionally used in NTSC-television. The variable Ysolely
ontains the luminan
e ne
essary for bla
k & white television and I, Qhold additional
olor information.

32

4.5 HSV
The Hue, Saturation, Value (Brightness)
olor model is a more intuitive
olormodel derived form the RGB model. In the HSV model
olor is more de�ned byit's properties (hue, saturation and brightness) than parted into three di�erent
olors.hue given as angle between [0◦, 360◦]saturation the distan
e from grey [0, 1]value from white to bla
k [0, 1]4.6 XYZ

The XYZ
olor model is based on the Tristimulus Theory and attempts tostandardize
olor values. In
ontrast to physi
al reality the CIE1 developed amodel in whi
h any linear
ombination between
olors is possible, even if it is
ontradi
ting reality. In addition there is one grey light without hue information(
olor saturation) and two with zero luminan
e and only hue information. Wehave
X/Y/Z = 683

∫ 800

380

x̄/ȳ/z̄ (λ)L (λ) dλwhere 683 is a
onstant to
onform luminan
e standards and [380, 800] is therange of visible light. Y returns the luminan
e (brightness). The big advantage1Commssion Internationale de L'E
lairage33

of this approa
h is that in
ontrast to the previously dis
ussed models, thismodel is hardware independent.

Figure 7: Comparison with the RGB
olor modelIn
ontrast to other models the XYZ is therefore able to model every visi-ble
olor, however monitors are not, sin
e they are limited to the
olors they
an produ
e by adding three light beams. The triangle represents the monitorgamut.There is an addition
alled isotopi
 luminan
e. This is what you see at night,when you look at a world lit by moonlight. Although it is not possible to dedu
ethe isotopi
 V dire
tly from X,Y, Z there is a good approximation
V = Y

[

1.33

(

1 +
Y + Z

X

)

− 1.68

]Alternatively you
an add V as fourth value.4.7 Alpha BlendingThe α refers to the degree of visibility of a pixel. If a pixel is only half visible(α = 0.5), we want to see half of the pixel behind it (e.g. glass, water). Having
cf referring to the foreground pixel's
olor and cb to the
olor of the ba
kgroundpixel, we get a kind of interpolation:

c = αcf + (1 − α) cb4.8 GammaMonitors are non-linear in respe
t to the input intensity a (0.5 input intensity
an be displayed as 0.25). This degree of freedom is referred to as gamma value
γ. displayed intensity = M · aγ34

where M is the monitors maximum intensity.
a = 0.5γ → γ =

ln 0.5

lnαTo �nd a you
an for example let your monitor display two images: a bla
k &white
he
kerboard pattern and a grey value image at intensity 0.5. Fiddling onthe intensity you
an �nd the grey value that
orresponds to the
he
kerboard,whi
h will also look like grey. Having this you
an dedu
e a.Having γ we
an
orre
t this non-linearity by the transform a = a
1

γWithout Gamma Corre
tion we will en
ounter the following phenomena:
•
olor interpolation is not linear (without Gamma Corre
tion mid toneswill appear too dark)
•
olor �delity:
olors will di�er from their true hue
• distan
e-squared fall-o�:
olors fade out to darkness way too fast
• dithering: blending of
olors (see S
reen Door Transparen
y 7.6), appearsonly with
olor depths below 24bit
• aliasing (Attention: gamma anti-aliased images for CRTs look jagged onLCDs)
• problems with the use of anti-aliased textures (MipMapping has to takegamma
orre
tion into a

ount)4.9 FogThere are four arguments for using fog:1. in
reasing realism2. helps viewer to determine distan
es3. helps
ulling (far obje
ts are hidden in fog), avoids far-plane pop ups4. implemented in hardwareAdding fog to a s
ene the user sets two variablesfog
olor cffog fa
tor f ∈ [0; 1] de
reasing with the distan
e from the viewerIf cs denotes the
olor resulting from shading, the
olor added fog cp
omputesas

cp = f · cs + (1 − f) cf35

f
omputes by the distan
e given in z-values
f =

zend − zp

zend − zstartwhere start and end denote the fogged area or exponentially falling fog
f = e−df zpwhere df
ontrols the fog's density.4.10 Color ConversionRGB → CMY





C
M
Y



 =





1
1
1



−





R
B
G



CMY → CMYK








K
C
M
Y









=

min {C,M, Y }
C −K
M −K
Y −KRGB → YIQ





Y
I
Q



 =





0.299 0.587 0.114
0.596 −0.275 −0.321
0.212 −0.523 0.311









R
B
G



RGP→HSV
V = max {R,G,B}
S = max{R,G,B}−min{R,G,B}

max{R,G,B}

H =











60 · G−B
max{R,G,B}−min{R,G,B} if max {R,G,B} = R

60 · B−R
max{R,G,B}−min{R,G,B} + 120 if max {R,G,B} = G

60 · R−G
max{R,G,B}−min{R,G,B} + 120 if max {R,G,B} = BRGB → XYZSin
e the XYZ
olor model is the only dis
ussed model, that is hardware inde-pendent, it is hard to
onvert from the other models, be
ause hardware infor-mation is required.





X
Y
Z



 =





Xr Xg Xb

Yr Yg Yb

Zr Zg Zb









R
B
G



36

where XrYrZr refers to and des
ription of the monitor's red
hannel in the XYZ
olor model. By linear algebra this
onversion
an be redu
ed, so that only
Yr, Yg, Yb must be known. Additionally those three values
an be approximatednumeri
ally, when now hardware information is given. However the XYZ s
ale
an be dire
tly
onverted to grey s
ale RGB
olor

Y = 0.2125R+ 0.7154G+ 0.0721B5 Transformation Matri
esIn general we want to use matri
es to
hange a set of ve
tors representing anobje
t.
[

a11 a12

a21 a22

] [

x
y

]

=

[

a11 + x a12 + y
a21 + x a22 + y

]We
an partition these
hanges into
ategories:Types
• Rigid Transformations: preserving distan
es and angles� identity, rotation, translation
• Similitudes: preserving angles, preserving width/height ratio� isotropi
 s
aling
• Linear Transformations� s
aling, re�e
tion, shearing
• A�ne Transformations: parallel lines remain parallel, line ratios arepreserved� translation
• Proje
tive Transformations: parallel lines interse
t at points at in�n-ity, preserves
ross ratio)� proje
tive transformation5.1 S
alingS
aling
hanges length and dire
tion.

37

Figure 10: horizontal shearingisotropi
 s
aling
Figure 8: Isotropi
 S
aling

scale (s) =

[

s 0
0 s

]s
aling
Figure 9: s
aling

scale (sx, sy) =

[

sx 0
0 sy

]5.2 ShearingShearing pushes obje
ts sideways.horizontal shear (s) =

[

1 s
0 1

]verti
al shear (s) =

[

1 0
s 1

] 38

5.3 Rotation
Figure 11: RotationRotation rotates a ve
tor around a
ertain angle. We rotate around the origin.

rotate (φ) =

[

cosφ − sinφ
sinφ cosφ

]5.3.1 Arbitrary Rotations In 3DOrthogonal Matri
es3D rotation matri
es are orthogonal and preserve the orientation.
OT ·O = I

det (O) = 1The rows are three arbitrary orthogonal unit ve
tors (i.e. orthonormal) and the
olumns are three di�erent orthogonal unit ve
tors (i.e. orthonormal):
Ruvw =





ux uy uz

vx vy vz

wx wy wz



with
~u · ~u = ~v · ~v = ~w · ~w = 1

~u · ~v = ~u · ~w = ~v · ~w = 0Therefore
Ruvw · ~u =





~u · ~u
~v · ~u
~w · ~u



 =





1
0
0



 = xand Ruvw · ~v = y, Ruvw · ~w = zNote The inverse of an orthogonal matrix is its transpose: R−1
uvw = RT

uvw

39

Rotation About An Arbitrary Axis/Ve
torSo we have found out that we
an
reate arbitrary rotation matri
es from a or-thonormal basis. If we want for example to rotate about an arbitrary axis/ve
tor
~a, we1. build an orthonormal basis with this ve
tor ~w = ~a2. rotate the uvw basis to the
anoni
al basis3. rotate around the z-axis4. rotate ba
k to the uvw basisThree Euler Rotations

Figure 12: Euler RotationsEuler found out that any rotation in 3D
an be des
ribed using three angles
(φ, θ, ψ) (the Euler Angles). If we put these into rotation matri
es, we
anmake one matrix out of them: A = BCDUsually the �rst rotation φ is about the z-axis, the se
ond θ about the x-axisand the third ψ about the z-axis again. This draws

B =





cosφ sinφ 0
− sinφ cosφ 0

0 0 1





C =





1 0 0
0 cos θ sin θ
0 − sin θ cos θ





D =





cosψ sinψ 0
− sinψ cosψ 0

0 0 1



The theory behind is that we are using a lo
al
oordinate e′x, e′y, e′z systemde�ned by the three Euler angles
φ = 〈(ez, e

′
z)〉

θ = 〈(ex, L)〉40

ψ = 〈(L, e′x)〉where L is the interse
ting line between exey and e′xe
′
y. So instead of a realrotation, we are just translating another
oordinate system and the Euler anglesstore the relationship between both
oordinate systems.- There is a problem with Euler angles
alled gimbal lo
k: We want to rotatearound the z-axis. First we rotate by 90◦ around the x-axis (pit
hing),make no y rotation, �nally any rotation around the z-axis. At this pointthis z-axis rotation a
tually
orresponds to a rotation around the y-axis2.This problem does not appear when using Quaternions (see below).Rotation Axis And AngleIn this method we des
ribe an arbitrary rotation be giving an axis n and anangle ω.1. partition a ve
tor ~x into a parallel part x‖ = 〈x | n0〉n0 and an orthogonalpart x⊥ = x− x‖2. rotate the orthogonal
omponent: ~x = x⊥ cos (ω) + (n0 × x⊥) sin (ω)3. add the parallel part: ~x = ~x+ x‖This
an of
ourse be represented by a matrix by mapping unit ve
tors.If we are given an orthogonal matrix O we
an �nd the axis of rotation n bylooking for the eigenve
tor to the eigenvalue of 1. The angle ω
an be determinedby:

ω = arccos

(

trace (O) − 1

2

)be
ause
trace (O) = 1 + 2 · cos (ω)Complex Numbers and QuaternionsAny 2D rotation
an be des
ribed by a
omplex number z0

z = n · z0And any 3D rotation of point ~v about axis ~n and angle ω
an be des
ribed bya quaternion q (see 2.10)
rotate (~n, ω) = cos

ω

2
+ sin

ω

2
· ~n

‖~n‖2Try it with your head. Pit
hing / x-axis rotation means moving your head towards yourshoulder. If you now try to rotate it in z-dire
tion (forward), you a
tually rotate around youry-axis (imagine an extension of your spline through your head.41

the result is of the form
q−1 · (0, ~v) · qMatrix representation
an be a
quired mapping the three unit ve
torsAxis n and angle ω
an also be a
quired easily.

~n = ~q

cos
(ω

2

)

=
q0
|q|Two Planar Re�e
tionsA rotation has the form

rotate (φ) =

[

cosφ − sinφ
sinφ cosφ

]a re�e
tion
an also be written in terms of trigonometry
reflect (φ) =

[

cos 2φ sin 2φ
sin 2φ − cos 2φ

]Therefore we get the equation
reflect (θ) reflect (φ) = rotate (2 (θ − φ))allowing us to express any rotation by two planar re�e
tions.Note that rotation matri
es have a determinant of 1 while re�e
tion matri
eshave determinant −1.5.4 Re�e
tion

Figure 13: Re�e
tionRe�e
ting an obje
t on an axis.x-axis reflect (s) =

[

1 0
0 −1

] 42

y-axis reflect (s) =

[

−1 0
0 1

]Later we will introdu
e an ordering of verti
es of a triangle (see 10.1.8). A re-�e
tion might distort this ordering resulting in wrong illumination and lighting.To determine whether a matrix is re�e
tive,
ompute it's determinant and
he
kthe sign: −1 means re�e
tive.5.5 TranslationThe problem with translation is that talking about the other transformations wehave seen every ve
tor as o�set from the origin, what makes them unmovable.Therefore we arti�
ially move a dimension up using homogeneous
oordinates:Translation usually is performed by adding a translation ve
tor ~t:




a11 a12 t1
a21 a22 t2
0 0 1









x
y
1



 =





x+ t1
y + t2

1



after dehomogenization, we have what we wanted.5.6 Composition of TransformationsA
omposition of matrix transformations
orresponds to a matrix multipli
ationof the transformation matri
es involved. However matrix multipli
ation is not
ommutative meaning it does matter whether you do a rotation before s
alingor a s
aling before rotating.Be
ause it is asso
iative we
an
ombine all transformations into a singlematrix and use this matrix to transform all involved ve
tors only on
e.Note matri
es are multiplied from right to left
M = RSmeans �rst a shearing is applied and then a rotation.De
ompositionThe opposite is of
ourse possible as well. Using for example SVD (see 2.2.2)we
an de
ompose the matrix into a diagonal part (re�e
tion and s
aling) andorthonormal/orthogonal parts (rotation). Interesting is that any transformation
an be de
omposed into two rotations and one s
aling:

A = R2

[

σ1 0
0 σ2

]

R1A rotation on the other side
an be de
omposed into three
onse
utive shearings:
[

cosφ − sinφ
sinφ cosφ

]

=

[

1 cos φ−1
sin φ

0 1

] [

1 0
sinφ 1

] [

1 cos φ−1
sin φ

0 1

]This is important sin
e shearing is a very e�e
tive raster operation.43

5.7 Transforming Normal Ve
torsOne problem is that we
annot apply the same transformation matrix both tothe obje
t and to the obje
t's normal ve
tors. Consider a shearing, the dire
tionof the y-ve
tors are not
hanged, yet the form
hanges and the y-normal ve
tor'sdire
tion is no longer perpendi
ular to the surfa
e.
Figure 14: Transforming NormalsThe normal ve
tors are dealt wrongly with the transformation matrix appliedto the obje
tTherefore we need to dedu
e separate transformation matri
es for the normalve
tors. We start with the fa
t, that the normal ve
tor ~n and a tangent ve
tor

~t are perpendi
ular:
~nT · ~t = 0We add an identity matrix

~nT · ~t = ~nT · I · ~t = ~nTM−1M · ~t = 0and
hange the order
(

~nTM−1
)

(Mt) =
(

~nTM−1
)

~tM = 0

~nT
M = ~nTM−1

~nM =
(

~nTM−1
)T

=
(

M−1
)T
~n

N =
(

M−1
)TIf however we know our matrix to be orthogonal (e.g. it has been formed by ro-tations), we
an take the matrix itself for transforming the normals, be
ause theinverse of an orthogonal matrix is its transpose and two transpositions
an
elea
h other out. Finally sin
e rotations and translations are rigid body trans-forms (the shape is not
hanged) the matrix will return a unit normal ve
tor.In
ase of uniform s
aling, the matrix
an be used to transform the normals,yet the resulting normals have to be normalized (they are no unit ve
tors).5.8 Windowing TransformsOften we will need to s
ale a window in a X-window system. The most easy wayto
reate a
orre
t matrix for this task is to see it as three di�erent transforms.1. move the lower left point of the window to the origin2. s
ale the window re
tangle3. move the lower left point to the target position44

5.9 Inverse TransformationsSin
e ordinary matrix inversion is a
ostly operation, we
an use ba
kgroundknowledge to qui
ken the inversion:translation ~t→ −~trotation R → RTs
aling scale (sx, sy, sz) → scale
(

1
sx
, 1

sy
, 1

sz

)Curiously enough we
an make use of the SVD, be
ause of the fa
t that we
anpartition any transformation into
M = R1 scale (sx, sy, sz)R2the inverse is simply

M−1 = RT
1 scale

(

1

sx

,
1

sy

,
1

sz

)

RT
25.10 Proje
tive TransformationsProje
tive Transformations have 1,2 or 3 vanishing points. These are pointswhere virtually parallel lines interse
t in the perspe
tive spa
e. These 3 vanish-ing points vi
an be found at the bottom row of or homogeneous 3D transfor-mation matrix.









1 0 0 t1
0 1 0 t2
0 0 1 t3
v1 v2 v3 1









ti des
ribe a translation of the obje
t.5.11 Big MAll together we now have a matrix of the form








a11 a12 a13 t1
a21 a22 a23 t2
a31 a32 a33 t3
v1 v2 v3 1







where aij denote the linear part for all linear transformations, ti the a�ne partfor translations and vi the part for proje
tive transformations.
45

6 ViewingIn this
hapter orthographi
 and perspe
tive proje
tion as well as dealing witho

lusion and hidden lines is dis
ussed.orthographi
 three dimensional obje
ts are displayed on the two dimensionals
reen, but without perspe
tive viewing. That means parallel lines arestill parallel in the orthographi
 3D modelperspe
tive perspe
tive also refers to the displaying of 3D obje
ts, yet as seenby a
amera/eye. That means parallel lines will interse
t at some pointon the horizon.o

lusion When modeling 3D s
enes some obje
ts will be in front of others,some will be partially o

luded. We got to �nd out whi
h are in front.hidden lines both in orthographi
 and perspe
tive transformations we willhave to deal with hidden lines (e.g. of wire frames). Sin
e this easilyleads to artifa
ts and a wrong perspe
tive/orthographi
 impression wewill dis
uss methods to deal with these phenomena6.1 Canoni
al View Volume
Figure 15: Canoni
al View VolumeThe
anoni
al view volume refers to a
ube with the dimensions (x, y, z) ∈

[−1, 1]
3. It serves as a intermediary between any viewing transformation andthe s
reen (Clipping is mu
h easier inside this volume). Let nx, ny be the pixelson the s
reen, then x = −1 will be mapped to the left half, x = 1 to the righthalf, y = −1 to the bottom half and y = 1 to the top of the s
reen.





xpixel
ypixel

1



 =





nx

2 0 nx−1
2

0
ny

2
ny−1

2
0 0 1









x
anoni
al
y
anoni
al

1



maps the pixels of the
anoni
al view volume to real pixel
enters ([−0.5, nx − 0.5]×
[−0.5, ny − 0.5]) of s
reen pixels.Coordinates inside this volume are
alled normalized devi
e
oordinates.Advantages of using this intermediary step are

• the transformation
an be expressed as a 4 × 4 matrix46

• proje
tion to the 2D s
reen be
omes easier (throw away z)
•
lipping against the unit
ube is more e�
ient than against the frustum
• maintains relative depths (important for the Z-Bu�er)6.2 Orthographi
 Proje
tion

Figure 16: Orthographi
 View VolumeHaving a general orthographi
 view volume we di�erentiate the six planesof it by:left plane l = xright plane r = xbottom plane b = ytop plane t = ynear plane n = zfar plane f = zNote that n > f !Usually the
amera's or user's head is pointing to the y-dire
tion and looking into
−z-dire
tion. Furthermore the y-dire
tion in upwards, x-dire
tion is sidewardsand z-dire
tion in/outwards.Mapping to the Canoni
al View VolumeFor that we �rst move the orthographi
 view volume to the origin and then doa s
aling:









x
anoni
al
y
anoni
al
z
anoni
al

1









=









2
r−l

0 0 0

0 2
t−b

0 0

0 0 2
n−f

0

0 0 0 1

















1 0 0 − l+r
2

0 1 0 − b+t
2

0 0 1 −n+f
2

0 0 0 1

















x
y
z
1









47

If the matrix that maps the
anoni
al view volume to s
reen
oordinates is addedat the left, we
an dire
tly map to s
reen
oordinates. The resulting matrix is
alled Mo and we get:








xpixel
ypixel

z
anoni
al
1









= Mo









x
y
z
1







6.3 Viewing Dire
tionWe often want to
hange the viewing dire
tion, if e.g. the user or
amera movesit's head. For spe
ifying the view dire
tion we de�ne three variables:eye position e, the position the eye sees fromgaze dire
tion g, the dire
tion the viewer is lookingview-up ve
tor t, any ve
tor bise
ting the viewer's head, where �up� is for theviewerFurthermore we de�ne a spe
ial
oordinate system for viewing with axes u, v, wand the origin at e. Then we get:
w = − g

‖g‖

u =
t× w

‖t× w‖

v = w × uMapping the viewing
oordinates to the orthographi
 view volumeAgain we �rst move the viewing
oordinate system to the origin of the ortho-graphi
 view volume and then align uvw to xyz.
Mv =









xu yu zu 0
xv yv zv 0
xw yw zw 0
0 0 0 1

















1 0 0 −xe

0 1 0 −ye

0 0 1 −ze

0 0 0 1







And again we
an
ombine the latter two matri
es to dire
tly transform tos
reen
oordinates:
M = MoMv

48

6.4 Perspe
tive Proje
tion
Figure 17: Image PlaneThe mathemati
al idea is to think of an image plane between the viewer andthe obje
t. Now for every point in the viewing plane, think of a line pointingdire
tly to the viewer's eye. This line interse
ts with some point of the obje
t.Draw this point on the pixel the line started from.

Figure 18: Image Plane with variables
ys =

d

z
yThe key of dealing with perspe
tive proje
tions are the homogeneous
oordinates(see 2.3.4). They allow to use linear fun
tions i.e. matri
es even for thosetransformations. If we are done with our obje
t transformations we
an use aproje
tive matrix Mp for mapping to the orthographi
 view frustum:

Mp =









1 0 0 0
0 1 0 0

0 0 n+f
n

−f
0 0 1

n
0







be
ause of the dehomogenization (division by w), we
an s
alar multiply Mp by49

to make it more pretty (no divisions):
Mp =









n 0 0 0
0 n 0 0
0 0 n+ f −fn
0 0 1 0







The third entry in the last
olumn has a spe
ial meaning. Sin
e applying per-spe
tive proje
tion depth information would get lost, we use this position tomap the original z-value to the homogeneous slot w. If we later dehomogenize,we e�e
tively divide by the z−
oordinate and get the perspe
tive view e�e
t.Mapping the perspe
tive model to the orthographi
 view frustum
Figure 19: Perspe
tive Proje
tionThanks to the homogeneous
oordinates we still found a matrix to map ba
kto the orthographi
 view frustum. Therefore on
e again we
an
ombine ourmatri
es to dire
tly map to the
anoni
al view volume. Note that in generalthis
annot be done, be
ause the perspe
tive matrix destroys angles and ratios,whi
h we would need for lighting
al
ulations. So in general we will perform thelighting stage after model and view and then apply the perspe
tive matrix.

M = MoMpMv

M =









2n
r−l

0 r+l
r−l

0

0 2n
t−b

t+b
t−b

0

0 0 n+f
n−f

2n·f
n−f

0 0 −1 0







ItemsDiagonal transforming the view frustum range [−∞,∞] to the
anoni
al viewvolume [−1, 1]. 1
∆x

gives [0, 1] and the 2 in the enumerator gives [−1, 1].The n and n+ f is be
ause of the perspe
tive.50

r+l
r−l

, t+b
t−b

shearing fa
tors. The frustums side planes needs to be sheared to a
ube. n, f are already sheared
orre
tly.
−1 very important. By this fa
tor the z−
oordinates are written to the w−
oordinate.That means dehomogenizing means division by z and therefore getting theperspe
tive into 2D
oordinates.
2n·f
n−f

As mentioned above we will divide by z when dehomogenizing. Thatwould mean to loose our z-values. Therefore this term allows us to havethe original z-values (depth values) in the z−
oordinate after dividing itby z. This is important, be
ause we will later need these depth values,when we want to determine whi
h obje
t to draw (i.e. �lling the Z-Bu�er).Properties
• maps lines to lines, triangles to triangles and planes to planes
• point/ve
tor ordering may
hange (be
ause∞ is mapped to a �nite point)
• line segments
an be split (be
ause ∞ is mapped to a �nite point)
• maps parallel lines to lines interse
ting at in�nity
• points at in�nity (vanishing points)6.5 Field Of View (Camera Transformations)

Figure 20: Field Of ViewA
amera is de�ned by intrinsi
 and extrinsi
 parameters:extrinsi
 position and rotationintrinsi
 fo
al length (Brennweite) and aperture (opening)Extrinsi
 TransformationsCamera position is at the origin, view dire
tion is −z and up is y. Extrinsi
transformations
hange these three values.OpenGL gluLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, upz)51

Figure 22: Mapping Of Z illustrated with
olorsThe verti
al line represents the position of the eye. The orange part behindthe eye is mapped beyond the blue part representing everything beyond the farplane+∞. The green part is the view frustum and below the
anoni
al viewvolume. The yellow part between the eye and the near plane remains.Intrinsi
 Transformation
Figure 21: View FrustumDes
ribes the proje
tion frustum. The image plane is lo
ated at n = −z. Theviewing frustum is important, be
ause it
orresponds to the visible world. Ev-erything outside will be
lipped to this frustum.OpenGL gluPerspe
tive(fovy, aspe
t, near, far) or glFrustum(left, right,top, bottom, near, far) for asymmetri
 frustumfovy opening angle of frustum along y-axis (typi
al 45◦ − 60◦)aspe
t widthheight , e.g. 800

600 = 1.3̄near/far distan
e between origin and near/far plane, e.g. n = 10cm, f = 100mNote a tighter view frustum makes the o

lusion test (Z-Bu�er) easier6.6 Mapping Of ZDue to homogeneous
oordinates and the spe
ial normalization matrix storingvalues of z in w, we have to know what happens with out z-values. What will52

Figure 23: Mapping Of Z illustrated with arrowsThe arrows indi
ate where the
orresponding points are mapped to.happen is that every z-value behind the eye will be mapped to beyond +∞. Butsin
e we have +∞ as a vanishing point (last row, third
olumn of the proje
tionmatrix), we get �nite points for these values again. Instead the eye point ismapped to −∞ when dehomogenizing the
oordinates.Consequen
es
• ordering of points on a line
hanges
•
lipping draws wrong results (see below)6.7 Clipping In Homogeneous CoordinatesAs mentioned above the ordering of points may
hange with perspe
tive proje
-tion. If we would do a standard
lipping we miss parts of line segments, that hadbeen split during perspe
tive proje
tion. For example imagine a line startingfrom a point behind the eye and ending inside the frustum. After dehomoge-nization the point behind the eye will be mapped to some positive point behindthe far plane, the point in the frustum will remain. Displaying the line betweenboth points we get a line that wrongly leave through the far plane instead ofthe near plane. This line will be wrongly
lipped by the far plane.The solution is to perform
lipping in homogeneous
oordinates.That means we perform standard α-
lipping to the six fa
es of the unit
uberesulting in six WEC per point: WECr (x, y, z, w) = w− x, WECl (x, y, z, w) =

w+x, WECt (x, y, z, w) = w−y, WECb (x, y, z, w) = w+y, WECf (x, y, z, w) =
w − z, WECn (x, y, z, w) = w − z

53

Figure 24: Mapping Of Z illustrated with asymptotes
z: before the proje
tion
z̃: after the proje
tionThe asymptotes indi
ate how the values behave after the proje
tion. The leftmost point of the graph is
onne
ted with the right most point, mapping in�nityto a �nite point. On the other hands �nite points between the near plane andthe eye (z̃-axis) are mapped to in�nity.6.8 Viewing Pipeline1. Geometri
 Transformation, Lighting, Clipping → model
oordinates2. Model Transformation → world
oordinates3. Viewing: Camera Transformations →
amera/eye
oordinates

4. Perspe
tive Transformations
54

(a) Normalization Transformation → normalized homogeneous
oordi-nates(b) Clipping In Homogeneous Coordinates(
) Dehomogenization → s
reen
oordinates5. Viewport Transformation → window
oordinates6. Rasterization → devi
e
oordinates7 O

lusion & VisibilityIn s
enes we will always be fa
ed with the problem of multiple obje
ts o

ludingea
h other. So we need a way to determine whi
h obje
t is at front and shallbe painted.7.1 Painter's Algorithm1. sort obje
ts from ba
k to front2. render them in this orderIn this way front obje
ts will simply be painted over the ba
k ones.
Figure 25: penetration and
y
li
 o

lusion- painting the ba
k obje
ts is unne
essary- the sorting of several million triangles is highly ine�
ient-
annot handle penetration and
y
li
 o

lusion7.2 Binary Spa
e Partitioning (BSP)Binary Spa
e Partitioning is a kind of painter's algorithm, but mu
h more ef-fe
tive, sin
e it la
ks the disadvantages of sorting, unne
essary painting and
anhandle penetration and
y
li
 o

lusion.The idea is to use the impli
it representation of a plane (see 2.4) to makeadvantage of the easy way to a

ess distan
es to this plane. Now we pi
k atriangle that best subdivides the s
ene in half3 and build a plane, so that the3usually the triangle that's plane has the lowest number of interse
tions, this strategy is
alled the least
rossed
riterion 55

triangle
ompletely lies on this plane. We assume for now that no other trianglepenetrates this plane. Now depending on the eye position e we
an de
ide thesafest drawing order (�rst draw triangles on the side where the eye is lo
ated).Thinking of this pro
ess re
ursively like a tree (the BSP-Tree) we
an give anoverall ordering for all triangles.PenetrationWe assumed that no triangle penetrates our plane, still we
an handle this
aseby
utting the penetrating triangle into two and handle them as three separatetriangles, whi
h we add to the BSP-Tree.SliversMore often than assumed it will
ome to a
ase where a triangle only penetratesa plane tightly with a vertex. In this
ase the triangle will be
ut into threetriangles. One of whi
h is a sliver and one of almost zero size. We do better indete
ting this spe
ial
ase and leave the triangle untou
hed.Axis Aligned Binary Spa
e Partitioning
Figure 26: Axis Aligned Binary Spa
e PartitioningAlternatively we
an use planes that
ut the
omplete s
ene in half and testagainst them (see �gure). Always the line is
hosen that subdivides the s
enebest into halves (horizontal or verti
al (axis aligned)).7.3 Ray Tra
ingCast a ray through ea
h s
reen pixel to �nd the �rst interse
tion (for Ray Tra
ingsee 9)7.4 Z-Bu�erThe idea is to
reate a bu�er equal to the size of the image, where there isdepth information stored for every pixel. The depth value
orresponds to the

z-
oordinate after normalization. O

lusion
he
ks
an than be performed bysimple depth
omparison. The bu�er is initialized by the far plane.56

Creation The Z-Bu�er is �lled during rendering/rasterization. The �rst ob-je
t's depth values drawn on the s
reen are stored in the Z-Bu�er. After-wards in
ase of an su

essful test (the new obje
t's depth value is
loserto the viewer), they are overwritten.Usage It is used when it is �lled, during rendering/rasterization. Che
k apixel's depth value, if it is
loser to the s
reen draw it and update theZ-Bu�er value for this pixel, otherwise dis
ard it.Deletion After rendering the bu�er's allo
ated memory
an be freed.Issues & Strengths- requires fast memory- non-uniform depth values. The
loser we are to the far-plane the smaller thedi�eren
e in the depth values be
ome. Therefore pre
ision is of fundamen-tal importan
e for Z-Bu�ering- the pre
ision is hardware dependent (the more far away near and far planeare, the more pre
ision
omes into play) → depth di�eren
e be
omes verysmall for distant obje
ts (try to move the near plane as
lose as possibleto the far plane! moving the far plane on the other hand does not help)- Z-Bu�er �ghting+
an handle
y
li
 o

lusion and penetrationOpenGLglEnable(GL_DEPTH_TEST)glClear(GL_DEPTH_BUFFER_BIT)StrategiesZ-Bu�er Fighting This phenomena means the situation when the value inthe Z-Bu�er so mu
h resembles the
urrent one, that a jumping for andba
k with ea
h s
reen update
an be seen.Polygon O�set Polygon O�set means to push
ertain values inside the depthbu�er a little towards the near plane. Sin
e they are not tou
hed on thereal framebu�er, this
hange
annot be seen. Still on
e the next depth
he
k o

urs, this o�set will
ome in handy and avoid Z-Bu�er �ghting.[A℄ Hidden Line Rendering (Wire frame Rendering)1. render polygon as a wireframe (render to the Z-Bu�er only, not to thes
reen)2. render the polygon a se
ond time as a solid, using a polygon o�set (pushingea
h depth value in the Z-Bu�er towards the near plane by this o�set)57

[B℄ Haloing Make use of gaps between hidden lines to emphasize depthper
eption and avoid Z-Bu�er �ghting1. render the polygon as wireframe using thi
k lines (render only to depthbu�er, not to s
reen)2. render the lines again with normal thi
kness and polygon o�setThis
an also be done with two di�erent kind of
olors instead of di�erentthi
kness.7.5 W-Bu�erThe W-Bu�er is an alternative to the Z-Bu�er. Instead of depth values thehomogeneous w
oordinate is stored. The advantage of this method is havinguniform �depth� values. Thus we do not need to pay attention to the distan
ebetween near and far plane. However a disadvantage is that we
annot linearlyinterpolate between those values of w (logarithmi
 s
ale, be
ause of perspe
tiveproje
tion).7.6 Transparen
yInstead of o

lusion obje
ts from behind might shine through obje
ts in front,if these are transparent (e.g. a tree behind a window).S
reen Door Transparen
y
Figure 27: S
reen Door Transparen
yInstead of a solid obje
ts, the transparent obje
t is drawn as a
he
kerboardpattern, where the number of gaps depends on the α-value. By this te
hniqueobje
ts behind may shine through these gaps.- worsens if more than one obje
ts
an be seen through the transparent obje
ts.- if two overlapping transparent obje
ts share the same α-value, they have thesame number of gaps on the same position and the rear one
annot beseen

58

Blended Transparen
yDraw the obje
ts in the order given by the depth test.- The depth bu�er draws the foremost obje
t �rst. That means, given thes
enario, the transparent obje
t is drawn before the opaque one o

ludingit, no transparent e�e
ts will be seen.Delayed Blended Transparen
y
Figure 28: Problems with Delayed Blended Transparen
yDraw opaque obje
ts �rst, then
ontinue with depth bu�er test for transparentobje
ts.- still wrong results when transparent obje
ts in front are rendered before trans-parent obje
ts in the rear, be
ause blending is not
ommutativeSorted Blended Transparen
yDraw opaque obje
ts �rst, then sort the transparent ones from ba
k to front.- still problems o

ur when obje
ts interse
t and no pre
ise ordering
an begiven7.7 CullingWhen an entire triangle lies outside the view volume, it
an be
ulled. Cullingmeans elimination of a triangle or a whole obje
t from the pipeline. However inpra
ti
e perfe
t
ulling (i.e. of every single triangle, primitive) is more expensivethan letting the Clipping module take
are of them. Yet if we use boundingvolumes around groups of triangles
ulling
an be
ome very useful. We only
he
k whether a whole bounding volume lies outside our volume, eliminate if itdoes or pass it on to Clipping if it doesn't.Culling in hardware is very di�
ult, be
ause it is not supported pretty welland the entire s
ene has to be known. So often it is performed in the appli
ationstage, where the entire s
ene is known or solved by pre
omputation. Howeverit
an and is performed at any stage of the pipeline as well.59

7.7.1 Ba
k Fa
e CullingThe idea of ba
k fa
e
ulling is that only those fa
es
an be seen, that are fa
ingtowards the user. Other will fa
e the ba
kside of obje
ts and this be invisible tothe viewer. The orientation of a fa
e
an be
he
ked by examining the outwardsfa
ing normal of it in respe
t to the view ve
tor. The fa
e is visible if
~v · ~n > 0Dealing with polygons the orientation is impli
itly
oded in the ordering of theverti
es (see 10.1.8). The orientation
an be tested using the ve
tor produ
t(thumb, indexing �nger and middle �nger). A polygon △abc with p = a− b and

q = c− a is ordered
ounter
lo
kwise if
(p× q)z > 0The question remaining is when to perform ba
k fa
e
ulling.world spa
e before the s
ene is transformed to s
reen spa
e+ fast (fa
es are sorted out qui
kly)- real normal is neededs
reen spa
e (after s
reen spa
e transformation)+ no normal needed, more general+ supported by OpenGL- more expensiveClustered Ba
k Fa
e CullingA small extension to standard ba
k fa
e
ulling where polygon groups sharinga similar normal are either rendered together or dis
arded altogether (If partof the groups is front fa
ing, the other not, all are rendered). These �normalsharing� mathemati
ally e�e
ts in a normal
one, a trun
ated
one
ontainingall the normals and points of a set. Now the viewing dire
tion is
omparedto the normals of the
one, and all points asso
iated to normals whi
h di�ersigni�
antly are dis
arded. The normals ~n of a
one are front fa
ing the viewer

~v if
~n ·





~v − ~f
∥

∥

∥~v − ~f
∥

∥

∥



 ≥ sin (α)where α is the opening angle of the
one. This works be
ause even if only partof the polygons are fa
ing towards the viewer, the unin
identally rendered arelater dis
arded during
lipping. 60

7.7.2 View Frustum Culling

Figure 29: View Frustum Cullingall obje
ts outside of the frustum are
ulledThe idea of view frustum
ulling is to
he
k obje
ts against the view frustum,i.e. against what the view is a
tually seeing. Doing this by polygons would betedious and in fa
t the e�
ien
y gain is worse than skipping
ulling altogetherand let the
lipping module
lip the frustum. However if we see the obje
ts as
omplete single entities, we gain a e�
ien
y bonus.Bounding VolumesFor that we must en
lose them into geometri
 bounding volumes (e.g.
ube,sphere). Now we
he
k the bounding volume by simple impli
it geometry and
ull the obje
t if frustum and volume share no
ommon points and render it ifthey share all or only some points. In the latter
ase we again leave the pre
isionwork to the
lipping module.Bounding Sphere Finding sphere exa
tly �tting the obje
t is
omplex andsin
e we look for speed, we go with sphere that will be bigger than theobje
t but easily
omputed: We take the
enter of mass as the
enterof the sphere and
hoose the radius to
over all obje
t verti
es. A greatadvantage of bounding spheres is that they are invariant to rotations.Axis Aligned Bounding Box Creation is easy. A box is des
ribed by six val-ues: xmin, xmax, ymin, ymax, zmin, zmax. These values are simply the max-imum/minimum of all verti
es, e.g. xmin = min {x-value of all verti
es}.A disadvantage is that axis aligned bounding boxes are not invariant torotations and must be adapted for rotation. Like the sphere approa
h,this approa
h results in mu
h bigger boxes than obje
ts inside.61

Oriented Bounding Box A bounding box tightly �t to the obje
t whi
h
on-siders rotation. However the
omputation and interse
tion tests are moredi�
ult. Computation in
lude: �nding the
enter,
ompute the
ovarian
ematrix (think of the
enter as mean), Eigenvalue analysis, use Eigenve
-tors as dire
tions (basis) and use them a box that in
ludes all verti
es ofthe obje
t.Bounding Hierar
hies

Figure 30: View Frustum Cullingall obje
ts outside of the frustum are
ulledEven more
an be gained if we build a hierar
hy of bounding volumes, i.e.a bounding volume around several bounding volumes. If a big volume lies
ompletely in the volume, we render all its
hildren obje
ts; if it shares pointswith the frustum, we
he
k ea
h volume inside it separately, if not all obje
tsinside are
ulled.Other hierar
hies
an also be applied. They are dis
ussed later on in the
hapters about Ray Tra
ing, see 9.3 and the
hapter on O

lusion for BinarySpa
e Partitioning , see 7.2. However they usually perform worse under dynami

hanging s
enes. On the other hand the deliver better results and should beused for stati
 s
enery.

62

Interse
tion Test

Figure 31: View Frustum Interse
tionInterse
tion tests with the frustum are not trivial, even if all verti
es of an obje
tare outside, parts of the obje
t might be in.The interse
tion test is not as easy as it might appear (see �gure). Therefor weapply a strategy similar to those from
lipping:We model the frustum as six interse
ting planes (half-spa
es) and use impli
itplane representation. Then a point x lies in the half-spa
e partitioned by theplane spanned by plane point p and normal ~n, if
(x− p) · ~n > 0We repeat this test for all six planes and
ombine the results to know whetherthe point lies inside in respe
t to all planes or not.A modi�
ation is to test only the most
riti
al point (i.e. the point
losest)of the obje
t against the
urrent plane. To �gure this
riti
al point out, we
omparing the obje
t's verti
es minimal and maximal in respe
t to a
oordinatedire
tion to the plane, to the half-spa
e's normal. Then the obje
t is inside ifthe
riti
al point is inside, outside if the
riti
al point as well as it's opposite
orner lies outside and partly inside otherwise. Taking errors into a

ount wein
rease the test e�
ien
y by using the following rule of de
ision:box within all half-spa
es → renderbox outside one half-spa
es →
ullotherwise → renderIn fa
t the outside test
an de
ide an obje
t as outside, whi
h has parts inside.This is
alled a
riti
al error.7.7.3 O

lusion CullingFinally o

lusion
ulling intends to
ull obje
ts that are o

luded, i.e. hid byother obje
ts. This is important sin
e only using the Z-Bu�er several pixels will63

be drawn multiple times, in fa
t whole obje
ts later invisible will be drawn �rst.While O

lusion
ulling intends to remove these obje
ts, there are other methodsthat try to sort the obje
ts to only render the ones in front (see Chapter aboutO

lusion & Visibility 7). In general aspe
ts that have proven to be maxims forgood o

lusion
ulling are:
• O

luder Combination:
ombine several o

luders to one big o

luderwhenever possible
• O

luder Choi
e: try to use the best o

luders for
he
king o

lusion;best o

luders are: big obje
ts and obje
ts
lose to the viewer
• Pre
omputation: pre
ompute as mu
h as possible, but keep intera
tiv-ity in mind
• Validity Over Time: try to keep the
urrent o

lusion
omputationsvalid for as long as possible (e.g. as long as the user is within one roomor
ell) and don't
ompute everything from s
rat
h ea
h frame
• Level Of Detail: use obje
t models in higher resolution for obje
ts
loseto the eye, and lower resolution ones for distant obje
ts (see 10.7)
• Hierar
hy & Bounding Box: hierar
hies and bounding volumes overthe s
ene are very useful, but it is usually hard to update them for qui
kly
hanging dynami
 s
enesPotentially Visible Sets (PVS)

Figure 32: Potentially Visible Sets separate the s
ene into arbitrary
ellsThis �rst approa
h separates the s
ene into
ells and
omputes whi
h
ells
anbe seen from a parti
ular
ell. This is done with pre
omputation. Then dur-ing rendering we
he
k the
ell, the
amera is positioned in and only render64

the
ells/sets that are potentially visible from here. Sin
e it heavily uses pre-
omputation, rendering time is e�
ient while we have a high memory load.Furthermore the
omputations for a
ell
an usually be kept for a
ouple offrames, as long as the viewer remains in that same
ell.The visibility of other
ells
an be pre
omputed using visibility rays (seeChapter about Ray Tra
ing 9).Portal Visibility

Figure 33: Portal VisibilityIn the Portal Visibility approa
h subdivide the s
ene into
ells that are
on-ne
ted by portals (e.g. doors, windows, holes). It is a very ex
ellent method forrendering the inside of buildings. Now the algorithm goes:
• �nd the
ell, the
amera is lo
ated in
• render this
ell
• for all portals in the
ell: if portal is visible, render neighbouring
ellre
ursivelyTo
he
k whether a portal is visible, we
an
he
k its bounding box against theview frustum (see previous point �View Frustum Culling� above). Further morethis allows for a spe
ial integration of mirrors, by seeing mirrors simple as aspe
ial kind of portal (sigh is reversed).OpenGL O

lusion TestOpenGL implements its own o

lusion
ulling strategy by o�ering a spe
ialrender mode
alled O

Cull-mode. In this mode a
tually nothing is rendered,instead the number of potentially rendered pixels is
ounted. Now this
an beused for
ulling like this: 65

• set the
ounter to zero
• render the obje
t's bounding box in O

Cull-mode
• render the obje
t if the
ounter is above a threshold4The disadvantage of this very simple test is, that it stalls the pipeline and thateven
ounting
an be expensive for thousands of triangles. This behaviour
anbe improved by installing several
ounters and parallelize the
ounting rendermode. Then the stalling of the pipeline does only o

ur one time instead of oneper obje
t. This method is espe
ially useful for very distant or
omplex obje
ts(leafs on a tree).7.7.4 Hierar
hi
al Z-Bu�erA hierar
hi
al z-bu�er has several levels. At bottom level 0, the a
tual z-valuesare stored. One level above the highest value among a group of
hildren z-valuesis stored and so on.Now if we want to test an obje
t for
ulling we proje
t the bounding box ofthe obje
t and sear
h for the node in the Z-Tree that
ompletely
overs it and
ompare depth values. This leads to many fast reje
ts. If the obje
t is nothidden, we pro
eed to its
hildren. Passing level 0 we eventually render it.For this to work the Z-Bu�er hierar
hy must be kept
onsistent. Using a tree-like stru
ture this is easy: On
e a value
hanges, this
hange simply propagatesupwards.This method works best when the s
ene is rendered from front to ba
k. Che
kthe
hapter about O

lusion & Visibility on page 7 for methods to a
hieve su
hrender orderings.7.7.5 O

lusion HorizonsO

lusion Horizon is a spe
ialized
ulling te
hnique for urban s
enes. We sep-arate the s
ene's obje
ts into: plain ground, opaque buildings, buildings onground. Apart from that we geometri
ally subdivide the s
ene into equallyspa
ed quads. And we redu
e the dimension a little bit to 2 1

2 by using height�elds for the height of buildings. For ea
h building we
ompute a set of prismsthat are
ompletely inside (inner hull) and a set of prisms des
ribing the bound-ing hull (outer hull).Now we traverse the quadtree while moving away from the
amera and pro-
ess the buildings with in
reasing distan
e to the
amera. We keep tra
k of a so
alled o

lusion horizon (e.g. for x, the
urrent maximum value of x). Nowfor every building being pro
essed, we
he
k whether the building is behind thehorizon (→ invisible) or in front of it (→ render building, adapt horizon).4Obje
ts only having a few pixels visible
an usually be
ulled without great loss. Alter-natively the obje
t
an be rendered in a highly simpli�ed way.66

Figure 34: O

lusion HorizonThis o

lusion horizon is implemented as a
onstant pie
ewise fun
tion a

essedby x, stored as binary tree with values of y (see �gure). Tests against the horizonare performed with the buildings outer hulls and updated of the horizon aremade with the inner hulls.Caveat

Figure 35: O

lusion Horizon: Di�
ult O

lusionHowever it's not always that easy, as the �gure above shows. Although buildingsA is
lose to the
amera, B o

ludes A. To avoid su
h s
enarios we introdu
ea priority queue with new buildings (entered at the
urrent horizon) sorted bymaximum distan
e. Buildings from the queue are only then added to the horizonon
e their minimum distan
e is smaller than the maximum distan
e from thequeue. With the queue, in the above s
enario A would still be in this queue,when B is tested: 67

• test A - visible! - render A, put A into queue
• test B - visible! - render B, put B into queue
• A and B de�nitely in front of C - insert A and B into horizon
• test C. . .Last but not least the idea of the horizons
an be
onne
ted with Mip Mapping(see 11.5.2). Depending on the distan
e of the
urrent horizon from the eye,buildings and other obje
ts
an be rendered using a lower resolution. Obje
tsat horizons
lose to the eye should be rendered with an extra high resolutionfor details.7.7.6 Dual Ray Spa
e O

lusion Culling

Figure 36: LondonWith Dual Ray Spa
e O

lusion Culling the PVS for a single
ell of size 100x100
m2
an be rendered in 2.5 sImagine the map of London (see image) with an area of 160km2, this
ouldbe rendered by about 1, 7 · 106 polygons. The goal Dual Ray Spa
e O

lusionCulling is aiming at, is that a user
an virtually walk through the streets, whilethe data is downloaded via the internet. Only what user
an see is rendered,and while he walks data for buildings that soon
ome into vision is downloaded.The strategy sounds familiar, we separate London into
ells and determinethe PVS (see above) for ea
h
ell. The
urrently valid PVS is kept on the
lientas well as the PVS of all neighbouring
ells. As in o

lusion horizons we restri
tthe dimension to pseudo 3D (2 1

2D). In addition we also take o

lusion horizons'quadtree idea to re
ursively determine the nodes of the quadtree that are visible.But how do we de
ide whether a quadtree node is visible from another or not?We solve this by a new idea: 68

Figure 37: Dual Ray Spa
e O

lusion CullingFirst we �nd the two fa
es of Z and Q fa
ing ea
h other.Then we model them as parametrized line segments: Q0+s (Q1 −Q0) , s ∈ [0; 1],
Z0 + t (Z1 − Z0) , t ∈ [0; 1]And now we transform this model to a Dual Spa
e, where every Ray in our
urrent spa
e is represented by a point.

Figure 38: A line in the Dual Ray Spa
eFor example all rays between Q and Z that hit a random point v will build aline in this Dual Spa
e.
Figure 39: A double triangle in the Dual Ray Spa
eNow
onsider a whole line segment between Q and Z, all rays interse
ting thissegment build a double triangle in the dual spa
e.Slowly the idea be
omes
lear, we represent the spa
e of all rays in the dual rayspa
e as image [0; 1]2. Then we render this image bla
k and
ompute for ea
hsegment between Q and Z the
orresponding double triangle. After all segments69

have been pro
essed, we
he
k whether there are any bla
k pixels left, if thereare not, we assume total o

lusion.8 Lighting8.1 LightTo understand algorithms of lighting it is important to understand light, re-spe
tively the measuring of su
h
alled radiometry or the human per
eptionof light referred to as photometry.8.1.1 RadiometryRadiometry is the physi
al measurement of light. Sin
e light is a form of energy,we measure it in joule [J].PhotonsLight
an also be seen as a large amount of photons. A photon is a light quantumhaving a position, a dire
tion and awavelength λ given in nanometer 1nm =
10−9m. Furthermore light has speed c (depended on the material it passesthrough) and a frequen
y f = c

λ
. Finally the amount of energy q
arried isgiven by
q = hf =

hc

λwhere h = 6.63 · 10−34 is Plank's Constant.EnergyThe energy of light in general (radiant energy, Strahlungsenergie) Q is thensimply the sum of the single photon's energy qi.
Q =

n
∑

i−l

hc

λi

[J]Furthermore we
an give Q relative to the wavelength λ by integrating over aninterval on the wavelength:
Q =

∆q

∆λThen we
an give Q relative to time (radiant �ux, Strahlungsleistung)
Φ =

dQ

dt

[

W =
J

s

]

70

ExampleA light bulb with 100 Watt emitting about 5% as light, then the radiant �ux Φwould be: Φ = 5WThe radiant energy Q, relative to a surfa
e (�ux density, Fluÿdi
hte) is givenby
dΦ

dA

[

W

m2

]Irradian
eIrradian
e is the amount of ingoing light that hit a
ertain point, the in
identlight or in
ident �ux density (Strahlungsenergie).
E =

dΦin
dA

[

W

m2

]RadiosityRadiosity is the light emitting from a surfa
e. It is
alled exitant light orexitant �ux density (spezi�s
he Ausstrahlung) and measured the same way:
B =

dΦout
dA

[

W

m2

]Example
• A big area light with Φ = 5W and A = 1m2 has a radiosity of 5 W

m2

• A small area light with Φ = 5W and A = 100cm2 has a radiosity of 500 W
m2Radiant IntensityRadiant Intensity (Strahlungsintensität) is used for point light sour
es and givesthe emitted light per solid angle (see 2.11)

I =
dΦ

dω

[

W

sr

]This means, if by tilting the area is getting smaller, the same light is gettingbrighter (the light be
omes more
ompa
t).Approximation Usually the dome is negle
ted, just the area is taken intoa

ountNote By /r2 dimension and size leaves the formula. Thus dimension and sizeof the sphere does not in�uen
e the out
ome.71

Radian
e

Figure 40: Radian
eFinally radian
e
ombines �ux density with radiant intensity (Strahldi
hte)adding a dire
tional dependen
y to radiosity/irradian
e.
L (x, ω) =

d2Φ

dω · dA · cos θ

[

W

sr ·m2

]where d2Φ is the �ux5, dω is the di�erential solid angle and dA the di�erential ofthe Area (cos θ is explained below). This results in the brightness. This is thevalue measured by
ameras. Radian
e is also the most important radiometri
unit for
omputer graphi
s, sin
e it is exa
tly what we want to store in a pixel.IntuitionWe want to measure how many photons originate from a
ertain point x into adire
tion ω. We use a light sensitive sensor as
ameras use and pla
e it abovethe surfa
e. Now to get sure only the rays originating from our point we needto en
lose the sensor by a bla
k
one whi
h has a broad opening towards xand a small towards the sensor, so that rays
oming from another dire
tion areabsorbed by its bla
k walls when boun
ing.Still some rays will get through, therefore we need to make the
one in�nites-imal small (dω).Still some rays will rea
h the sensor,
ause it has a
ertain area size, thereforewe need to make this area in�nitesimal small (dA).Still our sensor will be oriented in some kind, therefore we need to take thisorientation into a

ount (cos θ)(e.g. verti
al, horizontal or in between).Now we get only the desired photons. If on the other hand we want to measureirradian
e we pla
e the sensor on the surfa
e.5d2be
ause we di�erentiate two times 72

Invariant Radian
e is
onstant along a ray

Figure 41: Relationship between in
ident and re�e
ted lightAn important relationship is between in
ident light Li and the light re�e
ted
Lr and transmitted by the surfa
e A

Ei = Li

(

~n ·~l
)

dωi

Ei = Li cos θidωiOverview Table 1: Physi
al Light OverviewMeasure Meaning ModelingFlux general light �ow without di�erentiationIntensity light per angle (e.g. the intensity of a light bulb) powerRadiosity light per area (all dire
tions) di�useRadian
e light per area into a dire
tion spe
ularIrradian
e in
oming light per area from any dire
tion Lin8.1.2 PhotometryWhere radiometry
overs the physi
al measurement of light, photometry
oversthe human measurement of light. The human system is only
apable of per
eiv-ing a limited range of radiation. Furthermore the human response system is notlinear: Some wavelengths appear brighter than others (e.g. red).The average human vision
apabilities (daytime) are
overed in lumen V (λ)
[

lm
W

].
Lv
overs how bright a
ertain wavelength is per
eived.

Lv = km

∫

L (λ) V (λ) dλ

Bv, Qv,Φv are expressed
orrespondingly.73

8.2 LightingLighting is the simulation of physi
al light to make a 3D s
ene look real. Howevera real approximation takes far too long, so that we make a lot of approximations,simpli�
ations and ha
ks. Our task is to
ompute the luminous intensity at apoint in the s
ene.8.2.1 Simpli�
ationsSin
e we are far from able to model light physi
ally
orre
t, we often are for
edto make some of these
ommon simpli�
ations:
• no intera
tions between wavelengths (e.g. �uores
en
e)

Figure 42: �uores
en
e
• time invarian
e (distribution remains
onstant over time, e.g. phospho-res
en
e)

Figure 43: phosphores
en
e74

• light transport in va
uum (no intermediary medium, emission and absorp-tion just on obje
ts, e.g. smoke, mist)
• isotropi
 obje
ts (identi
al material)
• dire
t illumination (no or limited re�e
ted illumination)Light Hitting A Surfa
e
an be
• absorbed
• s
attered
• re�e
ted
• refra
ted
• transmitted8.3 IlluminationTransport of energy (in parti
ular, the luminous �ux of visible light) from lightsour
es to surfa
es & surfa
e to eye. There are two major
omponents of illu-mination:
• light sour
ea light sour
e has a
ertain spe
trum (
olor), a dire
tion and a shape(e.g. point light sour
e, parallel light, area light sour
e).
• surfa
e propertiesa surfa
e has a re�e
tan
e spe
trum (
olor), a position, an orienta-tion (given by a surfa
e normal at every point) and ami
ro stru
ture(important for s
attering and re�e
tion)Lo
al IlluminationIllumination by one or several light sour
es (point, parallel). This results inhaving no shadows. An example is Phong Lighting.Global IlluminationGlobal light ex
hange (area light sour
es). Slower but with shadows and higherquality. An example is Ray Tra
ing

75

8.3.1 Light Sour
esPoint Light Sour
e

Figure 44: Point Light Sour
eLight is equally emitted in all dire
tion originating from a single point. Thusthe light dire
tion towards a surfa
e varies for every surfa
e point. Thus wehave to
ompute a normalized light dire
tion ve
tor for every point:
l =

p− x

‖p− x‖

Figure 45: dire
tion of light for point light sour
e

76

Dire
tional / Parallel Light

Figure 46: Parallel LightLight is modeled by parallel rays originating from a quasi in�nite distant lightsour
e (e.g. the sun). The dire
tion of the surfa
e relative to the light dire
tionbe
omes important.SpotlightA point light sour
e with parallel light. Outside the spotlight, the light remainsparallel but fades away in intensity, limiting the light to a
ertain area. Amixture of the two above.Area Light Sour
eDe�ned by a 2D emissive surfa
e (e.g. a �ashlight). Area light sour
es are
apable of
reating soft shadows.8.3.2 Phong Lighting ModelProperties
• lo
al illumination
• heuristi
, no physi
al simulation
• fastVariablesRe�e
ted LightIn Phong Lighting, re�e
ted light does not exist per se and is therefore approx-imated by three
omponents:Ambient Light Indire
t light modeled by a
onstant (omnipresent light)77

Variable meaning
~l dire
tion of light
I light Intensity
~v ve
tor towards the eye
~n surfa
e normal
k surfa
e
onstant (
olor)

nshiny empiri
al
onstant (spread of the highlight)
~r ideal re�e
tan
e ve
tor
~h halfway ve
torTable 2: Phong Lighting VariablesDi�use Light re�e
tion from rough surfa
es (uniform into all dire
tion)Spe
ular Light re�e
tion from glossy (no perfe
t mirrors) surfa
es

Ltotal = Lambiebt + Ldi�use + Lspe
ularAmbient Light

Figure 47: Ambient LightCovers obje
ts that are not dire
tly light, but that would be still visible byindire
t illumination.
Lamb = kambIambSome properties of ambient light:

• no physi
al base (ne
essary be
ause indire
t/global illumination is skipped)78

• better results by giving ambient light per light sour
e, so that if one lightsour
e is turned o�, it's ambient light is removed from the obje
ts
• if a surfa
e is not
overed by any light sour
e, only ambient light is appliedgiving the surfa
e an uniform look and no 3D features (there often anadditional light sour
e
alled head light is used above the viewer to makesure everything visible is at least lit by some dire
t light sour
e.Di�use LightIn prin
iple the s
attering/re�e
tion of light depends on the surfa
e's mi
rostru
ture. In Phong Lighting we assume rough surfa
es to be equally roughs
attering light equally in all dire
tions.

Figure 48: Re�e
tion from equally rough surfa
esFor this
ase we may apply Lambert's Cosine Law:
Figure 49: Lambert's Cosine LawRe�e
ted radiant intensity in any dire
tion varies as the
osine of the anglebetween light dire
tion and surfa
e normal.Therefore we require the angle between the light dire
tion ~l and the surfa
e79

normal ~n to
ompute di�use light:
Ldi� = kdi�IIn cos θ

Ldi� = kdi�IIn (~n ·~l
)

Figure 50: Di�use LightAs you
an see the view dire
tion does not appear in the formula. This meansthe di�use light is view independent and thus looks the same from any dire
tion.The angle θ gives us more information. If
•
(

~n ·~l
)

< 0: light is below the surfa
e
• (~n · ~v) > 0 : eye is below the surfa
eIn both
ases we
lamp I to zero.Some properties of di�use light:
• di�use light is view independent
• di�use light is based on Lambert's
osine law and with that based on realworld physi
s

80

Spe
ular Light

Figure 51: Spe
ular LightRe�e
tion for glossy materials, e.g. polished metal. Light
auses a bright spot onthis surfa
e (spe
ular highlight). This highlight depends on the dire
tion theviewer looks at the surfa
e, thus it is view dependent. Spe
ular light approa
hesmirror like re�e
tan
e (see Figure).
Lspe
 = kspe
IIn cos (φ)nshiny
Lspe
 = kspe
IIn (~v · ~r)nshiny

Figure 52: Spe
ular Light is view dependentwhere nshiny determines the spread of the highlight. A large nshiny makes for arather glossy (narrow) highlight, and a small nshiny a rather di�use one. The81

ve
tor ~r of ideal re�e
tan
e
an be
omputed as
~r =

(

2
(

~n ·~l
))

~n−~lSome properties of spe
ular light:
• view dependent (the highlight moves with the viewer)
• halfway ve
tor redu
es
omputation time
• no physi
al base or validity
• looks unrealisti
 with per-pixel shading (Phong Shading, see below 8.4.3)Complete Re�e
ted Light
Lre�e
ted = kambIamb +

#lights
∑

i

Iini

(

kdi� (~n ·~li
)

+ kspe
 (~v · ~ri)nshiny)Halfway Ve
tor Approa
h

Figure 53: Halfway Ve
tor Approa
hComputing the ideal re�e
tan
e ve
tor ~r is
ostly. The Halfway Ve
tor Approa
h
omes
lose to the results of using ~r but is far more e�
ient. The idea is thatthis halfway ve
tor ~h is exa
tly equal to ~n if the view dire
tion ~v is parallelto the re�e
tion dire
tion ~r. When it deviates from ~n, the angle of deviationis φ′ = φ
2 . Therefore the inner produ
t (~n · ~h

) equals cos
(

φ
2

). The halfwayve
tor spe
ular formula is:
~h =

~l+ ~v
∥

∥

∥

~l+ ~v
∥

∥

∥82

Using ~h draws
Lspe
 = kspe
IIn cos (φ′)

nshiny
Lspe
 = kspe
IIn (~n · ~h

)nshinyIf the light is dire
tional and the view parallel (orthographi
), both ~l and ~vbe
ome
onstant, resulting in a
onstant ~h.AttenuationFor parallel light there is no attenuation, sin
e we have parallel light rays every-where, therefore we
onsider a point lightsour
e at position p, whi
h is d awayfrom the surfa
e point x it is lighting (d = ‖p− x‖2).
IIn =

I

‖p− x‖2But this approa
h is problemati
 for
lose and distant light sour
es. Thereforewe add some
onstants and build a polynomial:
IIn =

I

c0 + c1d+ c2d2where ci model for example atmospheri
 attenuation, smoke or va
uum.Note that a physi
ally
orre
t attenuation pro
eeds quadrati
 in respe
t tothe distan
e to the light sour
e. However we usually do not model this be
ause a)the sun is too far away (hardware �oat pre
ision), b) it results in very unrealisti
looking light and
) we
an model additional atmospheri
 attenuation like smoke.Material ColorsThe material
onstants ki may
onsist of two parts:a brightness value k ∈ [0, 1]a
olor frequen
y Oλ, λ ∈ RGBαThis allows the mixing of lightsour
e and material
olor frequen
y8.3.3 Torran
e-Sparrow Light ModelThe Torran
e-Sparrow Light Model tries to model physi
s. Here we do notassume equally rough surfa
es, but
onsider isotropi

olle
tions of planar mi-
ros
opi
 fa
ets.
L = IIn · F (~l · ~h)G(~n · ~v, ~n ·~l

)

D
(

~n · ~h
)

π (~n · ~v)
(

~n ·~l
)

83

Variable Meaning
~n standard surfa
e normal
~h normal for rough surfa
es (
urrent normal wandering a
ross the hill)
~v view ve
tor
~l light ve
tor
π a

ounts for surfa
e roughness

D
(

~n · ~h
) distribution of mi
ro fa
ets / normals (Gaussian)

G
(

~n · ~v, ~n ·~l
) attenuation, masking and self shadowing

F
(

~l · ~h
) Fresnel Term

(~n · ~v)
(

~n ·~l
) ~maybe~ for the spe
ular highlight?The Fresnel Term des
ribes the relation between in
oming and re�e
tedlight and takes surfa
e properties (glass, water) into a

ount.Self shadowing means that re�e
ted light boun
es against a fa
et:

Figure 54: Self-ShadowingS
hli
k gives an fast and e�
ient approximation of the
omplex Fresnel Term:
F = fλ + (1 − fλ)

(

1 − ~v · ~h
)where fλ is the Fresnel re�e
tan
e of the material at normal in
iden
e.8.4 ShadingShading is a kind of parent to lighting, it de
ides for whi
h pixels lighting is
omputed and how these values are interpolated a
ross a fa
e.

84

8.4.1 Flat Shading

Figure 55: Flat ShadingThe polygon is partitioned into fa
es. Ea
h fa
e has a uniform surfa
e normal.Therefore we
ompute lighting for a single point on the fa
e, and take it for therest.- ina

urate for fa
eted obje
tsOpenGL glShadeModel(GL_FLAT)8.4.2 Gouraud Shading

Figure 56: Gouraud ShadingInstead of applying Phong Lighting with surfa
e normals for
omplete fa
es, weapply it with vertex normals. Ea
h vertex of a polygon is assigned a normal,85

whi
h is an average by the surfa
e normals of surfa
es
ontributing to this vertex(wireframe).
~nv =

∑#fa
es
i ~ni

∣

∣

∣

∑#fa
es
i ~ni

∣

∣

∣

Figure 57: vertex normalsThe next step is then to interpolate the vertex values a
ross the fa
es.OpenGL glShadeModel(GL_SMOOTH)

86

Algorithm 6 Gouraud Shading

1. apply Phong Lighting Model to verti
es I1, I2, I32. interpolate these values along the edges → Ia, Ib

Ia =
ys − y2
y1 − y2

I1 +
y1 − ys

y1 − y2
I2

Ib =
ys − y3
y1 − y3

I1 +
y1 − ys

y1 − y3
I23. use s
anline algorithm to interpolate between the edges → Ip

Ip =
xb − xp

xb − xa

Ia +
xp − xa

xb − xa

IbAs with the s
anline algorithm a in
remental update
an be found to makesthings faster/numeri
ally more stable- fails to
apture spotlight e�e
ts- Through the interpolations highlights are smeared and light de
reases slower
Figure 58: Gouraud Shading smears highlights87

Gouraud Shading
an be arti�
ially modi�ed to perform Phong Shading.This is done by making the surfa
es (triangles) smaller than pixels, so thate�e
tively shading per pixel is performed.This is done be
ause many graphi
s hardware support Gouraud Shading, butnot Phong Shading.8.4.3 Phong Shading

Figure 59: Phong Shading1.
ompute vertex normals at ea
h polygon vertex2. interpolate these normals a
ross the fa
e3. re
ompute lighting for ea
h pixel with the interpolated normalThe interpolation of the normals works just as the interpolation of light inGouraud Shading.+ looks really good+ good highlights → implement a highlight test ((~n · ~h
)

≥ τ , Threshold τ)and use Phong Shading only for fa
es with highlights+
orre
t size- high
osts- three ve
tor
omponents-
onstant renormalization ne
essary (square root) → interpolate s
alar prod-u
ts instead, saves renormalization- huge amount of lighting
al
ulations88

Figure 60: Deferred ShadingWe store all parameters important for shading in RGBα Render Targets (tex-tures)
Figure 61: Storing shading parameters in the RGBα
hannels of three RenderTargetsNote that 16bit are overkill for di�use re�e
tan
e.8.4.4 Deferred ShadingThe idea of deferred shading is postpone shading as far behind as possible. Wedo this by saving all we need for shading during the modeling stages: pixel posi-tion, normals, light/
olor: di�use and spe
ular albedo, material. To e�e
tivelystore all these values, we
an use Multiple Render Targets or Multiple Texturing(see 11.15) and make use of the individual RGBα
hannels (see �gure). Thispat
h of memory is then
ommonly referred to as G-Bu�er.Having all parameters, that we need, we
an redu
e the
omplexity signi�
antlyand result in the following pro
edure:+ worst
ase: O (obje
ts+ light sour
es) (other shading te
hniques have: O (obje
ts · light sour
es))+ works best for depth
omplex s
enes with multiple light sour
esAlgorithm 7 Deferred ShadingFor ea
h obje
t:
→render lighting properties to the G-Bu�er.For ea
h light:
→ framebuffer + BRDF(G-Buffer, light)89

+ models many small light sour
es just as fast as one big one+ allows for the integration of all popular shadow methods8.5 ShadowsComputing shadows is not very easy, sin
e the entire s
ene has to be knownto de
ide whether a point lies in shadow (does the light hit the point, is thepoint o

luded by another obje
t, is it self-o

luding). However the pipeline isa sequential pro
ess where one triangle is rendered after the other, but ea
h newtriangle
ould
ast shadows to the previous ones.8.5.1 Planar ShadowsAnother idea is to generate a 2D proje
tion of an obje
t onto a plane:1. render ground2. render obje
t3. set matri
es to the desired proje
tion4. render the shadow in bla
kProblems

Figure 62: Problems o

urring with planar shadows- shadow outside of polygon ground- Z-Bu�er �ghting (be
ause the shadow is so �ne)These
an be solved by using the sten
il bu�er:1. render the obje
t 90

2. render the ground and set sten
il bu�er to 1 for ground pixels3. turn o� Z-Test4. render shadow where sten
il bu�er is equal to 1Properties+ fast+ simple- only for shadows on planar obje
t- no self shadowing8.5.2 Light MapsOne idea arising from this problem is to pre
ompute shadows by light maps.Light maps are textures that store the light
onditions of a stati
 s
ene in animage. Often light maps are
alled stati
 shadow maps.8.5.3 Shadow MapsShadow Maps are more general than planar shadow proje
tion and allow for the
asting of
urved shadows on
urved surfa
es, however this te
hnique requirestwo rendering passes: One from the �view� of the light sour
e and one from the
amera.Light View everything that is visible from here, must be lit. All hidden partsare in shadow. Sin
e we are only interested in how deep the obje
ts arelo
ated, we only save the depth values (Z-Bu�er).

91

Figure 63: The s
ene as seen from the light. Only the depth values are stored.Render Pass now we transform our (x, y, z)
oordinates to a

ess the shadowmap (x′, y′, z′) (see texture mapping 11 for details). Then we
he
kwhether:
z′ = shadow (x′, y′) → pixel is lit
z′ > shadow (x′, y′)→ pixel is in shadow (render it bla
k)

Figure 64: In the se
ond pass, the shadow map is a

essed to determine whethera pixel is lit or in shadow.Dimmed ShadowsEven ni
er results
an be obtained, when the shadow map returns grey valuesinstead of white and bla
k. Then the shadows are dimmed and not entirely92

bla
k.Colored ShadowsBut still the shadows will not
ontain any of the materials property
olor. If wewant the shadows to return even a full spe
trum of
olor, taking into a

ountmaterial
olors we just have to render the s
ene before the �rst pass with onlyambient light turned on. However this results in having three rendering passes.Curvature Shadows
Figure 65: The blue arrow shows where the
urvature
an be seen in the shadowWe
an even make
urvatures visible in shadows by
omputing di�use re�e
tion,although we are in shadow. We simply darken the (�not� in
oming) light by somefa
tor and apply Lambert's
osine law. To make the
urvature look good we
an use a so
alled fragment shader.Spotlight Shadows

Figure 66: Spotlight shadows
an be
reated by using the
amera's frustum asa shadow frustumIf we are dealing with spotlights the shadows will be limited to the light spreadof the spotlight. We
an obtain this e�e
t by using the
amera's view frustum93

as a shadow frustum when
reating the shadow map. The
amera's frustumparameters are adjusted to �t the spotlight (view dire
tion is spot dire
tion,spot angle is fovy).Dire
ted Light ShadowsIn
ase of a parallel/dire
ted light sour
e, we use the planar shadow methodfrom above if possible (surfa
e for the shadow required). If not we have to usean orthographi
 proje
tion rather than a perspe
tive one to render the lightview.Omnidire
tional LightIn
ase the point light is outside of the s
ene (what we have assumed), we
anuse the standard methods presented. If however the point light is within thes
ene we speak of an omnidire
tional light and need a variation of the method.A solution is to use a
ube environment map for
reating six shadow maps (ora paraboli
 for two) and use the referen
e te
hniques of environment texturemapping (see 11.10).Propertiesstati
 one render pass, only one shadow mapdynami
 two/three render passes, shadow map generated per frame- ma
hine pre
ision allows only for the test z′ ≈ shadow (x′, y′), but not z′ =shadow (x′, y′) (render with a small depth o�set, glPolygonOffset)alternatively to real depth values polygons or even whole obje
ts
an beassigned an ID. During rendering this ID is
ompared, and if it mat
hesthe polygon/obje
t is lit.- aliasing: the resolution of the saved shadow map easily be
omes visible (worstfor light from opposite dire
tion: the shadow will be proje
ted right to thenear plane and be huge, best for a miner's lamp above the obje
t: straightproje
tion without perspe
tive distortion.)- the light is assumed to be outside the s
ene. If it isn't the �light view� tri
kwon't work.for this
ase environment maps
ould be used (e.g. a resp. six
ube maps)Aliasing
an be met with antialiasing te
hniques su
h as linear interpolating theshadow map (see 3.8). However be
ause depth values may have hard jumps,per
entage
losest �ltering is suggested: We
ompare the
urrent pixel'sdepth value with the surrounding ones and only take those for bilinear interpo-lation that's depth value equals at least X per
ent of the pixel's depth value.
94

Figure 67: Adaptive shadow maps are ordered and a

essed in a tree stru
tureAnother idea areAdaptive Shadow Maps where similar to Mip-Mapping (see11.5.2) shadow maps are stored in di�erent sizes (here the resolution remainsthe same, instead the size varies depending on the position on the s
reen, see�gure). Then depending on the s
reen se
tion the appropriate is
hosen. Theshadow maps are ordered and a

essed in a quadtree stru
ture (see �gure). To
hoose whi
h shadow map is appropriate, Mip-Mapping hardware supportedte
hnique
an be exploited.+ very good shadows- many passes until the quadtree has been
ut- di�
ult if the
amera turns around- not yet appli
able in dynami
 s
enesA third method to meet shadow map aliasing espe
ially for large s
enes areLight Spa
e Perspe
tive Shadow Maps. The idea is to use a proje
tivemapping to shift resolution to regions
lose to the
amera. A suggestion forwhere to pla
e the eye for this proje
tive proje
tion popt (this is the degree offreedom) is
popt = n+ (n · f)

1

2

Figure 68: The shadow map resolution
hanges with a proje
tive mapping95

+ only one shadow map8.5.4 Soft ShadowsMaybe the biggest problem dealing with shadows is the
reation of soft shadows.Soft shadows mean shadows respe
ting attenuation (by distan
e to the o

luder)and a blurred border line. Alas simple blurring of the border line by low-pass�ltering does not in the results we want. If
omputation time is unimportantwe
an simulate an area light sour
e by several point light sour
es (at least 64ne
essary to avoid artifa
ts) and blend between them.

Figure 69: Partitioning of the s
ene into umbra, penumbra and lit areas.Modeling real area light sour
es we
ome up with a model the separates thes
ene into three regions: umbra, penumbra and lit (see �gure).Penumbra Maps
Figure 70: Shadow mapping
ombined with a penumbra map to soften theshadow outlinesPenumbra Maps are an extension to Shadow Maps respe
ting soft shadows. Wesimplify the model by modeling an arbitrary area light sour
e with a �dis
/sphere�light sour
e modeled again by a point light sour
e and a radius. Then we add96

a se
ond shadow map, whi
h we
all penumbra map. This image
ontainspenumbra values between [0; 1]. This value is used to modulate the already
omputed hard shadow turning it soft (see image). The question remains howto
ompute this penumbra map:

97

Algorithm 8 Creating Penumbra Maps

1.
ompute o

luder's silhouettes (see shadow volumes 8.5.4)2. generate penumbra
ones (silhouette verti
es) and sheets (silhouetteedges)3. render penumbra
ones and sheet in light view4. take the blue hulls/outlines for penumbra regions (use the Z-Bu�er toobtain blue region)

ompute penumbra value for ea
h pixel

pen =
(zF − zvi)

(zP − zvi)where zvi is the distan
e of the o

luder to the
enter of the light sour
e,
zF the distan
e of the fragment and zP the distan
e of the re
eiver(taken from shadow map) . zF lies on the interse
tion of the penumbraedge with the line from the pixel zpto the light sour
e's
enter anddetermines the penumbra value. Now if:

zF = zvi the penumbra value results in pen = 0
zp−zvi

= 0, meaning bla
k a totalshadow the penumbra value results in , meaning white, atotal la
k of shadowEverything in between results in a soft shadow.

98

+
an be done by a fragment shader- be
ause of modeling any area lightsour
e as dis
, we get re
tangular lightsour
es, whi
h prefer one dire
tion, wrong (shadow is harder for one di-re
tion as for the other)- having a dis
 or sphere the proportions of the penumbra value determinationmethods get wrong, be
ause e.g. 40% of the diameter does not
orrespondto 40% of the sphere's volume (dis
's area), be
ause it gets broader in themiddle. We
an a

ount for this by using this transformation:
pen′ = 3pen2 − 2pen3- overlapping: how to deal with overlapping penumbras (many di�erent s
enar-ios, see �gure)

Figure 71: Overlapping PenumbrasAs you
an see there are several di�erent
ases, that would need to be di�eren-tiated, when penumbras overlapShadow Volumes
Figure 72: Highlighted Shadow Volume99

Shadow Volumes des
ribe the boundary surfa
es between lit and shadowed re-gions. Their appli
ation is restri
ted to watertight,
onvex surfa
es6. Imagine
onne
ting all verti
es of a triangle with the light sour
e (point) and extendingthese lines into in�nity. Above the triangle we will have a pyramid and below atrun
ated pyramid. Everything that lies within this trun
ated pyramid is withinthe shadow of the triangle. This trun
ated pyramid is what we
all a shadowvolume.Algorithm 9 Shadow Volume Algorithm1. render the s
ene without shadows2. generate shadow volume3. determine for every pixel, whether it is within the volume4. dim pixels within the shadow volumeConstru
tion: Triangletake the triangle and shadow surfa
es of the edges
onne
ted to the light sour
e's
enter.Constru
tion: Triangle Meshtake the triangles fa
ing the light sour
e, and shadow the surfa
es of the obje
t'ssilhouette. Use the s
alar produ
t between surfa
e normal and light dire
tionto determine the light fa
ing triangles:triangles where (~n ·~l
)

> 0 are fa
ing the light sour
etriangles where (~n ·~l
)

< 0 aren'tIf with two triangles A and B, A is fa
ing the light sour
e and B ain't, then weadd the edge between A and B to the silhouette of the obje
t.6We
an break these restri
tions by elongating the surfa
e bottom wards or
opying it andsti
king it to the ba
kside. Be
ause the problem arises with surfa
es having no thi
kness andnormals only for one side. Also take spe
ial
are with the borderline.

100

Algorithm 10 Constru
ting The Shadow Volume1. determine (~n ·~l
) for all triangles and store it as signum +/−2. for ea
h neighbouring triangle (use fa
e list for topology information, see10.1.5):if the signi of both triangles di�er(a) extrude the
ommon edge [p, q] away from the light sour
e towards

∞(b) add the resulting surfa
e to the shadow volumeMultiple O

luders

Figure 73: Dealing with multiple o

ludersHaving multiple o

luders we build shadow volumes for ea
h of them. Butthen the problem arises that we
an enter and leave shadow volumes. Onepossibility is to set up a
ounter, following the eye in
rementing when enteringand de
rementing when leaving a shadow volume. When the
ounter is greaterthan zero, we are within shadow. However this is not very e�
ient (e.g. be
auseof interse
tion
omputations).Another idea is to make use of the sten
il bu�er:
101

Algorithm 12 Shadow Volumes with Vertex ShadersTwo passes, for front and ba
k fa
ing triangles.1. send all edges to the vertex shader as degenerated quad literals2.
he
k the edges for being silhouette edges (see above)(a) if they are: two of their edges are proje
ted away from the lightsour
e(b) if they aren't: render them as degenerate polygons
overing no pixels3. all the transformed quad literals now de�ne the shadow volume sidesAlgorithm 11 Z-Pass Algorithm1. render the s
ene with Z-Bu�er turned on2. lo
k writing to Z-Bu�er and framebu�er (but leave the Z-Test enabled)3. render shadow volumes fa
ing the viewer: for every rendered pixel, in
re-ment the sten
il bu�er on this position4. render shadow volumes ba
k fa
ing the viewer: for every rendered pixel,de
rement the sten
il bu�er on this positionNow every pixel where the sten
il bu�er is greater then zero is in shadow.Step 3 and 4
an be rendered in one pass, if the shadow
olumns do not overlap.Propertiesin�nite shadow volumes use in�nity point with w = 0+ only one pass for rendering shadow volumes (front/ba
k fa
ing is supportedby OpenGL)+ optimal quality+ less silhouette edges than verti
es+ no sampling problems (does not use texture maps)- restri
ted to watertight
onvex surfa
es- limited depth of the sten
il bu�er (8 bits, max
ounter 255)simply use another bu�er, e.g.
olor or α-bu�er- determining the silhouette in software is very expensive- rendered shadow volumes are very large (high �ll rate ne
essary), espe
ially
lose to the light sour
e, rasterizer be
omes a bottlene
k102

- viewer in shadow:
ounter values are wrong (determine alternate global
ounterstart value, pla
e the viewer far away from the near plane)- too
lose near plane: the near plane might be beyond the entry point of the�rst shadow volume and remove it (di�erent
ounter starting values)There is an alternative algorithm
alled z-fail, whi
h reverses the orderof the z-pass algorithm, but z-fail en
ounters the same problem with thefar-plane (we start at the far plane and in
rease/de
rease the sten
il, on
ea depth test fails). However if we move the far-plane to ∞ the problem issolved. Note that be
ause of matrix
al
ulations the other way round, i.e.setting the near-plane to 0 is not possible (
hoosing even −∞ obje
ts willbe perspe
tively stret
hed to in�nity).Disadvantages of this method is hardware dependen
y and that in generalthe z-pass method will �ll less pixel overall and thus be faster.- disadvantage of the z-fail method is, that a lot more pixels have to be renderedthan using z-pass. Be
ause usually the s
ene goes on quite a lot after theview frustum far-plane.In general it is important to �nd out where the bottlene
k is lo
ated. For ex-ample using simpler models for the o

luders won't help when using the shadowvolume approa
h, sin
e its bottlene
k is usually the �ll-rate. On
e the bottle-ne
k is spotted a
ommon approa
h is to use several simpli�
ations (e.g. simplermodel, lower refresh rate for shadow information) and take wrong, ina

urateshadows into a

ount to get a a

eptable frame rate (the idea is that it is hardto determine the
orre
tness of a shadow by the eye alone anyway)8.6 Motion BlurMotion Blur is a feature added to moving obje
ts to support the illusion ofmovement. A simple idea is, taking for example a sword sli
ing through the air,to add
opies of polygon at previous positions setting their α-value for blendingwith the ba
kground. For this e�e
t we need to gather a series of images. Forthis purpose a spe
ial extra big bu�er,
alled a

umulation bu�er has beenset up (see also 0.1).To make this pro
ess �t for real time, we do not gather n images beforedisplaying them, but use image operations. If we rendered the n + 1th image,we subtra
t the image n− x from the bu�er and add the new image n+ 1. Bythis we only need two renderings per frame.An alternative is to use vertex shaders (see 15) for the se
ond pass. In the�rst pass we render the obje
t normally, in the se
ond a vertex shader appliesthe previous frame's and the
urrent frame's transformation to ea
h vertex. Thedi�eren
e between both gives a motion ve
tor: Che
k the dot produ
t betweenmotion ve
tor and surfa
e normal, whether the vertex is fa
ing away from themotion:if it is fa
ing away: take the vertex's previous position as output103

if it is fa
ing motion: take the vertex's
urrent positionThe length of the motion ve
tor
an be used to determine the α-values forblending.8.7 Re�e
tionA
ommon way to render re�e
tions without Ray Tra
ing (see 9) is to renderthe real s
ene again mirrored on the re�e
ting surfa
e (e.g. written to a texturemap). Then these mirrored rendered obje
ts are made semitransparent. Toavoid rendering over opaque areas the sten
il bu�er
an be used to hide themfrom rendering. Also remember to
hange from ba
k-fa
e
ulling to front-fa
e
ulling or turn it o� (slower rendering), sin
e everything will be reversed.9 Ray Tra
ingThe idea of ray tra
ing is to
ast a ray for every pixel on the s
reen to the eyeand follow it through all obje
ts it interse
ts with. By that intera
tions betweenobje
ts be
ome feasible. Espe
ially shadows and re�e
tions be
ome easy prey.We di�erentiate four kinds of rays:
• primary rays: ray from the eye through the s
reen pixel
• shadow rays: on
e a primary ray hits an obje
t, a se
ondary/shadowray is sent towards the light sour
e
• re�e
ted rays: on
e a shadow ray hits a light sour
e, it is re�e
teda

ording to surfa
e properties
• transmitted rays: if the obje
t is translu
ent, in addition to re�e
tan
etransmission rays are
reated and the result is
arried ba
k to the �rstinterse
tion point9.1 ViewingThe prin
iple is very similar to what we got to know in perspe
tive transforma-tions, we simply draw the �rst obje
t the ray, a 3D dire
ted line with origin eand uwv
oordinates, interse
ts with.

~e+ t · ~dwhere ~b is the ve
tors dire
tion. We
an repla
e ~d with (~s− ~e), where ~s isthe pixel on the s
reen we are pro
essing. ~s's
oordinates
an be found betransforming the s
reen
oordinates into the uvw-
oordinate system.
ws = ~n

us = l + (r − l)
i+ 0.5

nx104

vs = b+ (t− b)
j + 0.5

nywhere (i, j) are the pixel's indi
es. Thus
s = ~e+ us~u+ vs~v + ws ~wNote If t < 0 the obje
t is behind the eye, and we don't have to render it.Of
ourse this method is highly view dependent, meaning, on
e the viewing
hanges, we have to re
al
ulate everything.9.2 LightingLighting
an also be done by
asting rays. On
e our eye-ray interse
ts with anobje
t we send a ray from this interse
tion point towards the light sour
e and
ompute lighting. If it doesn't hit the light sour
e, we are inside a shadow. If itdoes we
ast re�e
tion and transmission rays a

ording to the surfa
e propertiesand then shade the pixel with the following
omponent:

• dire
t illumination� material properties (
olor)� surfa
e normal� light from the light sour
e
• indire
t illumination� in
oming light from re�e
ted rays� in
oming light from transmitted rays

105

Figure 74: Re
ursive Ray Tra
ingWe see that Ray Tra
ing is a highly re
ursive pro
edure. This sounds mu
h likea physi
al simulation of sun rays, yet it isn't. If we'd to simulate reality, weought to start from the sun and
ast rays on any point on any obje
t and theninto all dire
tions. If one of there rays hits the eye, we
an see it and render it.But the probability for a ray hitting the eye is really low.ShadowsIf a shadow ray does interse
t with an obje
t on it's way to the light sour
e, weare in a shadow. We
an basi
ally use the same algorithm as for viewing rays,but we
an simplify it: Sin
e we are not interested in the
losest interse
tingobje
t, we
an stop the algorithm, when we �nd the �rst interse
tion with anobje
t.Soft ShadowsSoft shadows
an be obtained by modeling an area light sour
e by a numberof point lightsour
es. However sin
e
asting rays for every of these point lightsour
es would be tedious and the resulting shadows would still show hard visibleboundaries of values of grey, an idea is to randomly sele
t one or more of thesepoint light sour
es for every ray.Re�e
tionIn
ase the shadow ray did not interse
t with an obje
t and we are dealing witha re�e
ting surfa
e, we
ast a re�e
tion ray. The dire
tion of the ideal re�e
tion106

~r
an be
omputed by
~r = ~v + 2 (~v · ~n)~nIn reality
olor is re�e
ted di�erently depending on the
olor of the re�e
tingmaterial. E.g. gold re�e
ts yellow better than blue. We
an respe
t this byadding a fun
tion to determine the re�e
tion ray's
olor
olorc = c+ csray
olor (~p+ s~r, s ∈ [ε,∞[)Transparen
y / Refra
tionAs with re�e
tion we send transmission rays, if the surfa
e material is translu-
ent. Refra
tion is a bit di�erent from re�e
tion. The transmission ray will bebent, like e.g. a sun ray entering water. Thus the next obje
t it hits, will appeartranslo
ated on the transmissive surfa
e. We
an make use of Snell-Des
artesLaw to
ompute the refra
tion angle:

Figure 75: Snell-Des
artes Law
sin θi

sin θt

=
ηi

ηt

= ηr

cos2 θt = 1 − ~n2
(

1 − cos2 θi

)

~n2
twhere η des
ribes the refra
tion property of the material and ~n is the surfa
enormal, whereas ~nt is the bend surfa
e normal.107

Epsilon ε

Figure 76: Add a small
onstant ε to
ounter numeri
al instabilityBe
ause of numeri
al instability, we always should add a small
onstant ε to therays mentioned above, else the �rst interse
tion might be with the surfa
e itselfand result in unwanted self-shadowing.Adaptive Depth ControlThis re
ursive
reating of re�e
tion and transmission might never end. Thereforewe should add thresholds:Number Of Re�e
tions ρ: The number of re�e
tions threshold obviouslystops if the ray has been re�e
ted more than ρ timesIntensity τ : The intensity thresholds stops re�e
tion when the re�e
tion ray'sintensity drops beneath τ . To rea
h a drop down of intensity we
onsiderea
h materials individual attenuation properties.9.3 Interse
tionWe
an determine interse
tions by using impli
it representations of our ray andof our obje
ts.SphereAn impli
it sphere is given by
(x− xc)

2
+ (y − yc)

2
+ (z − zc)

2 − r2 = 0or with ve
tors
(~p− ~c) · (~p− ~c) − r2 = 0108

Now we simply plug-in our impli
it ray as a �point� on this sphere and
he
kwhether we still get 0:
(

~e+ t~d− ~c
)

·
(

~e+ t~d− ~c
)

− r2 = 0rearranging for t we
an get a simple quadrati
 equation:
(

~d · ~d
)

t2 + 2~d · (~e− ~c) t+ (~e− ~c) · (~e− ~c) − r2 = 0TriangleFor triangles we
an use the handy bary
entri

oordinates (see 2.3.3). Ourimpli
it triangle was given by
~a+ β

(

~b− ~a
)

+ γ (~c− ~a)Now for interse
tion we set them equal
~e+ t~d = ~a+ β

(

~b− ~a
)

+ γ (~c− ~a)And we remember, that if β, γ > 0 and β + γ < 1 the point lies within thetriangle.PolygonOur given polygon has m verti
es ~p1 . . . ~pm and the surfa
e normal ~n. We startwith
he
king whether the ray hits the plane the polygon is lying in
(~p− ~p1) · ~n = 0by plugging the impli
it ray in as a point

(

~e+ t~d− ~p1

)

· ~n = 0solving for t
t =

(~p1 − ~e)~n

~d− ~nBy that we �nd the point ~p where the ray hits the plane.Now se
ondly we
he
k whether ~p is inside the polygon or not. We do thisby proje
ting polygon and point unto the most parallel
oordinate-plane (e.g.by throwing away the biggest
omponent in the normal ve
tor) and
reate yetanother ray, starting from ~p having dire
tion (~pi − ~p). We only allow for positive
t and
he
k whether this ray interse
ts one or two time with the polygon edges(by
he
king
onse
utively against all edges).One ~p is inside the polygon 109

Two ~p enters and leaves the polygon and must be outsideAttention: handle interse
tions at verti
es and along edges with spe
ial
are.Further more
on
ave polygons
an also lead to wrong de
isions and morethen 2 interse
tions.Be
ause of su
h an amount of spe
ial
ases, most
ommonly testing per triangleand tessellation is preferred whenever possible.A

eleration Te
hniquesWe now have a stable method to
ompute interse
tions between rays and ob-je
ts, however if we do these interse
tion test for ea
h ray and ea
h obje
ts, wetake 9x% of the
omputation time & power. But there are some strategies fora

elerating the pro
edure of �nding the �rst interse
tion:
• bounding volumes
• spa
e partitioning
• ray
oheren
eBounding VolumesFor ea
h obje
t we add a simply geometri
 obje
t that
ompletely surrounds it.E.g. a re
tangle or a sphere. Then we interse
t with those bounding volumes.In
ase the ray hits one of the we do an interse
tion test with the obje
t inside.Another advantage is, that at the �rsts step we do not even need to know wherethe ray hit our bounding volume, whi
h makes the interse
tion test mu
h easier.Hierar
hi
al Bounding VolumesAt a next step we might
ombine several obje
ts, whi
h are
lose to ea
h other,to one big bounding volume (e.g. table +
hairs + fruit bowl). If the big volumeis hit, we interse
t with the smaller ones inside and eventually with the obje
tsthemselves.Uniform Spa
e PartitioningWe partition the spa
e into any number of uniform quadrants and only
he
kobje
ts whi
h are (partly) inside the quadrants, the rays hits. Furthermore we
an make use of the te
hniques developed for the Bresenham Algorithm (see3.2). With that we do not need to
he
k every spa
e part but like with the line,only the next of the upper next one.O
tree Spa
e PartitioningAgain we
an move one level higher and repartition every quadrant. If the raypasses a quadrant we re
ursively s
ale down the partitioning for this quadrantand then
he
k for obje
ts within the passed by smaller quadrants.110

Ray Coheren
eThe idea is to
ombine several rays into a bundle of rays.9.4 Di�erent UsageInstead of doing only ray tra
ing, ray tra
ing
an be used as an auxiliary te
h-nique for standard rendering:
• to generate high
lass textures (see 11 for all kinds of di�erent textures)
• for vertex shaders: only
ast rays from verti
es (disadvantage: GouraudShading Artifa
ts)9.5 LimitsCausti
s

Figure 77: Causti
sAppear with simple re�e
tion at
ertain angle at the interior side of a shiny
ylinder and result in
ompli
ated
urves (see �gure).Causti
s
an be modeled using photon maps (forward ray tra
ing):1. Shoot a huge amount of photons from the light sour
e.2. Store their hitpoints in some 3D bu�er3. Get photon density: Use
lustering algorithms to �nd hot spots (e.g. forevery hit point, get the 50
losest hit points and
al
ulate the max distan
eto the
hosen hitpoint) 111

Figure 79: Color Bleeding4. The denser the region, the more
austi
s we renderColor Transmission

Figure 78: Color TransmissionColor Transmission means that to the shadow of an obje
t
olor is added dueto the translu
ent property of the obje
t (see �gure).Color BleedingThe transfer of
olor between nearby obje
ts,
aused by the
olored re�e
tionof indire
t light.9.6 Properties+ enormously parallel: ea
h ray
ould be
ast in parallel, if we'd had enoughparallel
omputational power ray tra
ing would ex
eed all other methods112

is speed and quality+ global illumination+ very ex
ellent results+
ombines various di�erent illumination aspe
ts in one ray (re�e
tion, refra
-tion, transparen
y, shadows, soft shadows, global illumination, ...)- very slow with
urrent un�t hardware10 ModelingModeling is all about
hoosing the right representation for the obje
ts in a s
ene.Postulations
• good representation of the obje
t
• easy to render
• memory/runtime requirements
• intera
tion properties/possibilities
•
reation pro
ess10.1 Polygon MeshesPolygons are the basis for most 3D appli
ations, they
an be rendered easily andexpress almost every obje
t given due
onversion time. Usually either triangleor quadrilateral meshes are used.Polygon An ordered set of verti
es: P0, P1, . . . , PnPolygon Mesh A
olle
tion of polygons, su
h that any interse
tion betweenpolygons of the mesh is either at a vertex or a
ross an edge.OpenGL glBegin(GL_POLYGON): glVertex3fv(P0); . . . glVertex3fv(Pn); glEnd();It is important to di�erentiate between topology and geometry of a mesh:Topology neighbourhood relationsGeometry the position of the verti
es xyz-
oordinatesIn general whole obje
t's
an not be represented by a single polygon mesh. Soour goal is to �nd the ideal de
omposition into smaller polygon meshes. Howeverthe
omplexity of the stated problem is NP-
omplete.113

10.1.1 Indexed Fa
e Set (Shared Vertex Set)The idea of indexed fa
e sets is to use two separate lists:vertex list
apturing geometry (
oordinates)fa
e list
apturing topology (whi
h verti
es form fa
es)10.1.2 Triangle Strips
Figure 80: Triangle StripWe try to model both geometry and topology in one list, by using a sequen
e ofverti
es, where every three verti
es form a fa
e. Of
ourse this means we haveto do a through ordering.ExampleGiven is the list: P0P1P2P3, P4, . . . , PnThis
orresponds to the fa
es: P0P1P2;P1P2P3;P2P3P4;...OpenGL glBegin(GL_TRIANGLE_STRIP): glVertex3fv(P0); . . . glVertex3fv(Pn);glEnd();General Triangle Strips The generalization means that both edges of an endtriangle
an be used to
ontinue the triangle strip. If this method is notavailable (e.g. it isn't in OpenGL), you
an insert dummy triangles to
hoose the edge you want to
ontinue with. The advantage of generaltriangle strips is, that they
an be
ome mu
h longer (see Stripi�
ationbelow 10.1.9)

114

10.1.3 Triangle Fans

Figure 81: Triangle FanTriangle fans are very similar to triangle strips, ex
ept that every fa
e starts atthe same point P0.ExampleGiven is the list: P0P1P2P3, P4, . . . , PnThis
orresponds to the fa
es: P0P1P2;P0P2P3;P0P3P4;...OpenGL glBegin(GL_TRIANGLE_FAN): glVertex3fv(P0); . . . glVertex3fv(Pn);glEnd();10.1.4 Quad Strips
Figure 82: Quad StripsSimilar to triangle strips, but every four verti
es form a fa
e, and the interpre-tation of the ordering is di�erent a

ording to quadrangles.ExampleGiven is the list: P0P1P2P3, P4, P5, P6, P7, . . . , Pn115

This
orresponds to the fa
es: P0P1P3P2;P2P3P5P4;P4P5P7P6;...OpenGL glBegin(GL_QUAD_STRIP): glVertex3fv(P0); . . . glVertex3fv(Pn);glEnd();10.1.5 Enhan
ed Indexed Fa
e ListApart from modeling we often will want to a

ess and
hange the renderedmodel. For that we need an e�
ient way to answer
alls like: what are adja
enttriangles, whi
h triangles share an edge, whi
h fa
es share a vertex or whi
hedges share a vertex, therefore we might want a data stru
ture allowing forfaster a

ess to those relations: the Enhan
ed Fa
e List.We enhan
e the fa
e list by three referen
e pointer to the three neighbouringtriangles by e.g. a pointer to the third vertex
reating the neighbouring triangles.

Figure 83: Enhan
ed Fa
e List Examplevertex list Triangle0 = x0, y0, z0, Triangle1 = x1, y1, z1, Triangle2 = x2, y2, z2,Triangle3 = x3, y3, z3fa
e list Fa
e0 = 0, 1, 2, Fa
e1 = 3, 2, 5, Fa
e2 = 1, 4, 3, Fa
e3 = 3, 5, 2enhan
ed fa
e list Fa
e0 = 3,−1,−1, Fa
e1 = 5, 0, 4, Fa
e2 = 6, 2,−1, Fa
e3 =
−1, 1, 610.1.6 Dire
ted EdgesThis problem is
ommonly solved by giving edges a dire
tion. This is by repla
-ing the fa
e list with a list of dire
ted edges, with two entries

• start vertex of edge
• pointer to the opposite edge indexindexed by an edge index. 116

Figure 84: Dire
ted Edgesedge list Edge0 = 0,−1, Edge1 = 1, 5, Edge2 = 2,−1, Edge3 = 1, 8, Edge4 =
3, x, Edge5 = 2, 110.1.7 Normal Ve
torsThe normal ve
tors of surfa
es
an be obtained either in the design pro
ess (e.g.when using NURBS or impli
it surfa
es) or taken as average of the involvededges' normals:

~n0 =
n
∑

i=1

Pi · Pi+1, Pn+1 = P110.1.8 Fa
e Orientation (Ba
k Fa
e Culling)This is rather important, sin
e usually only one side of the obje
t is visible (un-less the viewer is inside the obje
t, or there are holes in it). Thus we want onlyto render the fa
es fa
ing front (towards the eye) and leave the rest unrendered,this e�e
ts in about 50% less polygons to render. The idea is to impli
itly storethe orientation in the ordering of the verti
es:
lo
kwise fa
e is seen from the ba
k
ounter-
lo
kwise fa
e is seen from the frontProperties- approximation to smooth geometry (no silhouettes)- very large number of polygons- very bad intera
tivity- di�
ulty to in
rease/de
rease the resolution of the obje
t- di�
ult to extra
t geometri
al information (e.g.
urvature)117

10.1.9 Stripi�
ationA simple approa
h to �nd a de
omposition into triangle strips:Algorithm 13 Simple Stripi�
ation1. randomly sele
t an unused triangle2. start a triangle strip along one edge
�2: until an used edge has been rea
hed3.
ontinue triangle strip into opposite dire
tion
�3: until an used edge has been rea
hed4. �1: until the polygon is
ompletely de
omposed

The SGI approa
h adds a little improvement: The starting triangle (orange)is not sele
ted randomly, but by the number of least unused neighbours (ifambivalent,
he
k the neighbours as well)Even better results
an be obtained by using general triangle strips, sin
e thenthe strips
an be
ome mu
h longer. Furthermore better usage of the vertex
a
he (see below)
an be made:
118

Algorithm 14 TunnelingEa
h triangle is seen as a node in a graph.Then we use graph algorithms to �nd paths between the nodes, without usinga node twi
e.Eventually we seek for �edges�
onne
ting two end points of su
h paths (dottedlines). These are
alled tunnels.The so dis
overed �best� path is then the general triangle strip.1. generate a trivial path set of triangles (e.g. empty set, all isolated)2. � for ea
h path endpoint oi:
→ for ea
h other path endpoint oj : sear
h for a tunnel oioj3. was a tunnel found?(a) TRUE: swap all dashed and solid edges →2(b) FALSE: Return path as general triangle stripWith every swap the number of triangle strips gets e�e
tively redu
ed by one.

Note that even tunneling does not return the global minimum of strips, yetthe results are pretty good. For example a bunny obje
t
onsisting of 70.000triangles results in about 700 strips when using SGI Stripi�
ation and in 158when using tunneling.Note Be
areful about the triangle's orientation (vertex ordering)! Whentrying to
ontinue a strip at one of its endpoints, the strip might suddenlyend in a triangle that's order is di�erent to the original starting triangle.However this new triangle will be
hosen as starting triangle for the strip,so the order of the
omplete strip is reversed resulting in wrong rendering.119

10.1.10 Vertex Ca
heThe vertex
a
he is a
a
he for pro
essed verti
es, normals, texture
oordinatesor
olor arrays. The idea is that for example in a triangle strip the same vertex'sattributes will be used multiple times in short noti
e (up to 6 times). Thereforea little
a
he for the last n pro
essed verti
es
an give us an enormous speed im-provement. However for the look-up statement to work, we require indexed fa
esets (without we don't know whether vertexi equals vertexj). In the optimum
ase (see �gure below), whi
h is not as rare as you think (e.g. tessellation ofBézier Surfa
es), half of the verti
es are already in the
a
he or in other words,fet
hing one single vertex
an lead up to two new triangles.Example
Figure 85: Triangle Strips, where the vertex
a
he
an be optimally used (avertex may be
alled up to 6 times)If we use a vertex
a
he of size 7 for this strip, we reuse half of the verti
es:Ca
he: 7 4 1 5 2 6 3 , the verti
es 4,5,6 and 7 are used again.If however we limit the size to 6:Ch a
he: 3 7 1 5 2 6 , the verti
es 4,5,6 and 7 are overwritten, beforewe
an reuse them, and we end in no reuses.A typi
al size for vertex
a
hes is n = 16, 32, 64. The optimal ratio betweenpro
essed verti
es and triangles is 2.A
ombination between Stripi�
ation using the Vertex Ca
he is to stop the strip,on
e the
a
he overruns. In this
ase the next strip started will make reuse ofat least half of the
a
hed verti
es.Triangle Strip LengthNote that we need to distinguish two
ases to determine the optimal trianglestrip length. This di�erentiation is made on the used data-type. If we useindexed fa
e sets, only then will we be able to make use of the vertex
a
he,and the optimal length of an indexed fa
e set should be limited by the vertex120

a
he
apa
ity. If we however have simple triangle-strips without topology in-formation, the rule: the longer the better,
ounts and we might use tunnelingto greedily get longer ones.Indexed Fa
e Sets limit size to vertex
a
he
apa
ityTriangle Strips the longer the better10.2 Parametri
 Surfa
esWe
an de
ide between using polynomial or rational
urves and between usingglobal or pie
ewise models.42 global pie
ewisepolynomial Bézier B-Splinesrational rat. Bézier NURBSInstead of simple monomials (xn) we will use more suitable basis fun
tions:Bézier Bernstein Polynomials (see 2.7)B-Splines B-Spline basis fun
tions (see 2.7)A
urve is then represented by a polynomial linear
ombination of one thesebasis fun
tions and so
alled
ontrol points cn
F (x) =

n
∑

i=0

ciBi (x)This is only one possible kind of representation, we
ould also use impli
it
urves(see 2.4):
f (x, y, z) = 0where the impli
it fun
tion f returns 0 if the point (x, y, z) lies on the
urve.Impli
it representations are espe
ially useful for geometri
 primitives like spheresor planes, where �xed formulas exist. In the other
ases Computer Graphi
Designer usually prefer parametri

urves, sin
e be
ause of the free parameter,they are easier to sample and to draw.InterpolationHaving these
ontrol points cn we have to estimate the values in between, ap-proximating them by a polynomial. One problem is, that whilst a polynomialinterpolating points cn is unique for every degree, a
urve has in�nite manyrepresentations. The pro
ess of transforming one representation of a
urve intoanother of the same
urve is
alled reparametrization. We
an make use ofthis to �nd a representation that is most
onvenient for our appli
ation.Apart from that polynomials are fun
tions, that means for every x there is121

one and only one y. Yet for a
urve, there
an be more than one y (e.g. a
ir
le). Se
ondly polynomials of a high degree tend to os
illate (over�tting, seePattern Re
ognition). Therefore instead of a global model often a pie
ewisemodel appears to be more �tting.Linear Interpolation Linear Interpolation means to �nd the simplest
urve between any number of points and distributing the values of these pointsin between linearly. E.g. for two points we have
p (t) = t · p0 + (1 − t) p1, t ∈ [0; 1]Bilinear Interpolation Bilinear Interpolation means linear interpolationin two dire
tions (a
ross a pat
h).

p (s, t) = (1 − s) (1 − t) p00 + s (1 − t) p10 + (1 − s) t · p01 + s · t · p11where s, t ∈ [0; 1] are the free parameters de�ning the pat
h.Trilinear Interpolation Trilinear Interpolation means linear interpola-tion in three dire
tions (through a room).Approximation

Figure 86: Di�eren
e between interpolation and approximationWe di�erentiate the terms interpolation and approximation in so far, that withinterpolation the
urve/polynomials must pass every
ontrol point, while withapproximation they only in�uen
e the
urve's graph.122

10.2.1 Bézier Curves

Figure 87: A Bézier Curve with four
ontrol points: b0, b1, b2, b3Bézier
urves
hose the later idea and approximate
ontrol points rather thaninterpolate them. Ex
eptions are the end points of the
urve, whi
h are inter-polated. As you
an see in the �gure above, the dire
t lines between the pointsare tangents of the a
tual
urve. The degree of the Bézier
urve is the numberof
ontrol point minus one.An intuitive way to understand how we
an draw su
h a non dis
rete fun
-tion, i.e. a perfe
t
urve, to the s
reen is illustrated by
orner
uttingCorner Cutting
Figure 88: Corner CuttingCorner Cutting means to su

essively
ut the
orners o�, to make the
ornerpoints more smooth. We
ut them of by spanning lines between a
orner pointand
ut/
lip o� the outside. The limes of in�nite many subdivisions is indeeda smooth
urve.

123

Algorithm 15 Corner Cutting
subdivide(p0, p1, p2) {

p01 = p0+p1

2

p12 = p1+p2

2

pm = p01+p12

2subdivide(p0, p01, pm)subdivide(pm, p12, p2)}

Figure 89: The midpoints (bla
k points) resulting from
orner
utting, makeup the
urve approximating the
ontrol point p1 and are thus those, whi
h wedraw on the s
reen. Some threshold
an determine the number of subdivisions.We use
orner
utting to approximate the
ontrol points and draw our �smooth�
urve on the s
reen. We only use the midpoints pm resulting from
orner
uttingto de�ne the shape of our
urve (see �gure above).
124

Figure 91: Ordering of Bézier
ontrol pointsNote that the order of the
ontrol points is very important, as illustrated in this�gure.Algorithm Of Casteljau

Figure 90: Algorithm of CasteljauAn generalization to
orner
utting is a number of su

essive linear interpola-tions
alled the algorithm of Casteljau.
125

OrderContinuityOf
ourse we also will have to
onne
t Bézier Curves. In this
ase we want toassure that we have at least C0 and C1
ontinuity7:We have
C0 if the graph has no gaps
C1 if the tangent ve
tors mat
h (no sharp
orners)With these assuran
es we have a
urve without gaps and sharp
orners. How-ever for some appli
ations
ontinuity up to C5 is useful, so we bid spe
ial
aredepending on the appli
ation. For example C2
ontinuity is needed, when theobje
t is in motion and we want the motion to be smooth.Quadrati
 Bézier CurvesQuadrati
 Bézier Curves have only one approximation (
ontrol) point p1. For
t ∈ [0; 1] we get

p (t) = (1 − t) ((1 − t) p0 + t · p1) + t (t · p0 + (1 − t) p1) + t · p2

p (t) =
(

1 − t2
)

p0 + 2 (1 − t) p1 + t2p2thus we result in having the weights w0 =
(

1 − t2
)

, w1 = 2 (1 − t) , w2 = t2.These weights or
ontrol points are often referred to as blending fun
tions.So the
urve is the weighted average of the
ontrol points:
p (t) =

n
∑

i=0

wi (t) piThe weights must always sum up to 1 and we allow no negative weights.Cubi
 Bézier CurvesCubi
 Bézier Curves are also based on the subdivision pro
edure and haveone additional point to approximate. This results in 4
ontrol points w0 =
(1 − t)

3
, w1 = 3 (1 − t)

2
t, w2 = 3 (1 − t) t2, w4 = t3Bézier Curves Of Higher OrderDealing with Bézier Curves of any order, we
an �nd a generalization of theblending fun
tions using Bernstein binomial
oe�
ients:

wn
i (t) =

(n− 1)!

i! (n− i)!
· (1 − n)

n−i−1
ti7Cn
ontinuity means the fun
tion is
ontinuous and all of it's derivatives up to the nthalso are. 126

Bézier Surfa
esBézier Surfa
es are a generalization of Bézier Curves in 3D. A Bézier Surfa
e isalso given by the average of all
ontrol points:
p (s, t) =

m
∑

j=0

n
∑

i=0

wij (s, t) · pijwhere the blending fun
tions wij must be
ontinuous.There is a great property of Bézier Surfa
es (
ontinuous blending fun
tions),that allows us to separate the 2D blending fun
tions into two 1D ones.
p (s, t) =

m
∑

j=0

n
∑

i=0

wj (s) · wi (t) · pijwhere wj (s) · wi (t) is a tensor produ
t (see 2.1.2), sin
e one goes in x and theother in y dire
tion. This also means we
an give two 1D
urves to make asurfa
e. We simply have to �nd a matrix representation of our fun
tion (whi
hwe
an, be
ause we are dealing with linear fun
tions) and handle these matri
esas they would be ve
tors and apply the tensor produ
t.Properties+ the most striking advantage is that an obje
t des
ribed by su
h
urves is
ompletely resolution independent and will show no signs of aliasing.+ easy adjustment: the
urve's shape is manipulated by manipulating
ontrolpoints (de�ne tangents on the
urve)+ the
urve always remains in the
onvex hull of
ontrol points+ a�ne transformations on the
urve , a�ne transformations of the
ontrolpoints (a�ne invariant)- the
urve depends on all
ontrol points, so
hanging a single one reshapes thewhole
urve (this
an sometimes be an advantage as well)- many
ontrol points lead to a high-degree polynomial (degree = number of
ontrol points minus one)A small simple applet to play with Bézier
urves
an be found here Bézier CurveApplet http://www2.mat.dtu.dk/people/J.Gravesen/
agd/de
ast.html. Lookhow moving a single
ontrol point in�uen
es the whole
urve. If you still wantto see more, here's an applet illustrating Bézier Surfa
es Bézier Surfa
e Applethttp://www.nbb.
ornell.edu/neurobio/land/OldStudentProje
ts/
s490-96to97/anson/BezierPat
hApplet/index.html127

10.2.2 Uniform B-Splines8A way to avoid both negative properties mentioned above is to use splines.Splines are polynomials of a lower degree that are
ombined to approximate apolynomial of a higher degree. Basis fun
tions for B-Splines
an be looked uphere: 2.7. With these basis fun
tions a B-Spline is de�ned as:
S (t) =

n−1
∑

i=0

pibi (t)Now geometri
ally speaking we
ombine these splines by shifting the basis fun
-tions to given so
alled knot points ki, whi
h serve as
onne
tion points be-tween the splines. In our
ase we
hoose them uniform.
ki = ki−1 + 1

Figure 92: Shifting the splines basis fun
tion to the
ontrol pointsThis
hoi
e for knot points in uniform distan
e results in having the same splineover and over again, only translated to the knot point. This also means we don'thave to store the knot points, sin
e they
an be
reated automati
ally and needonly to store the
ontrol points.Subdivision Pro
essThe subdivision pro
ess is similar to the Bézier
ase, yet we do not take themidpoints. Instead we use the midpoints between midpoints:8From Basis-Splines,
ause they are all
reated from the same set of basis fun
tions
128

Algorithm 16 Subdivision Pro
ess for B-Splines
1. Choose midpoints in ea
h segment of the
ontrol polygon2. Conne
t midpoints of these and the original
ontrol points3. Also use midpoints of the
orner segmentsCubi
 B-Splines

Figure 93: Cubi
 B-SplineLike with
ubi
 Bézier Curves we have four points, but now, even the end pointsare not ne
essarily on the
urve. All the properties of Bézier Curves do also
ount here, but only lo
ally: lo
al
onvex hull, lo
ally
ontinuous, lo
al
ontrolby
ontrol points.Properties+ every spline has C2-
ontinuity+
onstant degree of basis fun
tions: more e�
ient and more numeri
ally stable+ lo
al
ontrol of
ontrol points: e�e
ts are only lo
al+ bound by the
onvex hull of the points+ a�ne invariant- only an approximation like polygons, no a

urate modeling129

- no
ontrol points on the
urve (the
urve will be de�ned by parameter values)- removing of
ontrol points
an lead to a
omplete restru
turing of the whole
urve, sin
e the number of
ontrol points between two knot points is
on-stantA series of applets illustrating uniform B-Splines
an be found here: B-SplineApplet http://www.ibiblio.org/e-notes/Splines/Basis.htm. Look howthe B-Spline fun
tions all look equal, expe
t for being translated to the knotpoints. Try to move the
ontrol points to in�uen
e the
urve. Moving one
ontrol point will only in�uen
e the part of the
urve, that is dependent on it.You
an also try to destroy the uniform spa
ing of the knot points on theright side of the applets and see how the representation
hanges.10.2.3 NURBSNon Uniform Rational B-Splines (NURBS) are a generalization of B-Splinesrational ratio of two polynomials instead of one
ubi
 one (results in an exa
trepresentation of
oni
s (e.g.
ylinders,
ir
les)non-uniform di�erent spa
ing between knot points (results in an easier addingand deleting of
ontrol points, simply add the point 2.5 between 2, 3 →
2, 2.5, 3 or simply remove the point 3 between 2, 3, 4 → 2, 4)These
hanges mean that we have to de�ne and store two knot sequen
es for

x and y dire
tion; wi (x) , wj (y). We
an
ombine them for a knot matrixde�ning a surfa
e, like we did with Bézier Curves, by
ombining them with atensor produ
t.
N (x, y) =

m
∑

j=0

n
∑

i=0

wi (x) · wj (y)Pijor written with the ratio
N (~u) =

∑n
i=0 hipiwi,k,~t (~u)
∑n

i=0 hiwi,k,~t (~u)where ~t is the knot ve
tor and k the B-Spline degree parameter. Where Pij isan array (a matrix)
ontaining all the
ontrol points.
130

10.3 Constru
tive Solid Geometry (CSG)

Figure 94: Basi
 Operations of Constru
tive Solid GeometryThe idea of Constru
tive Solid Geometry is to use a set of operations to
ombinesolid shapes. These operations
an be seen as operations on sets (∪,∩,−).+
an e�
iently be
ombined with ray tra
ing10.4 Subdivision Surfa
es10.5 Pro
edural ModelsPro
edural models provide pro
edures that
an generate points on a
urve(model), that are neither impli
it nor parametri
. A good example for pro-
edural models are fra
tals.10.6 Hierar
hi
al Modeling10.6.1 S
ene Tree / S
ene GraphThe idea of hierar
hi
al modeling is to gather obje
ts as
hunks. The root isthe s
ene itself, partitioned by obje
t groups that share a
ertain geometry (e.g.tables), partitioned by single obje
ts, partitioned by obje
t parts, partitionedby primitives. This hierar
hy is
alled s
ene tree. When fo
using on sharedgeometri
 properties, we speak of s
ene graphs rather than trees.131

10.6.2 S
ene Des
riptionA s
ene
onsists out of: Camera, Light, Ba
kground, Materials and Obje
ts.We des
ribe ea
h of them separately.10.6.3 Class Hierar
hyA kind of obje
t oriented approa
h. For example a possible super
lass isObje
t3D. This super
lass is inherited by Sphere, Cylinder, Plane, Triangleor Group.

Figure 95: Organization tree using a
lass hierar
hyUsing su
h a
lass hierar
hy, we
an des
ribe the s
ene as a tree of groups.In this approa
h we
an de�ne materials inside of group
lasses for ea
h groupmember.

132

S
ene Transformations

Figure 96: S
ene TransformationsAdding a transformation
lass as Obje
t3D, we
an also des
ribe transforma-tions within the s
ene.Add a
lass Transformation as an Obje
t3D. By making TransformationObje
t 3D we
an logi
ally pla
e them in the organization tree and order alla�e
ted real obje
t groups below it.10.6.4 S
enegraph APIOpenGL is powerful, but we have to
reate obje
ts from the bottom by linesof
ode, and have little assistan
e in pi
king and transforming obje
ts duringthe
reation. Furthermore OpenGL is more hardware than user oriented and thepro
ess of
reation is imperative rather than des
riptive (whi
h would be moreintuitive). Now s
enegraph APIs are usually based on OpenGL and thereforeshare it's advantages (e.g. hardware independent), yet they o�er the abovementioned features making the pro
ess of
reating easier and more intuitive.A typi
al s
enegraph API
overs
• s
ene des
ription: geometry and attributes (hierar
hi
al modeling)
• reutilization: leads to DAGs
• validity and propagation attributes
• a GUI for easy modeling and arranging of obje
ts
• typi
al basi
 elements/nodes:
amera, light sour
es, ba
kground, shape,group, geometry, transformation, root133

Some popular APIs are:
• OpenInventor (SGI)
• Java 3D
• OpenS
enegraph10.7 Level Of Detail (LOD)Representing a model in detail may not always be good, espe
ially if we lookfor speed. For example imagine a
ar
lose to the far plane, very distant tothe viewer. To model this
ar taking up so few pixels, a really simple modelis su�
ient. However if the
ar is right before the user, we need it with everydetail, we
an get. Now the idea of LOD is to provide obje
ts and texturesin a di�erent level of detail resp. resolution, de
ide whi
h LOD is best for theobje
ts in the s
ene and provide a way to swit
h between di�erent LODs forintera
tivity.Also note the LOD rendering is
ompletely solved by
urves, NURBS et
.(see previous se
tions), sin
e they provide di�erent LODs in their geometri
des
ription.10.7.1 LOD CreationFirst of all to sele
t and swit
h between LODs, we need di�erent LODs per se.Handmade the most straightforward method is to provide them yourself. Ad-vantage is that they will be asjusted to the appli
ation and
an be tested tolook good. On the other hand this takes time and makes them appli
ationdependent.Edge Collapse move two verti
es forming an edge to one point making anedge
ollapse. One
ollapse removed two triangles, three edges and onevertex. Supplying a history of
ollapses, we
an lostless reprodu
e thehigher LOD and don't have to save di�erent LODs per se.Contra
tion a generalization of edge
ollapse allowing edges and triangles to
ollapse as well. Also very important is to avoid
riti
al
ontra
tions atany
ost (
riti
al in the sense of hugely deforming the obje
t), howeverthose
an be easily dete
ted by the dire
tion
hange of a�e
ted surfa
enormals.Bump Maps a
urious idea is to turn a
tual geometry information into a bumpmap and render the obje
t �at (just take the normals and put them intoa normal map).A
tually �maintaining surfa
e properties�, like avoiding dire
tion
hangesof surfa
e normals, has proven to be a good
ost fun
tion. Another good
ost134

fun
tion is based on the �least per
eptible
hange� in the resulting image.It is measured by a simple distan
e
omparison between the images resultingfrom both LODs, however simple it is expensive to
ompute.10.7.2 LOD Swit
hingLOD Swit
hing is quite important, be
ause without a proper strategy a signif-i
ant blopping between LODs will be visible. In the worst
ase the levels willrapidly swit
h for and ba
k resulting in blopping and �i
kering.Blending doing a blend over two LODs over a short period of time. For exam-ple by rendering the old LOD opaque and the new with in
reasing α-value(- blending is very expensive).Alpha α-LODs a
tually use only a single model, but this model's αvalue in-
reases with distan
e to the viewer disappearing at some point all together.After this disappearing a signi�
ant speed up will happen, but in
ontrastto the speed idea of LOD this method will result in no e�
ien
y gain,while the obje
t is still visible.CLOD standing for Continuous Level Of Detail. The idea is to provide one
omplex model and su

essively derive less
omplex models from it (e.g. 2pixels less
omplex per stage). The idea is to su

essively shrink all edgesuntil both endpoints meet and the edge will entirely disappear. Ea
h�model� must thus
ontain a pointer to the next LOD (some LODS willlook ugly, the obje
t always appear to be
hanging).10.7.3 LOD Sele
tionRange The most forward way is to pla
e the de
ision on the distan
e to theviewer.Proje
ted Area In this method the bounding volume of the obje
t is proje
tedonto the s
reen and the number of pixels is
ounted to determine the LOD(requires approximation of solid angles).Proje
ted Pixel Another possibility is to proje
t a pixel onto a asso
iatedtexture map (if given) and measure the number of textures in�uen
ing it.This is espe
ially useful for �nding the right Mip Mapping (see 11.5.2)LOD resp. resolution. E.g. by using the longer edge of the parallelogramformed by the pixel's
ell as a measure.Obje
t Type E.g. a
lo
k on the wall is less important than a wall.Fo
us The viewer's fo
us determines the LOD. E.g. during a so

er game thearea around the ball needs a high LOD, whereas the other playground
anbe rendered at a low LOD. 135

Sin
e almost the only value of using LODs is a gain in speed, in general anobje
tive fun
tion
an be approa
hed and used as a metri
 for sele
tion:# obje
ts
∑ Bene�t (O,L)Cost (O,L)where O is the obje
t rendered and L the asso
iated level of detail. This
anbe espe
ially useful when we want to guarantee a minimum frame rate.11 Texture Mapping

Figure 97: A s
ene with and without texture mappingThe problem of the te
hniques we introdu
ed so far, is that if we really wanta detailed surfa
e on an obje
t, the means various di�erent materials, heightdi�eren
es,
olors and other features, the modeling pro
ess would be
ome re-ally
omplex and ine�
ient. Therefore Ed Catmun and Jim Blinn thought ofsomething else that works mu
h like wallpapers on walls. Instead of really mod-eling the outward appearan
e we de�ne a 2D image and wrap it around theobje
t (1D and 3D �images� are also possible). This is
alled texture mapping.E�e
tively we have to �nd a
oordinate mapping from the image
oordinatesto our obje
t
oordinates. We di�erentiate stati
 textures (raster images) or136

pro
edural textures that are
omputed on the �y:
T : R

2 → RBG (A)texel a pixel in the texture (from texture element)Properties+ adds visual
omplexity to obje
ts in a simple way+ great performan
e
ompared to �real� modeling+
an even be used for re�e
tan
e properties (see environment maps)- dependent on the rasterization method (ray tra
ing, s
anline deliver di�erentresults). Solution: Do Perspe
tive Interpolation 11.211.1 Noise TexturesNoise Textures are an example for pro
edural textures. We randomly assign
olor values of a
ertain range to get something like a TV stati
. This is also
alled white noise, be
ause it's following an uniform distribution. For a moresmooth noise we
an use a te
hnique
alled Perlin Noise. Key features ofPerlin Noise is to use a latti
e and
olor ve
tors rather than
olor values andinterpolate between them using weighting fun
tion ω.
n (x, y, z) =

⌊x⌋+1
∑

i=⌊x⌋

⌊y⌋+1
∑

j=⌊y⌋

⌊z⌋+1
∑

k=⌊z⌋
Ωijk (x− i, y − j, z − k)

Ωijk (u, v, w) = ω (u)ω (v)ω (w) (Γijk · (u, v, w))

ω (t) =

{

2 |t|3 + 3 |t|2 + 1 if |t| < 1

0 otherwisewhere Γ
ontains a hash fun
tion φ for a

essing pre
omputed unit ve
tors inan array G:
Γijk = G (φ (i+ φ (j + φ (k))))11.2 2D Texture MappingWe are given a texture image of size (nx, ny) and have texture
oordinates u, vto a

ess texels on the texture. Often 2D texture mapping is done by �rstmapping texels to every vertex and then interpolating between them.1. Normalization: First we see that we limit the texture range to [0; 1], valuesoutside of this range
an for example be
omputed by a periodi
 extensionof the texture or by
lamping (both dis
ussed later on 11.7).137

2. Interpolation: A pixel value usually does not dire
tly
orrespond to onesingle texture value, but lies e.g.
lose to the
enter of four neighbouredpixel. In su
h a
ase we
an apply a interpolation te
hnique like: NearestNeighbour, Bilinear or Trilinear Interpolation.(a) Nearest Neighbour: Take the texture value
losest to the pixel
Figure 98: Nearest Neighbour Interpolation(b) Bilinear Interpolation: Interpolate between neighbouring textures
lose to the pixel

Figure 99: Bilinear Interpolation(
) Trilinear Interpolation: The same as bilinear interpolation for tex-tures
lose to the pixel in three dire
tions (3D)Texture CoordinatesThe texture
oordinates u, v
an be gotten by:
• delivered by model dataThe u, v
oordinates are generated during the modeling phase (e.g. para-metri
 surfa
es) and stored in a se
ond list next to the vertex list. Thismeans every vertex in the list has both x, y, z
oordinates as well as u, v
oordinates. This also means that we
an easily add additional featuresto verti
es. 138

• run time
omputation (parametrization)This is trivial for geometri
 primitives like spheres or
ubes. For otherobje
ts, we
an en
lose them into a geometri
 primitive and proje
t fromthis en
losing primitive onto the obje
t. Of
ourse the results vary forea
h method, therefore it is appli
ation dependent whi
h to
hoose. Theeasiest way is to use planar proje
tion (see �gure).Possible are: parallel (planar) proje
tion,
ubi
al,
ylindri
al or spheri
alproje
tion

Figure 100: Planar Proje
tion
• automati
 generation from vertex
oordinatesThis is what OpenGL does (glTexGen()). Think of it as a dia/beamerproje
tion (see �gure). We do this by giving a �xed rule how to map
oordinates for all obje
ts by de�ning a linear fun
tion, i.e. a matrix. Nowby this matrix we
an de�ne an arbitrary proje
tion, e.g. an orthographi
one, using only the linear 3×3 part or a perspe
tive making use of the lastrow of the whole 4 × 4 matrix. With the latter one we
an e.g. performa dia proje
tion from the light sour
e. Using vertex shader, we
an geteven more sophisti
ated proje
tions by de�ning rules how to transformverti
es.One advantage of this method is that we
an manipulate the texture
oor-dinates by this 4×4 texture matrix (whi
h has its own texture sta
k). Notthat we don't have dire
t a

ess to world
oordinates, therefore we needto apply the obje
t's
oordinates �rst to the ModelView matrix before we
an throw them into the texture matrix.

ptexture = MtextureMModelViewpobje
t
139

Figure 101: Dia Proje
tionUsage With this method you
an for example go out into the RealWorld
©take a pi
ture with a digi
am and use it as dia-texture. However themost used appli
ation are shadow maps.Example: Sphere / Runtime Computation1. Get polar
oordinates for the vertex (x, y, z) on a sphere with
enter
(xc, yc, zc) and radius r:

x = xc + r · cosφ sin θ

y = yc + r · sinφ sin θ

z = zc + r · cos θ

φ = arctan 2 (y − yc, x− xc)

θ = arccos

(

z − zc

r

)2. Now we
an easily get 2D surfa
e
oordinated for this polar
oordinatesby dividing by the spheri
al
omponent π:
u =

φ+ π

2π

v =
π − θ

πCurrent graphi
s
ard allow for loading the
omputation
ode for rather thanthe texture
oordinates itself to the
ard. These are
alled vertex programs.
140

Rasterization: Perspe
tive InterpolationA problem is that the texturing method is
urrently rasterization dependent ands
anline interpolation will even distort our textures, sin
e the used bary
entri

oordinates do not respe
t the distortion of the perspe
tive transformation ofthe texture. The solution is pretty straightforward and the idea is alreadyknow from
lipping in homogeneous
oordinates: We do the interpolation in theperspe
tive spa
e.
Figure 102: Perspe
tive InterpolationOn the �gure you
an see above, the pro
ess is illustrated. s is the texture
oordinate in world spa
e, and t in s
reen spa
e. As you
an guess, the inter-polation in both spa
es is not the same, therefore we look for a mapping t→ sthat allows for a
orre
t interpolation.
(

x
z

)

=

(

x0

z0

)

+ s

(

x1 − x0

z1 − z0

)

Figure 103: So instead of the standard rasterization we now interpolate withthe values returned by the mapping to the perspe
tive spa
e.11.3 1D Texture Mapping1D texture maps are often used for visualization. E.g. for s
alar �elds (
olor
oding). 141

11.4 3D Texture Mapping
Figure 104: A 3D map to model the inside of a human headEspe
ially for visualization. For example medi
al modeling of organs or systemsof the human body or for te
hni
al modeling of ma
hines.With 3D maps volumee�e
ts
an be obtained.11.5 Texture AntialiasingOften the obje
t we want to wrap out texture around is larger or smaller thanthe texture. In this
ase we need a larger or smaller form of or texture gottenby expanding or shrinking it's resolution. However this easily leads to visualartifa
ts (
alled Aliasing). be
ause the sampling theorem is hurt:11.5.1 Sampling TheoremNyquist on
e stated an important theorem about the sampling of a signal. Thesampling frequen
y fs must be at least twi
e as high than the highest frequen
yo

urring in the signal fo, else the signal's representation will not be a

urate:

fs ≥ 2 · foIn our
ase that means the fun
tion's frequen
y sampling the texture must betwi
e as high as the texture's frequen
y.Antialiasing methods and algorithms have been thought of to
ounter this e�e
tor keep the sampling theorem valid.

142

11.5.2 Mip Mapping9
Figure 105: Mip-MappingThe idea of Mip Mapping is to provide the same texture in several di�erent res-olutions (
orrespond to di�erent frequen
ies). Than when it
omes to samplingwe
hoose the texture, whose frequen
y is most �tting the sampling frequen
y(e.g. by taking the highest absolute value of the following di�erentials mea-suring how mu
h texels
ontribute to one pixel proje
ted to the texture map:

{

∂u
∂x
, ∂v

∂y
, ∂u

∂y
, ∂v

∂x

} as a measure, for more sele
tion methods, refer to the se
tionon Level Of Detail Sele
tion 10.7.3).
Figure 106: Trilinear Interpolation with Mip-MappingMip Mapping also provides an interesting possibility for doing trilinear interpo-lation using 2D textures. In a �rst step we do bilinear interpolation betweentwo su

eeding textures of the Mip Mapping hierar
hy and then linear interpo-late between the two resulting values. The result is a three dimensional lookingimage.+ takes a
onstant amount of time no matter the resolution- only squared areas
an be retrieved, this leads to overblurring of re
tangulars
enes, if they minimized/maximized too mu
h9MIP = multum in parvo (Latin: many things in a small pla
e)143

11.5.3 RipmappingThe ripmapping te
hnique tries to avoid the overblurring appearing with mipmapping. The idea is simple, we extend mip mapping as to in
lude down sam-pled re
tangular areas as subtextures that
an be a

essed. Two more param-eters are used to a

ess this rip map, but they
an be
omputed on the �y byusing the pixel
ell's u and v extents on the texture.+ no overblurring- very memory intensive11.5.4 Summed-Area TableThe �Table� is referring to an underlying array, having the size of the texturebut more bits. Now on every position in the array all pixels in
luded by there
tangle having lower left point [0, 0] and the position as upper right point aresummed, divided by their number and stored in this position. By that we
an
ompute the average of any arbitrary re
tangle within the texture (by simplesubtra
tions).+ less overblurring than mip mapping (only at the diagonals)- memory intensive11.6 Blending Fun
tionsWhen we found the texture
oordinates we want to have at a
ertain point onour obje
t, we have several possibilities how to pro
eed further. These in
luderepla
e simply repla
e the underlying obje
t point with the texture valuede
al like repla
e, but apply α-blendingmodulate multiply the surfa
e
olor with the texture value (also
alled mul-tipli
ative blending)In the �rst
ase already
omputed lighting will be overwritten and the obje
twill appear to glow on its own a

ount (glow texture).11.7 Corresponder Fun
tionsCorresponder fun
tions des
ribe what is to be done with pixels outside of thenormalized texture range [0; 1[:wrap repeat tile The texture image is repeated a
ross its borders. For ex-ample the value at 1.2 equals the value at 0.2.144

mirrorThe texture image is repeated, but mirrored. For example the value at 1.2equals the value at 0.8.
lampValues outside the range are �
lamped� to the
losest edge. There is an alter-native
alled
lamp to border, where a spe
ial border
olor is de�ned, where to
ast outside values to.11.8 Bump Maps

Figure 107: Bump Maps adding height featuresAs dis
ussed at the beginning of the
hapter there are additional features wemight want to add to mere
olor wallpapers, to make them look more realisti
.One approa
h to do this are bump maps. A bump map is an �image� whi
h
ontains height information for a texture map. So at ea
h point of the texturewe know the depth/height of it.

145

Figure 108: Bump Maps
ontain height informationWe
an make use of this knowledge by developing a way to alter the surfa
enormal at this position a

ording to the texel's height value. This does not resultinto an a
tual
hange of shape, yet due to shading being di�erently applied atthis point, it looks like it was. This
hange in normals
an be obtained bysampling the bump map and using partial derivatives (gradient) to express the
hanges in height and perturb the normals with them.Emboss Bump Maps
Figure 109: Emboss Bump MapEmboss Bump Maps is an approximation to standard bump mapping, that isfar more e�
ient, sin
e it skips lighting
al
ulation at ea
h pixel. The idea isto render the bump map as an image, translate the texture towards the lightsour
e, render it again as a subtra
tive texture (see below for multi texturing11.15):

L · T (s) − T (s+ ∆s)

146

Gouraud Bump Maps

Figure 110: Gouraud Bump MapIn
ontrast to Emboss Bump Maps, Gouraud Bump Maps are a
ompli�
ation.Instead of
hanging the surfa
e normals, the bump map
hanges lighting normalper vertex. It requires a high geometri
 resolution and is hardly useful.Per-Pixel Bump Maps / Dot Produ
t Bump Maps

Figure 111: Normal Map used for bump mappingInstead of height, the bump texture
ontains normals (x, y, z
oded in RGB). Sowe read the normal from the texture ~n, interpolate ~v and ~l and normalize themand �nally
ompute lighting with ~n,~l, ~v. However in a �rst step we still need pervertex operations to map world spa
e
oordinates to the texture
oordinates.
147

Parallax Bump Maps
Figure 112: Left: standard bump map, Right: parallax bump mapParallax is the apparent shift of an obje
t against a ba
kground
aused by a
hange in observer position. Standard bump mapping does not
over this visuale�e
t, but they
an be elegantly extended to provide this e�e
t. We estimatethe parallax due to the bump texture and apply the e�e
t by adding a o�set totexture
oordinates.

Figure 113: Computation of the parallax o�set
T 0 the a
tual point the eye would see without bump mapping
A the point T0 o�seted a

ording to the bump map
T n
orre
ted point
B what the eye would see, if the bump was real (by o�setting the
orre
ted Tn)

Tn = T0 +H · exey

ezwhere H is the height a

ording to the bump map.Limit the o�set for grazing angles
Tn = T0 +H · exey

Tn
orresponds to the gradient and
an be found by for example using NewtonIteration. 148

Properties+ e�
ient: simple geometry stage,+ visually
omplex- no
hange in geometry: shadows are not a�e
ted by the bumps, silhouettesare una�e
ted- looks still �at, when viewed from the side11.9 Displa
ement Maps

Figure 114: Displa
ement MapsIn
ontrast to bump maps, displa
ement maps really do
hange the geometryof obje
ts. Surfa
e points are displa
ed a

ording to a displa
ement map
om-monly towards the surfa
e normal.11.10 Environment MapsEnvironment Maps are textures that allow for a mirroring of the ba
kground.They
an be implemented as
ube maps (6 textures), sphere maps (1 texture)or paraboloid maps (2 textures).

149

Cube Maps

Figure 115: Environment Map with a
ubeWe think of a
ube surrounding the whole s
ene having one texture on ea
h side.We a

ess the
ube's textures by
asting a ray from the
enter of the s
ene.1.
ompute re�e
tion ray ~r for the surfa
e point (where the eye ve
tor wouldbe re�e
ted to)
~r = 2 (~e · ~n)~n− ~e2. �nd the
orresponding
ube sub-texture: Choose the highest absolute10value among the three
oordinates and determine the sub-texture by it'ssignE.g. ~r = (−8, 2, 1) has highest absolute
oordinate |−8|, the sign is −resulting in the left sub-texture3. get the texture
oordinates (u, v) by the interse
tion of ray and sub-texture. This
an easily be obtained by dividing the other two
oordinatesby the absolute value of the one
hosen in 2. and s
aling the unit
uberange [−1; 1] to the texture range [0; 1] by adding 1 and dividing by 2.E.g. ~r = (−8, 2, 1) results in 2

|−8| and 1
|−8| and after s
aling the range:

u =
2

|−8|
+1

2 and v =
1

|−8|
+1

2+ uniform sampling
hara
teristi
s (no ex
essive number of pixels at a pole,like spheri
al ones)+ the six fa
es are easy to
ompute+ view independent10If two
oordinates have equal absolute values, we are on a border between two
ube mapsand
an
hoose any of them. This however will seldom happen, be
ause of hardware pre
isionfailures. However we
an a

ount for it, by putting these border lines into both neighbouringtextures. 150

Spheri
al Maps
Figure 116: Environment Map on a sphereWe make some assumptions to make this pro
ess more e�
ient:

• parallel
amera rays (uniform dire
tion e0)
• environment map is in�nitely far away (
olor depends only on the dire
tionof re�e
tion ~r)

~r = 2 (~e · ~n)~n− ~eWith these assumptions made, our environment map odes only need to storeone
olor value for every dire
tion of re�e
tion. After ~r has been normalized,texture
oordinates
an be gotten by
u =

rx + 1

2

v =
ry + 1

2The sphere texture image is
reated/re
orded by pla
ing a perfe
tly mirroringsphere in the middle of the s
ene and save the re�e
tion (also
alled �probe�, seeimage above).OpenGL glTexGenfv(GL_S,GL_SPHERE_MAP,0)+ no seam at the border of the texture- irregular sampling at the boundary, be
ause many pixels are mapped
loselyon the sphere's poles (use other environment maps, e.g.
ube maps orparaboli
 maps)- moving between two points is not linear (no linear interpolation possible)- only valid for one viewing dire
tion (no environment rotation)151

Paraboli
 Maps

Figure 117: Paraboli
 Environment MapParaboli
 Maps are very similar to spheri
al environment maps, yet they use twotextures and mirror the environment at two paraboloids rather than a perfe
tsphere. All re�e
tion rays share the same origin and viewing rays are parallelto the z-axis. The paraboloid is given by:
f (x, y) =

1

2
− 1

2

(

x2 + y2
)The we get the texture
oordinates from the re�e
tion ve
tor:

u =
rx

1 + rz

v =
ry

1 + rzThis works espe
ially well if the hardware allows to re�e
tion ve
tor to texture
oordinates.+ view independent+ uniform sampling (linear interpolation) even better as with
ube maps- very hard to
reateProperties of Environment Maps+ supported by hardware- for planar obje
ts (�at obje
ts) the
olor be
omes unrealisti
ally
onstant(worst for orthographi
 proje
tion)- the
olor of a point on the re�e
ting surfa
e does not only depend on there�e
tion ve
tor ~r but rather on the area of a
one having it's peak in thepoint (use pre�ltered environment maps a

ounting for this).152

11.11 Environment Bump Maps

Figure 118: Environment Bump Map with normal texture, environment map(+light sour
e) and a bump mapThere exists an interesting
ombination of bump and environment maps, thatwill be presented here. The �rst aspe
t is that we will perform lighting via atexture:lighting via texturea 2D texture that maps surfa
e normals ~n to
olor L~nThus we result in having three texture maps: standard texture, environmentmap + light sour
e, bump map (see pi
ture). The bump map returns an o�setfor a

essing the environment map (
hanging the normal):
L = L~n · Brightness (environment) + bump o�set11.12 Intera
tive Horizon MapsThe disadvantage of bump maps is that although the bumps look good, theyprovide no real geometri
al bumps and therefore those bumps do not
ast shad-ows. Horizon Maps try to
ounter this by storing the horizon around a pointin texture maps, enabling to de
ide whether a point lies in shadow or not. Theheight of the horizon simply depends on the dire
tion (i.e. the angle), so thedire
tion will give us a

ess to the map. If the light sour
e lies below the horizonwe are in shadow.Following this idea we pre
ompute horizon heights for ea
h pixel in at leasteight dire
tions (N, NE, E, SE, S, SW, W, NW). Then during lighting
al
ulationwe
ompute the height angle of the light sour
e and
he
k whether the heightof the horizon surpasses the light sour
e's height.

153

Figure 119: Does the light ray lie above the horizon?By this eight dire
tions we sample the horizon en
losing our point in 8 points.Now having a point we
ould simply interpolate the two involved samples, how-ever the results are very bad. Therefore we rather use the samples as
oe�
ientsof basis fun
tions (stored in textures, one for ea
h dire
tion) and use them toevaluate the height in between two dire
tions with weighted interpolation (
o-e�
ients = weights).Sin
e the horizon height samples are 1D �oat values, we will be able to storethem in merely two textures, storing four samples in one texture's RGBα-
hannels.
Figure 120: North basis fun
tion texture and the resulting horizon map usingonly this basis textureIn the �gure on the left we see the basis fun
tion for the dire
tion north. If wehave a point and a

ess a dire
tion in�uen
ed by the north basis fun
tion, wewill result in a horizon map like the �gure on the right. The bright
ir
les aretotally lit and not o

luded by horizons in the north. The
loser we go northfrom su
h a
ir
le the
loser we will get to a northern horizon and the more wewill be in shadow.For example we assume the position to be the blue point on the left �gure.Then the horizon height will depend on something about 20% on the northernhorizon sample point and about 80% on the north western one. All other samples
ontribute 0% to the interpolated height.11.13 Shadow MapsThe idea of shadow maps is to store a map, whi
h we
an a

ess, if we want toknow whether a point is lit or not. This
an be done by rendering the s
ene with154

the eye at the light sour
e, then naturally every position not lit, lies in shadow,sin
e the light
annot rea
h it. We then store this result in a pi
ture we
an useas a shadow map. These kind of texture maps are ex
essively dis
ussed in the
hapter about shadows on page 8.5.3.11.14 Illumination In TexturesAnother di�erent way of making use of textures is to use them for lighting
al
ulation. This of
ourse is limited to s
enes where the light remains the samefrom any angle, (e.g. a
hamber with one light sour
e on the
eiling). Usingtextures we
an e�
iently realize the Torran
e-Sparrow Light Model (see 8.3.3).Remember the
olor was given by
L = IIn · F (~l · ~h)G(~n · ~v, ~n ·~l

)

D
(

~n · ~h
)

Π(~n · ~v)
(

~n ·~l
)we reorder the formulated

L = F
(

~l · ~h
)

D
(

~n · ~h
) G

(

~n · ~v, ~n ·~l
)

Π(~n · ~v)
(

~n ·~l
) · IInand then store the fun
tions F (~l · ~h)D (~n · ~h

) in a �rst texture with u = ~l · ~hand v = ~n · ~h as texture
oordinates and G(~n·~v,~n·~l)
Π(~n·~v)(~n·~l)

in a se
ond one (for
olor),where we use s = ~n · ~v and t = ~n ·~l as texture
oordinates.Algorithm 17 Illumination In Textures1. set vertex
olor to IIn2. turn on texture #13. use u, v as texture
oordinates4. render the s
ene5. set vertex
olor to 1 (white)6. turn on texture #27. use s, t as texture
oordinates8. render the s
ene with multipli
ative blending (multi texturing, see above11.6)Due to the resulting gain in e�
ien
y Phong Shading
an be used.155

OptimizationIf we simplify the physi
al model again by assuming parallel light, ~l be
omes
onstant. If we further assume a parallel viewer ~v be
omes
onstant. Assumingboth even ~h be
omes
onstant. If light and viewer are indeed far from the obje
tthis assumption is justi�ed.In this
ase we use simply the normal ~n as texture
oordinates and generate
u, v, s, t automati
ally by having stored ~l, ~v in a texture matrix. This furtherallows us to use OpenGL display lists (see 14).If we are still not
ontent we
an even store the di�use re�e
tion (1 − ~f

)in the texture. The α-
hannels of both textures are not used yet, so we
anstore the di�use re�e
tion in the α-
hannel of the �rst texture. In this
asehowever, we must add a third render pass at the end of the algorithm for di�useillumination and blending:
L = α (destination) · L (sour
e) + 1 · destination (sour
e)where α (destination)
orresponds to 1 − ~f , L (sour
e) + 1
orresponds to thedi�use fra
tion and destination (sour
e)to the spe
ular fra
tion.+ if
hanges in ~l, ~v are required from time to time, the optimization
an stillbe used, simply the texture matrix has to be re
omputed- two/three passes required11.15 Multi TexturingMulti Texturing des
ribes a method to apply multiple textures in a single ren-dering pass for one obje
t. Today's graphi
s hardware supports this. It de�nesoperations to add, subtra
t, multiply, et
. textures with/from ea
h other. Theadvantage against simply applying multipli
ative blending (see 11.6) is thatinstead of rendering multiple texture one after another, we get the texturesrendered in one single pass.Note To avoid visual quantization artifa
ts,
hoose an appropriate
olor model(24bit, 32bit)+ supported by modern boards+ only one rendering required11.16 Texture Ca
heA s
ene might
ontain a high number of textures, whi
h are
onsequently a
-
essed. Therefore most graphi
s hardware o�ers a
a
he for textures. Usuallythe textures should be kept small. An ex
eption is to
ombine small textures ina mosai
 like pattern on a larger textures. In this
ase we have impli
it smallertextures, but save the overhead for swit
hing textures.156

Last Re
ently Used (LRU)Now to make good use of the texture
a
he, ea
h texture is assigned a timestamp. Every time a texture is
alled, it gets a new time stamp assigned. If the
a
he is full the texture with the oldest time stamp will be dropped. In
ase ofa draw OpenGL and Dire
tX o�er additional priority assignments.Most Re
ently Used (MRU)MRU
he
ks the texture
urrently being swapped out of the texture
a
he,whether it has been used in the
urrent frame. If it was, it is kept. While beingin one frame MRU should be preferred to LRU, sin
e otherwise every singletexture of the frame would �rst be swapped in. Leaving a frame, we swit
hba
k to LRU.Prefet
hingAs the name suggests prefet
hing loads the textures into the texture
a
he,before they are needed or required. By that a lot of laten
y
an be hidden.Of
ourse this te
hnique requires a good pre
omputation of whi
h textures arerequired at a future time.11.17 Texture CompressionTextures are images and images
an be
ompressed by e.g. JPEG or PNG
ompression. Now this would allow a faster loading and a better usage of thetexture
a
he, however the de
oding algorithms for JPEG and PNG are to
omplex to put them in hardware. Therefore SGI has
reated a spe
ial textureimage
ompression format that is espe
ially easy to de
ompose: S3TC (S3Texture Compression). The main disadvantage is that this format is lossy,i.e. it
annot be re
reated without information loss. If a texture image showsespe
ial
olor depth at a
ertain region, this will be lost. Furthermore S3TCshould never be used when dealing with normal maps used for bump maps.

157

12 BRDF (Bidire
tional Re�e
tion DistributionFun
tion)

Figure 121: From physi
al radian
e to BRDFs and other lighting/shading meth-ods12.1 Maxims
• plausible (obey energy
onservation, re
ipro
ity)
• anisotropy
• intuitive parameters (like in Phong Lighting)
• Fresnel behaviour (for pe
uliarity)
• non-Lambertian di�use term (for a di�use term with energy
onservationfor the Fresnel term)
• Monte Carlo support (to support Ray Tra
ing)A BRDF whi
h manages to �t all these maxims is
alled: Fresnel-weightedPhong-style anisotropi

osine lobe model.158

12.2 TheoryBidire
tional Re�e
tion Distribution Fun
tions des
ribe how light is re�e
tedfrom a surfa
e. To des
ribe this a BRDF
overs:
• material properties
• in
oming/outgoing azimuth and elevation angles
• in
oming light's wavelength
• surfa
e areaYou
an see BRDFs as giving the probability that an in
oming photon will leavein a parti
ular dire
tion. So they relate in
oming and outgoing radian
e, butthey do not des
ribe physi
al material light intera
tions. It makes another sim-pli�
ation by negle
ting s
attering of light within a surfa
e, and only takes intoa

ount light
oming from above and being re�e
ted at one spe
i�
 point (Afun
tion type modeling surfa
e s
attering are Bidire
tional Surfa
e S
at-tering Re�e
tan
e Distribution Fun
tion (BSSRDF) whi
h will not bedis
ussed).The outgoing radian
e for a given point x and light Lin in
oming at angle

ωin is
L (x, ωout) =

∫

Ω

f (x, ωin, ωout)Lin (x, ωin) (ωin · ~nx) dωinwhere f is the BRDF. It returns for some in
oming light dire
tion ωin whatper
entage of light leaves at some exitant dire
tion ωout. The se
ond termdenotes the radian
e arriving at point x from dire
tion ωin. The last term isjust the appli
ation of Lambert's
osine law for di�use surfa
es: cos (ωin) =
(ωin · ~nx). Sin
e we are interested only in the light that will turn out on point
x we integrate over all in
oming and outgoing light angles ∫

Ω
.If the surfa
e is di�use, the BRDF f be
omes
onstant (f (x, ωin, ωout) =

ρ (x), with ρ (x) ∈]0; 1[where 0 means perfe
t re�e
tan
e and 1 no re�e
tan
e)
L (x, ωout) = ρ (x)

∫

Ω

Lin (x, ωin) cos (ωin) dωinIf we are dealing with a single point lightsour
e the equation further simpli�esto
L (x, ωout) = ρ (x)Lin (x, ωin) cos (ωin)where cos (ωin)
an be
omputed by the surfa
e normal at the
orrespondingpoint:cos (ωin) = (ωin · ~nx)Having more than one light sour
e we dis
retize the integral to a sum and sumup over all light sour
es.If we for example take the Phong Light Model, (see 8.3.2) the BRDF f be
omes
fphong (x, ωin, ωout) =

ks

(

~n · ~h
)nshiney

~n · ωinin this way other models like the Torran
e-Sparrow Light Model
an be used.159

Mi
rofa
ets
Figure 122: Surfa
e mi
rofa
ets.a) The surfa
e is assumed to be made of millions of tiny fa
ets. The fa
ets areused to �nd a probability distribution of fa
et normal dire
tions.b) The surfa
e is rendered as a geometri
ally �at surfa
e with the normal dis-tribution used to reprodu
e the shading e�e
ts of the fa
ets.Surfa
es will seldom be ni
e and �at, in fa
t even those whi
h look �at havea mi
ros
opi
 rough stru
ture. We introdu
e the
on
ept of mi
rofa
ets whi
hmodel this mi
ro stru
ture and thus des
ribe how surfa
es behave. Mi
rofa
etsare tiny mirrors on the surfa
e with random size and angle (see �gure). Insteadof random (uniform), a Gaussian distribution of sizes and angles is assumed,be
ause they are better to work with.Mi
rofa
ets
over:

• spe
ular re�e
tion (by dire
t re�e
tion)
• di�use re�e
tion (inter re�e
tion or s
attering)
• self shadowing (fa
ets shadow ea
h other)
• refra
tion (use Fresnel Re�e
tan
e for diele
tri
s F 11)Properties- BRDF do not
over anisotropy12They
ould if we would add a se
ond type of angle (φin, φout) to the BRDF.However this
an hardly be
overed with graphi
s hardware and methods.12.3 Praxis (Implementation)A �rst idea is to evaluate BRDF on every vertex in the s
ene. However asusual this leads to Gouraud artifa
ts, when
hanges are either smeared away oroveremphasized. As dis
ussed earlier this
an be
ountered by �ne stru
turing,however then we have a bottlene
k and la
k performan
e (using vertex shaders,the performan
e goes slightly up).11F des
ribes the re�e
tan
e of a surfa
e at various angles12the property of being dire
tionally dependent160

A se
ond
ommon idea is to pre
ompute as mu
h as possible and store it ina texture map. For isotropi
 surfa
es the BRDF needs three variables, so wewould be able to store everything in a three dimensional texture map. Againthe usual la
ks of this method are sampling problems, noise, gaps and memory-intensiveness.12.3.1 Fa
torizationA more sophisti
ated implementation uses fa
torizations of the BRDF basisfun
tions into a sum of two term produ
ts. The idea is to fa
torize the fourdimensional (four variables) BRDF into two texture maps. Then we multiplythe two values from both maps and sum them up:
f (x, ωin, ωout) ≈

n
∑

j=1

pj (ωin) · qj (ωout)where p and q denote a

ess fun
tions to the two texture maps. Looking atthe term
losely, we see that fa
torizations tries to separate the BRDF into afun
tion
overing the in
oming light and one
overing the exitant light. The tex-ture maps itself are a

essed like environment maps (
ube, paraboli
 or sphere(best)), whi
h
over a similar task (re�e
tion).Properties- rendering artifa
ts from using texture maps and interpolation (minor)- two texture a

esses for every light sour
e- limited to point and dire
tional light sour
es12.3.2 Environment Map FilteringEnvironment Map Filtering extends the environment map
on
ept (see 11.10)from mirror like re�e
tion to glossy and di�use re�e
tion. The idea is to �lter theresult of the environment map a

ess. For example by blurring it the spe
ularre�e
tion will appear rougher.Now either we hope for the forgivingness of the eye and blur the whole mapuniformly/linearly or we use a equation
alled Phong Spe
ular Equation to�lter it non-linearly. This equation determines a weight for ea
h light dire
tiondepending how mu
h every texel
ontributes relative to the dire
tion. So thelight
olor is given by the ambient light and the di�use light resulting from anenvironment map
overing the radian
e of an environment (light + re�e
tedlights with
ontributions falling o� a

ording to Lambert's Cosine Law, 8.3.2).This kind of environment map is also
alled Irradian
e Map.
161

Figure 123: The three major
omponents of PRTThe �rst sphere is the environment map
overing lighting Lin (p, s)The se
ond sphere
overs visibility (shadows) V (p, s)The third sphere
overs Lambert's
osine law for re�e
tion cos (s) = (s · ~n)Properties- wrongly assumes the same spe
ular lobe for all viewing/surfa
e dire
tionsyielding the same re�e
tion dire
tion (this is only valid for perfe
t mirrors)This assumption is ne
essary to be able to restri
t to one single environ-ment map. A

ordingly this problem
an be
overed by using multipleEnvironment Maps. In fa
t interpolation and blending between 20 spheremaps already draw high quality results.- view dependen
y: by storing every information in a single sphere map, wealso have view dependent spe
ular re�e
tion storeduse two sphere maps instead and use one for view-dependent and one forview-independent radian
e information- environment maps assume light sour
es and obje
ts to be distant- the dynami
 range of light is limited to 8 bits per
olor
hannel, yet dire
tlighting from a light sour
e is hundreds of times brighter than indire
tillumination. So 8 bits do not su�
e to
over the full range of in
identillumination (as it is needed in the environment map).12.4 Pre
omputed Radian
e Transfer (PRT)Pre
omputed Radian
e Transfer is a global illumination te
hnique
overingBRDFs (with pre
omputed environment maps), soft shadows and inter re�e
-tion. The key feature of PRT are spheri
al harmoni
s that make up the environ-ment map. Advantages in
omparison with previous BRDF te
hniques
overedso far are:
• PRT is fast and simple (
an be done in a vertex shader)162

• intera
tive: the environment
an be
hanged dynami
allyFurthermore PRT allows for arbitrary illumination (dire
t, indire
t,
austi
s)and for any kind of light transportation. Be
ause of the environment map
overing lighting, illumination
an
ome from any dire
tion. However obje
tsneed to be stati
 (environment map) and intera
tions between obje
ts is verylimited (e.g.
olor bleeding).Spheri
al Harmoni
s

Figure 124: Spheri
al Harmoni
s
l is
alled band and m is bound by −l ≤ m ≤ lSpheri
al Harmoni
s are a set of basis fun
tions with a spheri
al domain. They
an be used to represent spheri
al fun
tions with a set of
oe�
ients:

f (θ, φ) =
n
∑

i=1

fiYi (θ, φ)where f is a spheri
al fun
tion, angles (θ, φ) parametrize the spheri
al domainand Yi are
omplex basis fun
tions with
oe�
ients fi.
Y m

l (θ, φ) = Km
l e

ℑ(φ)P
|m|
l cos (θ)

Pm
l are Legendre Polynomials (see 2.7) and normalization
oe�
ients Km

l are
Km

l =

√

(2l+ 1) (l − |m|)!
4π · (l − |m|)!The higher the number of basis fun
tions n, the more pre
ise the out
ome(typi
al are about 25). 163

Now we want a real values basis fun
tion and thus di�erentiate:
ym

l =











√
2ℜ
(

Y l
l

)

m > 0√
2ℑ
(

Y l
l

)

m < 0

Y 0
l m = 0Sin
e ym

l build an orthonormal basis, we
an easily �nd the
oe�
ients fi byusing the fun
tion s
alar produ
t
f ◦ g =

∫ 1

0

f (x) g (x) dx

fi = fm
l ◦ ym

lComputation: In
ident/Exitant LightSo what we do is to approximate the lighting fun
tion with a polynomial usingSpheri
al Harmoni
s as basis fun
tions and the environment map as
oe�
ients.We
ompute the in
ident light Lin as
Lin =

1

n

n
∑

j=1

Lj
in (θ) yj (φ)where (θ, φ) are used as indi
es for a

essing the environment map. The envi-ronment is split up like in environment map �ltering. Where Lj

inis a BRDF.Often Lin is
onstant for a whole obje
t. If it isn't we
an take some samplesof the obje
t and interpolate them.Next we
he
k the exitant light Lout for every vertex p and texture mapa

ess s = (θ, φ) :
Lout (p) = ρ (p)

1

n

n
∑

j=1

Lj
in (p, s)Hj (p, s)whereH (p, s) = s·~np transformed to the spheri
al domain: H (p, s) =

∑n
i=1Hiyi (p, s)ShadowsHaving this formula we
an easily in
lude shadow by an additional term V (p, s)

Lout (p) = ρ (p)

∫

Ω

Lin (p, s)V (p, s) (s · ~np) dswhere V (p, s) = 1 if the point p sees the environment in dire
tion s, and 0 ifnot.
164

Inter Re�e
tions

Figure 125: PRT with inter re�e
tionsFrom the point p dire
tion s does not return environment map texels, thereforwe use the exitant light of qIn
ase p does not see the environment in dire
tion s (V (p, s) = 0), it mightsee it's own surfa
e point q (see �gure). In this
ase we use the exitant light of
q to model the interre�e
tion between those two points. We
an
ompute thisvalue by assuming Linto be the same at p and q. Then we just apply a globalillumination methods like ray tra
ing and
ompute the di�use
olor for p.Shadows
ombined with inter re�e
tions result in having soft shadows!Properties+ extension: translu
ent obje
ts+ extension: all-frequen
y lighting (wavelet basis instead of spheri
al harmon-i
s)- glossy re�e
tion: exitant radian
e depends on viewing dire
tion- the more spe
ular the surfa
e, the more basis fun
tions are needed- very bad for high frequen
y light: High frequen
y light is an euphemismand has nothing to do with wavelength. Every real lightsour
e lites thearea perpendi
ular and
losest to it more than the surrounding one build-ing a light dis
 of intensity on it. This dis
 is brightest in the
enter.Transforming this dis
 into a frequen
y diagram we will en
ounter a peakat the
enter. If this peak if very high, we talk about high frequen
y light,if it's low and broad about low frequen
y light. For example a point lightsour
e will have a Dira
 peak/impulse. Now to model su
h a peak we'dneed spheri
al harmoni
s or wavelets of a very high degree. Apart fromthat that �a very high degree� per se is a problem, spheri
al harmoni
s ofa high degree are very similar and show almost no di�eren
es.165

Alternative ComputationAn alternative algorithm that is faster, be
ause the BRDF is
omputed with
Lin in SH basis1. transform in
ident light Lin to transferred light L′

in ignoring the obje
tat pthis gives the lo
al in
ident light for p, as well as self shadowing and interre�e
tion (Lin, L
′
in in SH basis)2. now apply BRDF for every vertex using L′

in13 Rendering PipelineA s
ene is des
ribed by geometry, material properties, viewing and lighting. Butthe question is in what order should or rather
an we perform these steps and
onvert the 3D s
ene des
ription to a 2D raster image.Pipeline 1 (Single Stages)Step A
tions Variables CoordinatesAppli
ation intera
tivity,
ollision dete
tion pixel/
olor s
reen
oordinatesModel Transforms translation, rotation, . . . verti
es/normals model
oordinates: (u, v, w)World Transforms translation, rotation, . . . verti
es/normals world
oordinates: (x, y, z)Viewing Transforms perspe
tive proje
tion verti
es/normals viewing
oordinates: (e, g, t)Illumination lighting verti
es/
olor world
oordinatesProje
tion normalizing transforms verti
es/
olor normalized
oordinatesWindow Mapping ? ? ?Clipping Z-Buffer fragments, depth/
olor normalized devi
e
oordinatesRasterization shading pixel/
olor s
reen
oordinatesTexturing texture mapping texel texture
oordinatesFramebuffer window to view port pixel/
olor s
reen
oordinatesPipeline 2 (Culling/Clipping)ba
kfa
e
ulling → modeling transforms→
lipping → homogeneous divide →shading, lighting → rasterizationPipeline 3 (Vertex, Primitives, Fragments)1. Appli
ation: Custom Operations(a)
ollision Dete
tion(b) Intera
tivity (e.g. drag & drop)166

Figure 126: From verti
es to fragments2. Geometry: Vertex Operations(a) A�ne Transformations (transformation matri
es)(b) Illumination (lo
al Illumination at the verti
es)(
) Primitive Assembly (lines, triangles)(d) Proje
tion (Normalizing Transform, Unit Cube, Z-Values)3. Rasterization: Operations on Primitives(a) Polygon Rasterization (de
ompose primitives to pixel fragments)(b) Shading (with the fragments)(
) Texture Generation (Interpolation of texture
oordinates / texturevalues)(d) Texture Mapping (Proje
tion unto the obje
t)4. Fragment Operations: Operations of Fragments and Pixels(a) α Test (reje
t fragments above a
ertain α-value)(b) Sten
il Test (reje
t fragments with sten
il bu�er enabled)(
) Depth Test (reje
t fragments where the depth test fails)(d) α Blending (
ombine values of
olor fragments)(e) Fog (a fragment is blended with a fog
olor)Runtime ConsiderationsThe speed of a single data pa
ket is determined by the sum of all stages onthe Pipeline, but the overall throughput is determined by the slowest stage,referred to as bottle ne
k (e.g. if there are two stages under 2 minutes andone requiring 3 minutes for assembling a
ar, one
ar
an be
ompleted every 3minutes). The event if the whole pro
ess is stand to wait for a
ertain stage, is
alled stalling. Optimizations in
lude167

Sequentiation Partition the the bottle ne
k into two sequential stagesParallelization Insert parallel pipelines at vertex and pixel operations stepSorting Sort polygons by material (render 1 . . .X with the same texture, mu
hfaster than per triangle)Potential bottle ne
ks in
ludeAppli
ation data generation, data transfer
→ this stage is done in software, so optimize the
ode. a good
ode here
an also fasten the next two stages. furthermore you might be able tomake use of parallel pro
essors.Geometry lighting
omputation, number of light sour
es, number of triangles,
omplex per vertex
omputationsRasterization degree of o

lusion (e.g. leaves on a tree), mutlitexturing,
om-plex per pixel
omputation14 OpenGLOpenGL is a hardware independent version of GL (Graphi
s Library) fromSili
on Graphi
s. A review board out of
onsortium of graphi
s
ompanies ismaintaining the language. OpenGL is spe
ialized but not limited to 3D s
enery.Properties

• hardware abstra
tion: API (appli
ation programmer interfa
e)
• low level hardware optimized
• hardware independent
• boundless extensions
• high level modeling: s
ene graphs
• window system interfa
es: GLUT, GLX, AGL, WGLSyntaxfun
tions gl-Pre�x: glClear, glPolygonMode
onstants in CAPITAL LETTERS: GL_POLYGON, GL_RGBdatatypes GL-Pre�x: GLbyte, GLdouble, GLfloat

168

Libraries
• GLU:pre�x glu
ontent advan
ed routines, B-splines,
omplex obje
ts
• OpenInventor
ontent obje
t oriented toolkit, s
ene graphs
• Graphi
s Display: GLUT (glut) OS independent, GLX (glx) X-WindowSystem, AGL (agl) Apple, WGL (wgl) WindowsMatrix Sta
ksSin
e the matri
es needed for transformations will be used more than one time,we should store them in a kind of sta
k push(Matrix m) and re-a

ess them weneeded pop().With this sta
k we
an easily in
lude a rendering
ommand.Group::render()push(Matrix transformation);forall
hildren
 :
.render();pop();push matrix dupli
ate
urrent matrix m→ m′. apply m′ to the matrix on topof the sta
k m̄→ m∗.

m∗ m̄ · · · · · ·We have a matrix history: the last step is always multiplied with the newest to
reate the sta
k entry.pop matrix remove the top matrix from the sta
k.OpenGL di�erentiates between two di�erent types of matrix ea
h having it'sown matrix sta
k:GL_PROJECTION normalization (gluPerspe
tive())GL_MODELVIEW
amera, modeling (gluLookAt(), glTranslate(), glS
ale(),glRotate(),. . .)By the
ommand glMatrixMode() we may
hoose on whi
h kind of matrix we
urrently want to work.
169

GL_TEXTURE In fa
t there is a third kind of matrix assigned a third sep-arate sta
k of it's own. The texture matrix. This matrix is used for pro-je
ting textures onto obje
ts. It
an be de�ned by: glTexCoords4f(s,t, r, q)Output PrimitivesThe de�nition of primitives always starts with glBegin(Primitive Type) andend with glEnd(). Single vertex
oordinates
an be set by vertex position(glVertex(position)). Primitives are:points (GL_POINTS), straight lines (GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP),
ir
les, other
oni
 se
tions, quadrati
 surfa
es, spline
urves and surfa
es, poly-gon
olor areas,
hara
ter strings.Additionally size and
olor
an be set.Display ListDisplay Lists are rendering ma
ros (e.g. for rendering a
hair) that are dire
tlyloaded unto the graphi
s
ard and
an easily be re
alled multiple times. Thisgives a speed improvement by a fa
tor of 10.glNewList(1, glCompile); . . . glEndList(); . . . glCallList(1);Cartesian Referen
e FrameThe
oordinate frame for s
reen display
an be set by gluOrtho2D(xmin, xmax,ymin, ymax);15 Programmable Graphi
s HardwareCon�guration matri
es, lighting parameters (Phong), texture mapsProblems portability, short innovation
y
le, vendor dependent, too many ex-tensions (OpenGL)Uni�
ation Upload per-vertex and per-pixel
ode dire
tly to the graphi
sdevi
e. Vertex and Pixel stages on the pipeline are repla
ed by pro-grammable units.+ vendor independent+ e�e
t librariesHaving several fragments per pixels, whi
h
an even be shared by multiple pixels,we
an do antialiasing. If we'd simply say fragment = pixel, we would en
ounterugly aliasing e�e
ts. 170

Pixel average value of multiple fragments that is displayed.Fragment one sample of a high resolution image.Antialiasing By rendering the image at a higher resolution and s
aling it down.Vertex Unit (Vertex Shader)The vertex unit deals with all per-vertex operations like transformations andlighting per vertex (see 13, Pipeline 3). Per-Vertex operations are required everythen, when data is
hanging slowly enough to only
hange the verti
es (and riskminor artifa
ts). A vertex program is built out of three
omponents:Input glVertex(), glNormal(), glColor(), glTexCoord()Parameters
onstants like light dire
tion ~l, materialOutput normalized 3D s
reen position,
olor, se
ondary
olors (glossy), texture
oordinates, . . .Currently a
reation of new verti
es or removal of existing ones is not possible(added in 2006/2007, XBox 360◦). There is no su
h thing as an early returnstatement or �ow
ontrol statements13, that means the hardware will need ex-a
tly the same time for ea
h vertex. Also, small vertex programs run faster.Vertex shaders
an be used for
• shadow volume
reation (see 8.5.4)
• lens e�e
ts (e.g. underwater)
• obje
t de�nition (making a mesh only on
e)
• obje
t twist, bend, taper operations
• pro
edural deformations (�ag,
loth movement)
• primitive
reation (send degenerated meshes)
• page
urls, heat haze, water ripplesFragment Unit (Fragment Shader, Pixel Shader)The fragment unit deals with per-fragment or per-pixel operations like textur-ing or phong-shading (see 13, Pipeline 3). Per-Pixel/Fragment operations areneeded to a

urately
apture rapidly varying
hanges. A fragment program isalso built of three
omponents:Input interpolated
olor, interpolated depth, interpolated texture
oordinates,textures13Of
ourse those
an be simulated by register swaps as in Assembler171

Parameters
onstants like light dire
tion ~l, material, . . .Output
olor, depthThe light dire
tion is given in the eye-spa
e, be
ause of the OpenGL ModelViewmatrix (we
an only work in the eye-spa
e).
⇒also transform the normals into eye-spa
e before passing them to theshaderLike Vertex Shaders �ow
ontrol and early return is not possible without tri
ks.Pixel Shader use an API instead of free programming
ode, resulting in hardwaredependent optimized
ode.Possibilities in
lude
•
ustomized texture mapping (bump mapping, environment mapping)
• a

essing multiple textures (environment bump mapping)
• texture proje
tion
• killing whole fragments (not rendering them)
•
lipping with arbitrary �planes�, e.g. a sphere
• multiple passes before rendering (allows for
omplex rendering te
hniques)
• rendering to a texture (e.g. to store multipass results, if no multi passingis available)
• Torran
e-Sparrow Lighting using the S
hli
k approximationPrograms

Figure 127: OpenGL Shading LanguageARB_VERTEX_PROGRAM assembler like vertex shader172

ARB_FRAGMENT_PROGRAM assembler like fragment shaderThe program itself is passed as string: glProgramStringARB(enum target,enum format, size len,
onst ubyte* program)And bound by: glBindProgramARB(enum target, uint program)Shading Language mainly ma
ros for the ARB_PROGRAMSOpenGL Shading Language (GLSL) C-like language, global state/variablesfor the passing of parameters (e.g. state.material, state.light), re-sult parameters (result.
olor, result.depth), �ow
ontrol (loops, bran
hes,
onditionals)vertex shader glPosition = glModelViewProje
jtionMatrix * gl_Vertex;fragment shader glFragColor = ve
4(1,0,0,1);These shaders
an be in
luded into OpenGL
ode by: shader = glCreateShaderObje
t(),glShaderSour
e(shader,
har* sour
e), glCompileShader(shader)Variable Quali�ersattribute appli
ation de�ned vertex attribute (vertex shader input)uniform appli
ation de�ned global variable (vertex/fragment shader input)varying
omputed by vertex shader, interpolated by rasterization step, sent tofragment shader (vertex shader output, fragment shader input)
onst
onstant variables (e.g. π)16 HistorySome Numbersfps
omplex global illumination (1 frame per day), movies (1 frame per 8 min-utes), intera
tivity (5 fps), games (50 fps)throughput 106 pixel with 20 fps:
• pro
essing 20 · 106 pixels per se
ond
• 50
y
les per pixel (1 GHZ CPU)
• 3 bytes per pixel (~60 MB)triangles games: 100.000 triangles,
ave: 40.000 triangles (20 fps), reality:

80 · 106 trianglesper triangle we have three vertex
oordinates, material properties, a tex-ture 173

rendering perspe
tive proje
tion to s
reen, o

lusion
omputation, rasteriza-tion, illumination, texturingGPU speed doubles every 6-12 months (CPU 18 month), denser, more tran-sistors and FLOPS than CPU (CPU are more �exible)Today: 600 · 106 verti
es / se
ond, 6.4 · 109 pixels / se
ond, 6 parallelvertex stages, 16 parallel pixel stagesHistorySin
lair ZX81 (1982)
omplete pipeline is performed by the CPUCommodore 64 (1982) graphi

hips generates video signal (after CPU haswritten to the framebu�er)Atari ST (1985) GPU deals with 2D graphi
s operationsSGI Indy (1993) GPU does rasterization stepSGI O2 (1996) GPU does transformations and rasterizationSGI Onyx,Nvidia,ATI GPU does the entire pipelineToday programmable stages17 Virtual RealityVirtual Reality in general is a
omputer generated world, that
an be manipu-lated by the user. It's all about immersion, the feeling that what surrounds youis really real. For rea
hing immersion not only vision, should be
onsidered, VRtries to
apture other senses as well:Senses
• vision: real time graphi
s, stereo vision
• sound: surround sound
• hapti
s: for
e feedba
k, input resistors
• smell
• taste (not yet given)InputThe manipulation
an be a
hieved with 3D mouses, spa
eballs, data gloves,tra
king devi
es or whole data suits. Another goal for data input is that the
amera or eye
an be moved by the user by moving the head. Even more di�
ultis eye tra
king. Furthermore the ability to move obje
ts and grab and drop arefavorable immersion boosts. 174

Output (Stereo Vision)

Figure 128: CAVEAn output system
alled CAVE for an example for a great level of immersion.Graphi
s are often displayed by spe
ial Head-Mounted Devi
es (HMD),spe
ial beamer te
hnology or whole rooms. The spe
ial is referring to givingthe possibility of stereo vision, whi
h means to separate images for the left andfor the right eye. The �rst devi
e, the HMD, a
hieves this by supplying oneLCD s
reens for ea
h eye. HMD
an easily
ombined with sound output andposition tra
king input. However they are very heavy and un
omfortable andthus redu
e immersion. A softer version of head glasses are Shutter Glasses.They alternately bla
ken the left and the right eye, thus providing the rightframes, simulate spatial viewing. However apart from them still being somewhatun
omfortable, the images appear darkened syn
hronization must be assured.Talking about beamers we
an use two separate beamers proje
ting theirimages through proje
tion �lters. Polarization �lters let pass light only in onedire
tion. Supplying the user with glasses whi
h have two proje
tion �lters withthe
orresponding dire
tions, the images
an be separated for stereo view again.This is what 3D
inemas usually do. This is usually done by front proje
tion,however then often the user shadows the proje
tion by his geometri
al physi
alform. Using a mirror we
an use ba
k proje
tion as well, avoiding this problem.However then we need some room behind the s
reen.A third alternative are work ben
hes. The s
reen is like a drawing deskwhere upon the image is proje
ted. The user's position is tra
ked and the imageis adjusted a

ordingly to provide 3D vision.Finally we
an use a whole room or
hamber to maximize the level of im-175

mersion. This is
alled Cave Automati
al Virtual Environment (CAVE).This is one of the most expensive VR ar
hite
tures, sin
e we need six (twelve forpassive stereovision) beamers for every wall of the
hamber in
luding a beamerfor the bottom �oor underneath the room. Furthermore the
omputation andsyn
hronization takes the power of graphi
s
lusters.Stereo Proje
tion

Figure 129: Stereo Proje
tionAssuming we know the position of the viewer, resp. her eyes, how
an we
al
ulate the right stereo images?A straightforward method is to pla
e the
amera su

essively onto the leftand the right eye and render the image towards the
enter of the �s
reen�.However this method fails when the viewer is not
entered and looks at thes
reen at a di�erent angle.Another method is
alls sheared perspe
tive. The proje
tion s
reen isthe image plane and we allow the eye point to be anywhere. This means ourviewing frustum be
omes sheared. OpenGL o�ers a sheared viewing frustums
alled glFrustum.

176

List of Algorithms1 Bresenham Algorithm . 242 Seed Fill . 253 S
anline . 264 Cohen Sutherland . 275 α-
lipping . 286 Gouraud Shading . 877 Deferred Shading . 898 Creating Penumbra Maps . 989 Shadow Volume Algorithm . 10010 Constru
ting The Shadow Volume 10112 Shadow Volumes with Vertex Shaders 10211 Z-Pass Algorithm . 10213 Simple Stripi�
ation . 11814 Tunneling . 11915 Corner Cutting . 12416 Subdivision Pro
ess for B-Splines 12917 Illumination In Textures . 155List of Figures1 mapping from one
oordinate system into another 132 solid angle . 213 Solid Angle Di�erential . 214 out
odes for the
lipping re
tangle 275 reversed
lipping in a x-window system 286 Sutherland Hodgeman Classes . 297 Comparison with the RGB
olor model 3410 horizontal shearing . 388 Isotropi
 S
aling . 389 s
aling . 3811 Rotation . 3912 Euler Rotations . 4013 Re�e
tion . 4214 Transforming Normals . 4415 Canoni
al View Volume . 4616 Orthographi
 View Volume . 4717 Image Plane . 4918 Image Plane with variables . 4919 Perspe
tive Proje
tion . 5020 Field Of View . 5122 Mapping Of Z illustrated with
olors 5221 View Frustum . 5223 Mapping Of Z illustrated with arrows 53177

24 Mapping Of Z illustrated with asymptotes 5425 penetration and
y
li
 o

lusion 5526 Axis Aligned Binary Spa
e Partitioning 5627 S
reen Door Transparen
y . 5828 Problems with Delayed Blended Transparen
y 5929 View Frustum Culling . 6130 View Frustum Culling . 6231 View Frustum Interse
tion . 6332 Potentially Visible Sets separate the s
ene into arbitrary
ells . . 6433 Portal Visibility . 6534 O

lusion Horizon . 6735 O

lusion Horizon: Di�
ult O

lusion 6736 London . 6837 Dual Ray Spa
e O

lusion Culling 6938 A line in the Dual Ray Spa
e . 6939 A double triangle in the Dual Ray Spa
e 6940 Radian
e . 7241 Relationship between in
ident and re�e
ted light 7342 �uores
en
e . 7443 phosphores
en
e . 7444 Point Light Sour
e . 7645 dire
tion of light for point light sour
e 7646 Parallel Light . 7747 Ambient Light . 7848 Re�e
tion from equally rough surfa
es 7949 Lambert's Cosine Law . 7950 Di�use Light . 8051 Spe
ular Light . 8152 Spe
ular Light is view dependent 8153 Halfway Ve
tor Approa
h . 8254 Self-Shadowing . 8455 Flat Shading . 8556 Gouraud Shading . 8557 vertex normals . 8658 Gouraud Shading smears highlights 8759 Phong Shading . 8860 Deferred Shading . 8961 Storing shading parameters in the RGBα
hannels of three Ren-der Targets . 8962 Problems o

urring with planar shadows 9063 The s
ene as seen from the light. Only the depth values are stored. 9264 In the se
ond pass, the shadow map is a

essed to determinewhether a pixel is lit or in shadow. 9265 The blue arrow shows where the
urvature
an be seen in theshadow . 93178

66 Spotlight shadows
an be
reated by using the
amera's frustumas a shadow frustum . 9367 Adaptive shadow maps are ordered and a

essed in a tree stru
ture 9568 The shadow map resolution
hanges with a proje
tive mapping . 9569 Partitioning of the s
ene into umbra, penumbra and lit areas. . . 9670 Shadow mapping
ombined with a penumbra map to soften theshadow outlines . 9671 Overlapping Penumbras . 9972 Highlighted Shadow Volume . 9973 Dealing with multiple o

luders 10174 Re
ursive Ray Tra
ing . 10675 Snell-Des
artes Law . 10776 Add a small
onstant ε to
ounter numeri
al instability 10877 Causti
s . 11179 Color Bleeding . 11278 Color Transmission . 11280 Triangle Strip . 11481 Triangle Fan . 11582 Quad Strips . 11583 Enhan
ed Fa
e List Example . 11684 Dire
ted Edges . 11785 Triangle Strips, where the vertex
a
he
an be optimally used (avertex may be
alled up to 6 times) 12086 Di�eren
e between interpolation and approximation 12287 A Bézier Curve with four
ontrol points: b0, b1, b2, b3 12388 Corner Cutting . 12389 The midpoints (bla
k points) resulting from
orner
utting, makeup the
urve approximating the
ontrol point p1 and are thusthose, whi
h we draw on the s
reen. Some threshold
an deter-mine the number of subdivisions. 12491 Ordering of Bézier
ontrol points 12590 Algorithm of Casteljau . 12592 Shifting the splines basis fun
tion to the
ontrol points 12893 Cubi
 B-Spline . 12994 Basi
 Operations of Constru
tive Solid Geometry 13195 Organization tree using a
lass hierar
hy 13296 S
ene Transformations . 13397 A s
ene with and without texture mapping 13698 Nearest Neighbour Interpolation 13899 Bilinear Interpolation . 138100 Planar Proje
tion . 139101 Dia Proje
tion . 140102 Perspe
tive Interpolation . 141103 So instead of the standard rasterization we now interpolate withthe values returned by the mapping to the perspe
tive spa
e. . . 141104 A 3D map to model the inside of a human head 142179

105 Mip-Mapping . 143106 Trilinear Interpolation with Mip-Mapping 143107 Bump Maps adding height features 145108 Bump Maps
ontain height information 146109 Emboss Bump Map . 146110 Gouraud Bump Map . 147111 Normal Map used for bump mapping 147112 Left: standard bump map, Right: parallax bump map 148113 Computation of the parallax o�set 148114 Displa
ement Maps . 149115 Environment Map with a
ube 150116 Environment Map on a sphere . 151117 Paraboli
 Environment Map . 152118 Environment Bump Map with normal texture, environment map(+light sour
e) and a bump map 153119 Does the light ray lie above the horizon? 154120 North basis fun
tion texture and the resulting horizon map usingonly this basis texture . 154121 From physi
al radian
e to BRDFs and other lighting/shadingmethods . 158122 Surfa
e mi
rofa
ets. 160123 The three major
omponents of PRT 162124 Spheri
al Harmoni
s . 163125 PRT with inter re�e
tions . 165126 From verti
es to fragments . 167127 OpenGL Shading Language . 172128 CAVE . 175129 Stereo Proje
tion . 176List of Tables1 Physi
al Light Overview . 732 Phong Lighting Variables . 78

180

Index2D S
an Conversion, 25A

umulation Bu�er, 7a

umulation bu�er, 103A
tive Edge Table (s
anline), 26Adaptive Depth Control, 108Adaptive Shadow Maps, 95adjoint matrix, 11a�ne invariant, 127Alpha Blending, 34alpha-
lipping, 27Ambient Light, 77Angle, 20, 21Anistotropi
 Filtering, 30Antialiasing, 25, 29Antialiasing (Textures), 142Area Light Sour
e, 77Bézier Curves, 123Bézier Surfa
es, 127Ba
k Fa
e Culling, 60, 117Bary
entri
 Coordinates, 14Bernstein Polynomials, 18Bidire
tional Re�e
tion Distribution Fun
-tion, 158Bidire
tional Surfa
e S
attering Re�e
tan
eDistribution Fun
tion, 159Bilinear Interpolation, 138Binary Spa
e Partitioning, 55Blended Transparen
y, 59Blending Fun
tion (Texture Mapping),144blending fun
tions, 126bottle ne
k, 167bottom plane, 47Bounding Hiera
hies, 62Bounding Volumes, 61, 110Box Filter, 25BRDF, 158Bresenham Algorithm, 23brightness, 31brightness (light), 72BSP, 55

BSSRDF, 159Bump Map, 145Camera Transformation, 51Canoni
al View Volume, 46Cartesian Coordinates, 13Casteljau, 125Cathode Ray Tube, 23Causti
s, 111CAVE, 176Cave Automati
al Virtual Environment,176Clustered Ba
k Fa
e Culling, 60CMY, 32CMYK, 32Cofa
tor Matrix, 11Cohen Sutherland, 27Color Bleeding, 112Color Transmission, 112Constru
tive Solid Geometry, 131
ontrol point, 121Corner Cutting, 123Corresponder Fun
tion, 144
ross produ
t, 10Crossratio, 22CRT, 23CSG, 131Cube Map, 150Culling, 59Deferred Shading, 89Delayed Blended Transparen
y, 59Determinant, 11Di�use Light, 78Dire
ted Edges, 116Dire
tional Light, 77Displa
ement Map, 149Display List, 170Doppelverhätniss, 22Dot Produ
t Bump Map, 147Double Bu�er, 7Dual Ray Spa
e O

lusion Culling, 68Edge Table (s
anline), 26181

Eigenvalue, 12Eigenve
tor, 12Emnboss Bump Map, 146Energy (light), 70Environment Map, 149Environment Map Filtering, 161Euler Angle, 40Euler Rotation, 40exitant �ux density, 71exitant light, 71eye position, 48far plane, 47Field Of View, 51Flat Shading, 85�ux density, 71Fog, 35Fragment Shader, 171Fragment Unit, 171Framebu�er, 7, 23Fresnel Term, 84Fresnel-weighted Phong-sytle anisotropi

osine lobe model, 158FSAA, 30Full S
ene Antialiasing, 30G Bu�er, 7G-Bu�er, 89Gamma, 34gaze dire
tion, 48General Triangle Strips, 114Geometry (Mesh), 113gimbal lo
k, 41Global Illumination, 75Glow Texture, 144GLSL, 173Gourad Bump Map, 147Gourad Shading, 85Gouraud Interpolation, 24Halfway Ve
tor, 82Haloing, 58Head Light, 79Head-Mounted Devi
es, 175Hidden Line Rendering, 57Hierar
hi
al Bounding Volumes, 110

Hierar
hi
al Modeling, 131Hierar
hi
al Z-Bu�er, 66high frequen
y light, 165HMD, 175Homogenous Coordinates, 14HSV, 33hue, 31Identity Matrix, 11Illumination, 75Illumination (Textures), 155Impli
it Fun
tions, 16in
ident �ux density, 71in
ident light, 71Index Fa
e List (enhan
ed), 116Indexed Fa
e Set, 114Intensity (light), 71Intera
tive Horizon Map, 153Inverse Matrix, 11Irradian
e (light), 71Irradian
e Map, 161isotopi
 luminan
e, 34Isotrophi
 S
aling, 38Jittering, 30knot points, 128Lagrange Polynomials, 18Lambert's Cosine Law, 79Last Re
ently Used, 157LCD, 23least
rossed
riterion, 55left plane, 47Level Of Detail, 134Light, 31, 70Light Map, 91Light Maps, 91Light Spa
e Perspe
tive Shadow Map,95Lighting, 74Liquid Crystal Display, 23Lo
al Illumination, 75LOD, 134LRU, 157luminan
e, 31182

Matrix Sta
k, 169Mi
rofa
ets, 160Midpoint Algorithm, 23Mip Mapping, 143Most Re
ently Used, 157Motion Blur, 103MRU, 157Multi Texturing, 156Multipli
ative Blending, 144Multisampling, 30near plane, 47Nearest Neighbour Interpolation, 138Noise Textures, 137normal
one, 60Normalized Devi
e Coordinates, 46NURBS, 130O

lusion Culling, 63O

lusion Horizons, 66O
tree Spa
e Partitioning, 110Omnidire
tional Light, 94OpenGL, 168OpenGL O

lusion Test, 65OpenGL Shading Language, 173orthogonal, 10orthogonal proje
tion, 10Orthographi
 Proje
tion, 47orthographi
 view volume, 47orthonormal, 10overblurring, 143Painter's Algorithm, 55Paraboli
 Map, 152Parallax Bump Map, 148Parallel Light, 77Penumbra Map, 96Per-Pixel Bump Map, 147Per
entage Closest Filtering, 94Perlin Noise, 137Perspe
tive Interpolation, 141Perspe
tive Proje
tion, 49Phong Lighting Model, 77Phong Shading, 88Phong Spe
ular Equation, 161Photometry, 73

photometry, 70Photons, 70Pixel, 22Pixel Shader, 171Planar Shadow, 90Plank's Constant, 70Point Lightsour
e, 76Polar Coordinates, 14Polygon, 113Polygon Mesh, 113Polygon O�set, 57Portal Visibility, 65Potentially Visible Sets, 64Pre
omputed Radian
e Transfer, 162Prefet
hing, 157Pre�ltered Environment Map, 152Pro
edural Models, 131Pro
edural Texture, 137Proje
tive Transformations, 45PRT, 162Pseudoinverse, 12PVS, 64Quad Strip, 115Quadrati
 Matrix, 10Quaternions, 20Radian
e, 72radian
e, 31radiant energy, 70radiant �ux, 70Radiant Intensity, 71radiometry, 70Radiosity, 71Raster, 22Raster Display, 23Ratio, 22Ray A

eleration, 23Ray Coheren
e, 111Ray Tra
ing, 104Re�e
tion, 42, 104reparameterization, 121RGB, 32right plane, 47Ripmapping, 144Rotation, 39183

S3TC, 157Sampling Theorem, 142saturation, 31s
alar produ
t, 10S
aling, 37S
anline, 22S
anline (algorithm), 25s
ene graph, 131s
ene tree, 131S
reen Door Transparen
y, 58Seed Fill, 25Shading, 84Shadow, 90Shadow Map, 91, 154Shadow Volumes, 99Shared Vertex Set, 114Sheared Perspe
tive, 176Shearing, 38Shutter Glasses, 175Singular Value De
omposition, 12Singular Values, 12Snell-Des
artes Law, 107Soft Shadows, 96Sorted Blended Transparen
y, 59spe
ular highlight, 81Spe
ular Light, 78Spheri
al Harmoni
s, 163Spheri
al Map, 151Splines, 19Spotlight, 77stalling, 167Stati
 Textures, 136Sten
il Bu�er, 7Sto
hasti
 Sampling, 30Stripi�
ation, 118Subdivision Surfa
es, 131Summed-Area Table, 144Sutherland Hodgeman, 29SVD, 12Teilungsverhältniss, 22tensor produ
t, 10texel, 137Texture Cha
he, 156Texture Compression, 157Texture Mapping, 136

top plane, 47Topology (Mesh), 113Torran
e Sparrow Light Model, 83Translation, 43Transparen
y, 58Transpose Matrix, 11Triangle Fan, 115Triangle Strip, 114Trilinear Interpolation, 138Tripple Bu�er, 7Tristimulus Theory, 31Tunnel (Stripi�
ation), 119Uniform Spa
e Partitioning, 110vanishing points, 45Ve
tor Display, 22Vertex Ca
he, 120Vertex Program, 140Vertex Shader, 171Vertex Unit, 171View Frustum Clling, 61view-up ve
tor, 48Viewing Dire
tion, 48Viewing Pipeline, 54Virtual Reality, 174VR, 174W-Bu�er, 7, 58wavelength, 31White Noise, 137Window Edge Coordinates, 27Windowing Transforms, 44Wireframe Rendering, 57XYZ, 33YIQ, 32Z-Bu�er, 7, 56Z-Bu�er Fighting, 57Z-Fail, 103Z-Pass, 102
184

