Computer Graphics

Michael Prinzinger

April 14, 2007

Contents
0.1 Definitions e 6
0.2 Bibliography o 8
0.3 Copyright 9
1 Application 9
2 Math 10
2.1 Vectors e 10
2.1.1 Properties 10
2.1.2 Operations oo 10
2.2 Matriceso 10
2.2.1 Determinants 11
2.2.2 Eigenvalues & Eigenvectors 11
2.3 Coordinate Systems o 13
2.3.1 Cartesian Coordinates 13
2.3.2 Polar Coordinates 14
2.3.3 Barycentric Coordinates 14
2.3.4 Homogeneous Coordinates 14
2.3.5 Mappings 15
2.4 TImplicit Functions 0oL 16
2.5 Parametric Functions o000 17
2.6 Curves e 18
2.7 Polynomials 18
2.8 Linear Interpolation L. 19
2.9 Triangles 19
2.10 Quaternionso 20
2.11 Miscellaneous oo 20
3 Raster Algorithms 22
3.1 Display Types. 22
3.1.1 Vector Display 22
3.1.2 Raster Display, 23
3.2 Line Rasterization, 23

3.3 Triangle Rasterization
3.4 Polygon Rasterization
3.5 Line Clipping
3.6 Polygon Clipping
3.7 Culling. o
3.8 Antialiasing
3.8.1 Line
3.82 Screen Based L.
Color
A1 TAght . o o oo
42 RGB
4.3 CMY
4.4 YIQ . . .
4.5 HSV . .
4.6 XYZ . . e
4.7 Alpha Blending o
4.8 Gamma
4.9 Fog. oo
4.10 Color Conversion

Transformation Matrices

5.1 Scaling
5.2 Shearing
5.3 Rotation
5.3.1 Arbitrary RotationsIn 3D
54 Reflection
5.5 Tramslationo
5.6 Composition of Transformations
5.7 Transforming Normal Vectors
5.8 Windowing Transforms.
5.9 Inverse Transformations
5.10 Projective Transformations
5A1 BIig M . o oo
Viewing
6.1 Canonical View Volume,
6.2 Orthographic Projection
6.3 Viewing Direction o000
6.4 Perspective Projection o000
6.5 Field Of View (Camera Transformations)
6.6 Mapping Of Z
6.7 Clipping In Homogeneous Coordinates
6.8 Viewing Pipeline 000

31
31
32
32
32
33
33
34
34
35
36

37
37
38
39
39
42
43
43
44
44
45
45
45

7 Occlusion & Visibility 55

7.1 Painter’s Algorithm o o 55
7.2 Binary Space Partitioning (BSP) 55
73 Ray Tracing 56
74 Z-Buffer 56
7.5 W-Buffer 58
7.6 Transparency 58
7.7 Culling. 59
7.7.1 Back Face Culling 60

7.7.2 View Frustum Culling 61
7.7.3 Occlusion Culling 63
7.7.4 Hierarchical Z-Buffer 66

7.7.5 Occlusion Horizons 66
7.7.6 Dual Ray Space Occlusion Culling 68

8 Lighting 70
81 Light 70
8.1.1 Radiometry 70
8.1.2 Photometry 73

8.2 Lighting 74
8.2.1 Simplifications oL 74

8.3 Mlumination L 75
8.3.1 Light Sources 76
8.3.2 Phong Lighting Model 7
8.3.3 Torrance-Sparrow Light Model 83

84 Shading 84
8.4.1 Flat Shading 85
8.4.2 Gouraud Shadingo 85
8.4.3 Phong Shading 88
8.4.4 Deferred Shading 89

85 Shadows 90
8.5.1 Planar Shadows 90
8.5.2 Light Maps 91
8.5.3 Shadow Maps 91
8.5.4 Soft Shadows Lo 96

86 Motion Bluro 103
87 Reflection 104
9 Ray Tracing 104
9.1 Viewing e 104
9.2 Lighting 105
9.3 Imtersection Lo 108
9.4 Different Usageo 111
9.5 Limits 111
9.6 Properties 112

10 Modeling 113

10.1 Polygon Meshes 113
10.1.1 Indexed Face Set (Shared Vertex Set) 114
10.1.2 Triangle Strips o oL 114
10.1.3 Triangle Fans oo 115
10.1.4 Quad Stripso 115
10.1.5 Enhanced Indexed Face List 116
10.1.6 Directed Edges oo 116
10.1.7 Normal Vectors 117
10.1.8 Face Orientation (Back Face Culling) 117
10.1.9 Stripification Lo 118
10.1.10Vertex Cache L. 120

10.2 Parametric Surfaces L. 121
10.2.1 Bézier Curves 123
10.2.2 Uniform B-Splines 128
10.2.3 NURBS 130

10.3 Constructive Solid Geometry (CSG) 131

10.4 Subdivision Surfaces L. 131

10.5 Procedural Models 131

10.6 Hierarchical Modeling 131
10.6.1 Scene Tree / Scene Graph 131
10.6.2 Scene Description. L. 132
10.6.3 Class Hierarchy 132
10.6.4 Scenegraph API 133

10.7 Level Of Detail (LOD) 134
10.7.1 LOD Creation 134
10.7.2 LOD Switching o 135
10.7.3 LOD Selection 135

11 Texture Mapping 136

11.1 Noise Textures i 137

11.2 2D Texture Mapping 137

11.3 1D Texture Mapping o 141

11.4 3D Texture Mapping o 142

11.5 Texture Antialiasing 142
11.5.1 Sampling Theorem 142
11.5.2 Mip Mapping 143
11.5.3 Ripmappingo 144
11.5.4 Summed-Area Table, 144

11.6 Blending Functions Lo Lo 144

11.7 Corresponder Functions 144

11.8 Bump Maps o 145

11.9 Displacement Mapso 149

11.10Environment Maps oo oo 149

11.11Environment Bump Maps 153

11.12Interactive Horizon Maps 153

11.13Shadow Maps 154

11.14Mllumination In Textures 155
11.15Multi Texturing o 156
11.16Texture Cache 156
11.17Texture Compression 157

12 BRDF (Bidirectional Reflection Distribution Function) 158
12.1 Maxims oo 158
12.2 Theory 159
12.3 Praxis (Implementation) 160
12.3.1 Factorization L. 161

12.3.2 Environment Map Filtering 161

12.4 Precomputed Radiance Transfer (PRT) 162

13 Rendering Pipeline 166
14 OpenGL 168
15 Programmable Graphics Hardware 170
16 History 173
17 Virtual Reality 174

Preface

This script tries to merge information on computer graphics and interactive
computer graphics from the lectures, the exercises, the books: Fundamentals
Of Computer Graphics (from Peter Shirley) and Real Time Rendering (from
Moller and Akenine-Haines) and last but not least intuition and idea that arose
from talking to Professor Stamminger and talking to and the help from Christian
Graef and Arian Baer.

In it T tried to present the information in the way we understood it with many
hints and pictures that help understanding it. I think it is a valuable secondary
resource, in case you did not understand a certain topic or want to know more
about it.

As a merge from the above sources the contents exceed the lecture at many
places, you simply have to decide for yourself how much you want to know and
where to stop (I think knowing a little bit more than necessary does no harm,
and instead you are more self confident and get a better overall understanding
of the general problems and methods of computer graphics, because they repeat
over and over again in different context. Once you had this realization, you can
rest assured that you will pass the exam splendidly).

0.1 Definitions

Graphics

Computer Graphics Any use of computers to create or manipulate images.
Modeling mathematical specification of shape and appearance properties
Rendering creation of shaded images

Animation illusion of motion through sequence of images

Interactivity allowing the user to interact with the scene, immediately dis-
playing the results (e.g. grab & drop) 5-6 fps

Real-Time render changes in the scene fast enough, that illusion of motion is
created 20-60 fps

Units

Pixel PICture ELement. The smallest unit on the screen.

Texel TEXture ELement. The smallest unit on a texture.

Fragment Before the scene is rendered on the screen it often is rendered to a
buffer having a greater (theoretically also lesser) resolution. Since some of
the buffers elements are cast to one pixel, we introduce the term fragment
for disambiguation.

Buffers

Z-Buffer A buffer identical to the framebuffer containing depth information for
every pixel. Thus by having new objects come into view, we can compare
the object’s pixels’ depth with the value stored in the Z-Buffer and draw
or discard them accordingly.

W-Buffer An alternative to Z-Buffering. Instead of depth value the homoge-
neous perspective w coordinate is stored. The advantage of this method
is having uniform depth values.

Stencil Buffer The stencil buffer is another duplicate of the framebuffer con-
taining integer values (1 byte per pixel). It is mainly used to limit the
area of rendering: Render only to pixels highlighted on the stencil buffer
(e.g. for drawing shadows). It can be efficiently combined with the depth
buffer, for example every time a depth test fails increase the pixels integer
value on this position in the stencil buffer by 1.

Framebuffer A certain chunk of memory used for display on screen. Graphics
intended to be written to the screen is written to the framebuffer.

Double Buffer Writing to the framebuffer while the monitor’s photon cannon
is displaying it’s content, leads to flickering and artifacts. Therefore a
technique called double buffering is commonly used. Graphics are first
written to the double buffer (another framebuffer) and once the photon
cannon reaches the bottom the two buffers are swapped.

Triple Buffer Double Buffering still can lead to artifacts: Image the pipeline
just writing to the double buffer, when it is switched with the framebuffer.
In this case no flickering will be seen, but depending on the amount of
change, the scene’s integrity will be broken for an instant. Therefore
triple buffering was suggested. The rendering is started on the triple
buffer, once a screen update has been made, double and triple buffer are
swapped and rendering is completed on the double buffer, then in the
next step it is displayed to the viewer. Another advantage is that during
the rendering of the double buffer, the triple buffer can be cleared, which
takes an considerable amount of time. Therefore using triple buffering
more frames per second can be displayed than using double buffering. A
disadvantage you should take into account is the latency of 3 frames. A
user command /input will only have no effect on the next two frames.

Accumulation Buffer A buffer used to gather images of an object with set
operations. It is mainly used to generate motion blurs, but also for soft
shadows or depth antialiasing. Usually out of this set a single image with
higher precision is created including the motion blur effect.

G Buffer A buffer used for deferred shading (see 8.4.4). In short in it we store
every piece of information we need for an accurate lighting computation,
so that we are able to perform the lighting stage anywhere in the pipeline.

Some words on the required memory. If we assume 1280x1024 pixels with true
color, results in 8 bit per color channel = 3.75 MB. Using double buffering we
need twice as much: 7.5 MB. The Z-Buffer with 24 bit per pixel requires 3.75
MB. Adding an accumulation buffer with 48 bit and a stencil buffer with 8 bit
per pixel would result in 8,75 MB. Summing up to a total of 20 MB.

Computer

CPU Central Processing Unit
GPU Graphics Processing Unit
FLOPS Float Operations Per Second

0.2 Bibliography

Fundamentals of Computer Graphics by Peter Shirley (Second Edi-
tion)

A very good book that covers all the basics. If even with this script you have
not completely grasped a certain topic about the very fundamentals, open the
book and read the whole chapter about it. If however this topic of yours is also
to be found in the book Real Time Rendering (see below), try the other one
first. Although Shirley and Friends give real good explanations, the authors of
the Real Time Book even surpass his explanations.

A word on the edition. The first edition was written by Shirley alone, the
second one by Shirley and seven other authors, which added some minor changes
to existing chapters and added completely new chapters on their own. So try
to get hold of the second one.

Real Time Rendering by Tomas Akenine-Moller and Eric Haines (Sec-
ond Edition)

In my opinion this book even surpasses Shirley’s. The authors really give in-
tuitive and splendid explanations going hand in hand with huge amounts of
excellent pictures, figures and graphics illustrating what is being explained.
Furthermore they cover the topics really good and can enrich your knowledge
about the topics covered in the lecture. I’ve almost read through all the chapters
and did never regret even one. If I didn’t understand a topic with the slides and
the lecture, I usually did understand it after reading through the corresponding
chapter, if existing.

Other Resources

Apart from the slides you have from the lecture, you should from time to time
try to find different explanations of illustratory applets with google.

The page of the lecture of Professor Stamminger (Interactive Computer Graph-
ics http://www9.informatik.uni-erlangen.de:81/Teaching/SS2006/InCG/

Material) offers a great fundus of additional free internet resources. Also
the page of Moller’s and Haines’ Book (Real Time Rendering http://www.
realtimerendering.com/) and of Shirley’s book (Fundamentals Of Computer
Graphics http://www.cs.utah.edu/"shirley/books/fcg2/) offer nice slides
based on their books and various other helpful links. Last but not least Wikipedia
frequently helps with different approaches to topics.

0.3 Copyright

This document is to be seen as OpenSource and I would be happy if anyone
decides to enrich this script by adding additional concepts, better explanations
or additional examples and illustrations and of course correcting all the mistakes,
that I made. The sources (.lyx or .tex) can be acquired by writing a short e-

mail to me: michaelprinzinger@gmx.de - However as in the GNU-Licence, T hereby fobid
anyone to postulate money for this document or use parts from it for commercial
works. It is meant to be a free help for students all over the world and it should
remain free.

1 Application

Movies

computer generated foregrounds, Animations, special effects

Games

the drive behind graphics development

Computer Aided Design (CAD)

architecture, products, cars, planes, mechanical parts

Education & Training

simulation of realistic environments, flight simulator

Visualization

medical applications: model ling of (parts of) the human body

Virtual Reality (VR)

Immersion, response to head motion, stereo pictures, additional components
(Sound, Force Feedback)

2 Math

2.1 Vectors

2.1.1 Properties

orthogonal vectors building a right angle: @ -7 =0

orthonormal orthogonal vectors having length 1: @- ¢ = 0 and ||u| = ||¢]] =1

construction use Gram-Schmidt Orthognoalization / Orthonormalization

2.1.2 Operations

length ||d| = /a2 +al + a2

scalar product a7 - b= ||| H5H cos ¢
usage: compute the angle between two vectors.

by

- b
T 2
b .

a1 as as) a1by + asby + asbs

S

tensor product a - bl = prxn

usage: combine two vectors to a matrix. e.g. for combining two 1D
functions to one 2D one (see Bézier Curves & Splines 10.2).

(a1 a2 ag)

- Z_)T _ bl a1b1 a2b1 agbl
ba aiby azba asby
b3 aibs azbs aszbs

cross product Hﬁ X Z;H = ||d|| HE’ sin ¢

usage: compute a third vector perpendicular to @ and b (3D)

ab

B

orthogonal projection d — b= =d-cos¢

2.2 Matrices
s [air a]

a1 a22

Quadratic A™*"™ where n = m

10

Identity A™*"™ having 1 on the diagonal and 0 everywhere else

2x2 10
mee g

Transpose AT : A™*™ — A™*" gwitch rows with columns

Adjoint A. This matrix has the entries

-1 if (i+j) odd
1 if (i+7) even

Aij 1= det (AU) . {

where A;; means the matrix resulting from A when removing the i" row
and the ;" column. The resulting matrix is called the cofactor matrix.
Take its transpose to get the adjoint matrix A.

The adjoint has the following nice property:

A-A=det(A) I,

Inverse A-A"1 =1 .

det (A) A

AT =

2.2.1 Determinants

Vectors

The determinant of two vectors, @, bis a parallelogram.

3

ab

= Zal¥Ypb — Yalb
Having three vectors it is a cube with parallel parallelograms as sides.

CLbC = TalYve — TalYeRb — TvYale + TelYalb + ThYcia + TelYbla

Matrices

There are several methods to compute the determinant of a given matrix. Look
them up in a linear algebra script.

2.2.2 Eigenvalues & Eigenvectors

Condition matrix A has to be quadratic.

11

Eigenvalues

AZ =\
where A is called eigenvalue.
AT = I)\Z
(A-XNZ=0
ain — A a12 a13 T T
an azx — A as3 E T2
asy ass asz — A - x3

solve this to get Ay ... \,.

Eigenvectors

Plug in A\; ...\, into A results in the eigenvectors.

Singular Value Decomposition (SVD)

For non quadratic matrices.

Benefit singular values, eigenvalues, orthonormal basis, pseudo inverse, condi-
tion

Singular Values o
for symmetric matrices they are equal to the eigenvalues
in case A is not quadratic we have A = M M7 and thus the singular values

would be oy =V AA
Decompose A € R™ ™ into A = ULV, where

01
Y= g9
03

with oy > 09>+ >0, >0
UeR™" and U - UT = I (orthonormal column vectors)
VeR™ and V- VT = VT .V =T (orthonormal column and row vectors)

Condition « := g—l

n

If k is close to one, the problem is well conditioned, if it is large the problem is
unstable

Pseudoinverse A’ = VY/UT where ¥’ results from ¥ when replacing all sin-

gular values by their reciprocal values (Ui | L+ — E’)

12

2.3 Coordinate Systems

world without explicitly storing the coordinates of the origin, we usually have
one world coordinate system, where local object coordinate system will be
place in.

local a local coordinate system refers to an object. If it is placed in a world
coordinate system, a mapping must be made to access points in the object
relative to the world coordinate system.

eye a perspective space with viewing coordinates.

screen the screen space is the coordinate system of the computer screen

mapping

Figure 1: mapping from one coordinate system into another

The world origin is o, the local one e. The world basis vectors are denoted
x,y, z, the local ones u, v, w. Then

= (Ferer20) = 0+ B+ Y+ 72

Additionally the local coordinate system may be rotated. Model ling both
rotation and translation by a matrix we can easily move forwards and backwards
through different coordinate systems (see 5).

Example
Da 1 0 e, Uy Vp O Du
py | =10 1 ey Uy vy 0 Do
1 0 0 1 0 0 1 1

Mapping the eye space to the screen space requires a mapping to the view
frustum (a unit cube) with normalized coordinates first.

2.3.1 Cartesian Coordinates

We use a orthonormal basis vector system, with the three basis vectors z-axis
(1,0,0), y-axis (0,1,0) and z-axis (0,0, 1).

p = (xo,Y0,20) =T -To+Yy-Yo+2-20

13

2.3.2 Polar Coordinates

We use two parameters to describe any point in the coordinate system: distance
from the origin r and angle between coordinate axes and the vector ¢.

p = (ro, Po)

2.3.3 Barycentric Coordinates

Mainly used for interpolating color values on triangles. We use non-orthogonal
basis vectors. a is the origin and (b — a) and (¢ — a) the basis vectors.

p=(B7)=a+p(b—a)+v(c—a)
p=(0-B=7)a+pb+n~c
a=1-0—7v
p=aa+ Bb+c
resulting in the constrain that a + 5+ v = 1.

2.3.4 Homogeneous Coordinates

Used for matrix transformations. They are based on projective geometry and ir-
replaceable useful in graphic transformations. The idea is to artificially increase
the dimension.

So being in 2D, we would result in having three coordinates

(z,y) = (2,9,1)
where 1 is the homogeneous coordinate. See (z,y,1) as the line o -z, - y, o |
a€R3
Direction And Location

The homogeneous coordinate w acts as a kind of pointer to a location (trans-
lation from the origin). But often we want a vector to store a direction rather
than a location. In the latter case we simply set w = 0 ind the first case w = 1.

Dehomogenization

If our vector is p'= , the dehomogenized vector is p'=

SRS
g ng g s

14

Properties

Homogeneous coordinates have some very useful properties justifying their usage

e any two lines intersect in one point
e points at infinity
e affine transformation become linear

e preserves cross-ratio

2.3.5 Mappings
Cartesian -> Barycentric
Tp — Ty Te— T] [1)] _ [Tp — Tq]
Y —Ya Ye — Ya Y Yp — Ya
Imagining a lines AC and AB passing through a barycentric triangle, we can
get 8,7 and « by:

_ fac(z,y)
b= fac (ﬂfb,yb)

_ fab (l’,y)
T Jab (336796)
a=1-0-7

where f,p, (z,y) can implicitly written as
fav (2,y) = (Yo — yo) T+ (Ty — Ta) Y + TaYb — ToYa = 0

A third possibility is using areas A,, Ay, A. resulting from drawing lines from
the center to the three points (A = A, + Ap + A.):

o Aa i
A AP
6—%—%
_ A -
T P

in the 3D case, we can use normal vectors instead of the area.

15

2.4 Implicit Functions
Implicit Lines
The common line definition is:
y=m-xr+t
the implicit form is easily obtained by:
y—m-x—b=0

where m is the slope (Steigung) and b the y-value, where the line crosses the
y-axis.

Since this form still lacks some lines like = 0 where m would be infinite
large, we advance to the more general

ar+by+c=0

Any point (x,y0) on this line must satisfy the equation: axg + byo + ¢ =0

Distance Point to Line:
The distance from point (x1,y1) to the line ax + by + ¢ =0 is

f(xlayl)

If (a,b) is a unit vector, the distance is directly given by f (z,y).

distance =

Implicit Circles

A circle with center (¢;, ¢,) and radius r has the implicit form
(2= e+ (y—)’ =12 =0
Implicit Ellipsis
A ellipse with center (¢, ¢;) and minor and major semi-axes a and b

(c— 01)2
a? b2

Given: function f (z,vy,2), point p'= (z,y, 2)

Surface Normal

The surface normal is given by the gradient

of of 3f)

ﬁ:vf(‘rvyaz): (%7@7&

16

Implicit Planes

P:(p—ad) =

A plane P given by three points @, b, ¢

—

ﬁz(b—d’) x (&~ @)

Implicit Spheres
f(‘ruywz) = ($—01)2+ (y_cy)2 + (Z_Cz)2 _7'2 =0

2.5 Parametric Functions

Parametric Functions use parameters to describe the function.

Parametric Lines

A parametric line passing through points pg = (xo,yo) and p; = (21, y1) can be

written as
[T } _ { xo +t (1 — o)
Yy Yo+t (y1 — o)

p(t) =po+t(pr—po)

Parametric Circles

A circle with center (¢, c,) and radius r can be written as
x| | cgt+r-cose
y | | ¢y+r-sing
Parametric Ellipsis
x| | cgt+a-cosg
y | | ¢g+b-sing

3D parametric surfaces have the form

z = f(u,v)
y=g(u,v)
z =h(u,v)

17

Parametric Spheres

Consider a sphere, that’s center is at the origin having radius r
T =71-cos¢sinf

y=r-sin¢cosd
z=r-cosl

where ¢denotes the longitude (angle between z-axis the y-axis and the vector on
the zy-plane) and 6 denotes the latitude (angle between the z-axis the zy-plane
and the vector). See FoCG p.41 .

z
0 = acos | ———
<\/x2 +y2+z2>

6 = acos (y, @)

By that we get

r-cos¢sinf

r-singcosf | +¢
r-cosf

11
I
=

2.6 Curves
linear p (t) = c1t + ¢
quadratic p (t) = cot? + c1t + co

cubic p(t) = et + cat? + 1t + ¢

2.7 Polynomials

Bernstein
B = (1) a-a s
Lagrange
e T — T
L; = -7
w= I 2=
7=0
i F]
Legendre

P, (z) = ! /\/(1—2tw+t2)t_"_ldt

T 2mi

18

Splines
1
bo (t) = Et?’

by(t) == (=3t>+3t>+3t+ 1)

[

ba (t) = = - (3% — 6t* + 4)

| =

by (t)=—-(1—1°)

S| =

n+1

b () =(n+1)) win(t—t)"
i=0

where
n+1 1

Win = H ty —t;
Jj=0
J#

2.8 Linear Interpolation

Linear Interpolation is the process of passing through a geometric surface by a
parameter t.
E.g. as we have already seen:

p=1—-t)a+t-b

is a linear interpolation. It is linear, because ¢t and t — 1 are linear polynomials
of ¢.
Interpolating through a set of points on the z-axis having assigned a height
y; to each point z;, interpolating over those height values, we get
Xr — Ty
T)=Yi+ —— Yi+1 — Vi
f(z) =y Tir1 — 7 (Yi+1 — ¥i)
Consecutively you can think of the xz-values as 3D vectors and the y-values as
color values.

2.9 Triangles

Triangles usually are the fundamental primitives for graphics programs. Most
commonly their vertices store a color value, which is then interpolated across the
triangle. To make this interpolation straight forward, we will use barycentric
coordinates.

Given: triangle AABC

19

Area(2D) area = 1 |zays + TpYe + TeYa — Tale — TvYa — T

Internal Point a point p is inside the triangle if and only if 0 < o < 1,
0<f<1,0<y<1.

Edge one point is zero, the other two between zero and one

Vertex two points are zero, the other one is one

—

Normal Vector 71 = (b — &') x (¢ — @) (a vector perpendicular to the triangle

edges)

Area(3D) area = H (5— (i’) x (¢—d)

2.10 Quaternions

The quaternions H can be seen as an extension to the body of complex numbers

. | Quaternions | Complex Numbers |
H=R x R3 C=RxR
q=1(q0,q) =a+ib+ jc+ kd z=x+1y
ny = (0,0) ny = (0,0)
n.=(1,0) n. = (1,0)
Z:ﬁ(%v—‘f) Z:|17|(7_y
q = |q| (cos (t),sin (t) - 7o) z = |z| (cos (t),sin (1))

2.11 Miscellaneous
Angle
The angle 6 of a circular arc of length [and radius r is equal to
0= ! [rad]
r
Example: Circle

l=2nr
6 =1=2" — 271 [rad]

T T

20

Solid Angle

Figure 2: solid angle

A solid angle is the equivalent to the angle in 3D. The angle () with
a spherical area a is equal to

Q= % [stearradians]
r

Example: Sphere

a = 4mr?
_a __ 4A7r? _
O =% =T = 4n s

Solid Angel Differential

Figure 3: Solid Angle Differential

For light purposed we need to differentiate the solid angle:

21

arc length [0,6 + df] : rdf
arc length [¢, ¢ + d¢] : rsinOd¢
area differential dA = (rdf) (rsin0d¢p) = r? sin dOde

angle differential dw = %4 = sin 0dfd¢ [sr]

We can use this result to integrate over the entire sphere and get the solid angle
8 ™ 2
S = / / sin 0dfd¢ = 4 [sr]
o Jo

Ratio (Teilungsverhiltniss)

Having three points Aq, Ao, A3 on a line, we have the ratio

| A1 Ag|
| A As|

Crossratio (Doppelverhitniss)
Having four points A;, As, A3, A4 on a line, we can define a crossratio

|A1As|
[A2As|
|[A2As|
[A3Asl

3 Raster Algorithms

Pixel (picture element) a single element of a raster display indexed by row
and column (4, 5)

Raster rectangular array of pixels

Scanline row of pixels in the raster

3.1 Display Types
3.1.1 Vector Display

advanced oscilloscope, controlled by horizontal /vertical plate voltage, creation
of whole objects (i.e. vectors) instead of single pixels

high resolution, interactivity, scaling

- few colors, wire frames without surfaces, low complexity, expensive

22

3.1.2 Raster Display

Cathode Ray Tube (CRT) traditional monitor with blobby pixels associ-
ated with a patch of phosphor, that’s glow depend on the electron beam’s
intensity (color CRTs have three beams red, blue, green)

Liquid Crystal Display (LCD) almost perfect squares act as filters, which
vary their opacity to darken a back light. They do this by liquifying when
shot at with heat

Framebuffer memory array in which an image is stored, before it is displayed
on the screen

filled surfaces, color variation per pixel (lighting, shading), real time refresh
- aliasing: artifacts, moire patterns, difficult selective update, discrete sampling,

jaggies

3.2 Line Rasterization

Given start and end point, we want an algorithm that draws a line between
them. Usually only integers are respected (i.e. whole pixels are used for the
line).

Ray Acceleration
Draw every pixel the line touches.

fast
- ugly
Bresenham Algorithm (Midpoint Algorithm)
Makes use of a implicit form of the line:

fzy)=(yo—y1)z+ (z1 —20) y + zoy1 — x190 =0

where (2o < x1). The key idea of the algorithm is the line’s slope m

%1 —Yo
T1 — To

m

The algorithm assumes the line to proceed more horizontally than vertically from
start to end point, so the next pixel is either on the same level (x + 1,y) or one
above (z + 1,y + 1). All other cases can be deduced straight forwardly (e.g. for
the vertical case, switch y and x. Now the idea is to look at the midpoint between
those candidates (z + 1,y + 0.5) and compute whether the line goes above or
below it and make a decision accordingly. We can get the distance between
point and line as explained in 2.4 by simply evaluating f (z + 1,y + 0.5). Since

23

x1 > xo, (1 — xo) will always be positive. Thus we can read whether the line is
below or above the point, by looking if (x1 — () y has increased or decreased.

Algorithm 1 Bresenham Algorithm

Y=Y
for ¥ = zgto x; do
draw(z,y)
if (f(x +1,y+0.5) < 0) then

y=y+1

For more efficiency, we can reuse previous results using the following properties
flx+1y)=f(zy)+ o —)
fle+1Ly+1)=f(2,y)+ (yo — 1) + (x1 — o)

Y=Y
d=f(xo+1,y0+0.5)
for x = xgto x; do
draw(z,y)
if(d < 0) then
y=y+1
d=d+ (yo—y1) + (z1 — 20)
else

d:d+(yo—y1)

We still have a real operation when adding 0.5, yet the code uses only integers
apart from that. We can outmaneuver this by multiplying with 2.

d=2f(x0+1,y0+0.5)

d:d—|—2(y0—y1)+2($1—$0)
d=d+2(yo—y1)

If the line is very diagonal, it will have fewer pixels than a straight line and thus
appear less bright. As a solution you may take the distance to the midpoint d
and use it to adjust the pixels brightness according to d. For grey-scale color

ﬂclosa has proven to be a good compensation.

3.3 Triangle Rasterization
Gouraud Interpolation

Determine the triangles pixels colors by interpolating the color at it’s vertices:
c = acy + fBer + e

where («, 3,7) are the pixel’s/point’s barycentric coordinates (see 2.3.3).

24

If the pixel is on the edge of two adjacent triangles, there is no “right one” to
assign it to. Therefore we just decide for one of them, as long as the decision is
well defined. One solution is to choose a random off screen point, and make the
decision depending on it’s position.

Antialiasing

The edges of triangles will appear pretty “jaggy” blurry on the screen. A simple
solution for this problem is to allow pixels to be half on (avalue).

Box Filter: One easy method is to underlay a rectangle and use it as a
filter, where the pixel’s color is set to the average values inside the rectangle.

3.4 Polygon Rasterization

If we are dealing with polygons in general rasterization is getting a bit thougher.
Our task is still to draw all pixels within a polygon.

Seed Fill

Algorithm 2 Seed Fill

1. draw polygon edges with the Bresenham algorithm (see 3.2)
2. randomly pick a point within the polygon and draw it

3. O recursively check all neighbouring pixels for being inside and draw them

- deep recursion (stack overflow), inefficient, no shading

2D Scan Conversion

Use the edges to partition the screen into outcode areas and apply a-clipping
(see 3.5), painting every pixel inside.

- a lot of useless computation, highly inefficient

slightly better when using small screen bounding boxes, instead of the entire
screen

Scanline

The idea is to proceed scanline per scanline from bottom to top, to find intersec-
tions with the polygon and draw between the intersection points. The x-value
to start the line at can be determined by storing the lowest z-coordinate of the
edges and keep this one up to date by adding the reciprocal slope % = &% each

=X
time we climb a line higher.

25

Edge Table a list of all edges of the form

1 Az

7 = A, | next edge

‘ Ylower Tlower yupper

these nodes are sorted by Yiower- % is the increment required to step a line
higher.

Active Edge Table a list of edges that are intersecting with the current scan-
line

1 _ Az
= Ay | next edge ‘

Tintersect ‘ Yupper

sorted by Tiptersect- The current intersection point is (Zintersect, Yscan)

Algorithm 3 Scanline
1. initialize Edge Table (ET)

2. set Active Edge Table (AET) to (: AET = NULL
3. draw all horizontal lines
4. Yscan = Ylower Of the first ET entry

5. do

e move all edges with yscan == Yiower from ET to AET

e sort AET
e draw lines:
— AET[0].X, Yscan to AET[1].%X, Yscan
— AET[2].X, Yscan to AET[3].%X, Yscan
® Yscan + +
e remove all edges with yupper < Yscan from the AET

° :1::17—0—%

() while AET# ()

fast, efficient, allows a good combination with shading

3.5 Line Clipping

The task of clipping is, to only draw what is inside the visible area (e.g. the
rectangle of the monitor). Now we haven given start and end points of lines, if
they’re both inside the clipping rectangle, we draw the line. Yet even if they
are both outside, it is not given, that the line between does not cross the visible
rectangle.

26

Cohen Sutherland

We partition the image into nine areas by lengthening the rectangles edges.
Then we assign each area with an outcode (see figure).

1001 0001 0101
ymax
1000 0000 0100
ymm
1010 0010 0110
X, X,

min max

Figure 4: outcodes for the clipping rectangle

The four Boolean correspond to: |2 < Zmin| | > Tmax| |¥ < Ymin| [V > Ymax| where
ZTmins Ymins Tmax, Ymax refer to the lower left and the upper right corner of the
clipping rectangle.

Algorithm 4 Cohen Sutherland

1. determine the outcodes for the start and end points P; and P

2. check Trivial Accept: both points are inside
outcode (P;) V outcode (P2) = 0

— draw the entire line

3. check Trivial Reject: both points are outside in respect to one edge
outcode (P;) A outcode (Py) # 0

— draw nothing

4. find intersection points S, S2 where the line intersects with edges. Replace
P; by the nearest intersection point.
O restart at 1.

a-clipping

a-clipping adds an Improvement to the Cohen Sutherland algorithm by intro-
ducing Window Edge Coordinates (WEC) For both points of the line we
determine four WECs:

WEC e (P) = Pz — Tmin

WECright (P) = Tmax — Pz

27

WEChottom (P) = Py — Ymin
WECtop (P) = Ymax — Dy

If WECEg (P) < 0 then P is outside in respect to edge E. This can be used for
an efficient outcode generation.
For a-clipping we choose the parameter form of a line: PyPy = {p = p1 + a (p2 — p1),a € [0,1]}.
The value of this parameter « for getting an intersection point S with an edge
FE can be determined by

B WECE (Py)
" WECg (Py) — WECE (P)

as

Algorithm 5 a-clipping
1. compute the eight WEC for P, and P»

2. compute the outcodes (take the sign of the WECs)
3. check Trivial Accept and Trivial Reject

4. amin =0, apax =1

5. O for every E where an outcode is set

_ WEC z(P))
= WECR(P1)—-WECg(P;)

® (g
e if outcodeg (P1) — min = Max {min, @s}
e else if outcodeg (Po)— Qmax = min {amax, as}

6. if aumin > Qmax — return empty line
else — return (pl + Qmin - (p2 _pl) » P1 + Qmax - (p? - pl))

If we are dealing not with an rectangle, but with a Convex Clipping Domain
we simply apply a-clipping with one WEC per edge. If however, we have a
Concave Clipping Domain we have to partition it into convex ones and
merge the results.

0

P,

Figure 5: reversed clipping in a x-window system

28

In X-window systems we often have multiple windows overlapping. In this case
we may also apply a-clipping, yet we have to reverse the results (do not draw
what’s inside).

3.6 Polygon Clipping
Similar to line clipping, but now we have a complete polygon to clip against a
clipping rectangle.

Sutherland Hodgeman

The idea is to clip against all edges consecutively and when appropriate add
intersection points or polygon vertices to the final set of vertices. Doing this we
have to differentiate four different classes:

P q Bie Pl P

Figure 6: Sutherland Hodgeman Classes

inside/inside add P;;; to the set of vertices
inside/outside compute and add intersection point S
outside/inside compute intersection point S and add S and P,

outside/outside do nothing

Doing this check consecutively for all vertices (Py Py, — PoP3 — -+ — P, Py)
for all four edges, we can return a set of vertices defining the visible polygon.
3.7 Culling

When an entire triangle lies outside the view volume, it can be culled. Culling
means elimination of a triangle or a whole object from the pipeline. See the
Chapter about Occlusion & Visibility 7.7.

3.8 Antialiasing

In general aliasing occurs when Nyquist’s sampling theorem was hurt (see 11.5.1),
therefore the best way, if possible, is to use a higher sampling frequency.

29

3.8.1 Line

Line’s often appear often jagged having aliasing artifacts. Methods to counter
this are:

e treat them as a one pixel wide quadrilateral blended with the background
e consider an infinitely thin object with a halo

e use a anti aliased texture

3.8.2 Screen Based

A technique often used for screen based antialiasing is weighted interpolation of
neighbouring pixels:

p(z,y) =Y wicli,z,y)
=1

where w; are weights describing the contribution of a neighbouring pixel and
¢ (i,x,y) returns the color of neighbouring pixel i. Note that the weights have
to sum up to 1: Y1 | w; = L.

Other methods include

Full Scene Antialiasing (FSAA) Render the image at a higher resolution
and average neighbouring pixels. This is usually combines with Mip-
Mapping (see 11.5.2), but instead of choosing the Mip-Map level by the
longer side of the parallelogram, we take the smaller side and thus choose
a Map in higher resolution than usual, but also render the object in higher
resolution than the final image on the screen has. Now for every pixel in
the screen we check the n closest fragments in the higher resolution image
and average them to determine the pixel’s value at the current position.
The more parallel fragment pipelines we have, the more efficient this n
per 1 look-up can be realized.

Anisotropic Filtering see FSAA above

Accumulation Buffer Use the accumulation buffer (see 0.1) to use multiple
passes blending over each other

Multisampling compute a polygon’s grid coverage

Stochastic Sampling (Jittering) instead of sampling uniformly, sample ran-
domly. This results in uniform noise added to the resulting image, but the
human vision system is very forgiving to uniform (or white) noise

Gamma Correction see next chapter 4.8

30

4 Color

Color as perceived by human being is always a three dimensional problem, since
the human eye differentiates three kinds of cones for color perception and rods,
sensors detecting brightness and darkness (Tristimulus Theory). Ours are
especially sensitive to red, green and blue.

8 Bit Byte entries in a pseudo color framebuffer point to a look-up table with
color values

24/32 Bit 1 Byte per color (True Color)

Using multipass rendering techniques the color depth becomes especially impor-
tant. If the precision (depth) used for one pixel’s color is to low, nasty visible
quantization artifacts will occur.

4.1 Light

Seeing works with light entering the eye hitting the retina. We describe this
light signal and its wavelength as the radiance.

radiance L (\) radiance is the intensity of light with a certain direction and
wavelength

wavelength \ = ? with ¢ as the speed of light and f as frequency.
light has a huge spectrum of wavelengths, of which a small part are visible
as color. Other spectra are UV, infrared, microwaves, radio waves, x-rays,
gamma-rays

hue the seen color, i.e. the dominant wavelength. E.g. the hue of pink is red.

saturation color intensity (how far is it from grey of equal intensity)

brightness the light energy, the emitted light. It is also called luminance.
E.g. darkblue and lightblue.

Response

The human eye perceives light not linearly, but is more sensitive to certain
spectra; which also is true for cameras. Therefore we can define a response to
light:

response = k / w (A) L () dA

where w () is the response function and k a hardware dependent (organic de-
pendent) constant.

Color

The phenomena of color is based on different wavelengths of light. E.g. red is
around 4.3 - 10 outcode

31

4.2 RGB

Using red, green and blue (RGB) as basis colors, we have an additive color
system. This is suited for monitors, which work with additive light.

4.3 CMY

Having actual paint, like with printers, we fall back to the well known subtractive
color system. For this is is common to use cyan, magenta and yellow (CMY) as
the three basis colors.

CMYK

Often the CMY model is extended by the color black. This model is mainly
used for printing devices, since it would be more costly to mix black out of cyan,
magenta and yellow.

4.4 YIQ

The YIQ color model is traditionally used in NTSC-television. The variable Y
solely contains the luminance necessary for black & white television and I, Q
hold additional color information.

32

4.5 HSV

The Hue, Saturation, Value (Brightness) color model is a more intuitive color
model derived form the RGB model. In the HSV model color is more defined by
it’s properties (hue, saturation and brightness) than parted into three different
colors.

hue given as angle between [0°, 360°]
saturation the distance from grey [0, 1]

value from white to black [0, 1]

4.6 XYZ

Y

Line of
Purples

X

The XYZ color model is based on the Tristimulus Theory and attempts to
standardize color values. In contrast to physical reality the CIE! developed a
model in which any linear combination between colors is possible, even if it is
contradicting reality. In addition there is one grey light without hue information
(color saturation) and two with zero luminance and only hue information. We
have

800
X/Y/Z = 683/ z/g/zZ(N\) L (\) dA
380
where 683 is a constant to conform luminance standards and [380, 800] is the
range of visible light. Y returns the luminance (brightness). The big advantage

ICommssion Internationale de L’Eclairage

33

of this approach is that in contrast to the previously discussed models, this
model is hardware independent.

AGB Calor

510 " Monitor Gamut

a9

” Line of
Purples

400 nm

Figure 7: Comparison with the RGB color model
In contrast to other models the XYZ is therefore able to model every visi-
ble color, however monitors are not, since they are limited to the colors they
can produce by adding three light beams. The triangle represents the monitor
gamut.

There is an addition called isotopic luminance. This is what you see at night,
when you look at a world lit by moonlight. Although it is not possible to deduce
the isotopic V' directly from X,Y, Z there is a good approximation

Y+Z7
V_Y[1.33<1+ ;;)—1.68]

Alternatively you can add V as fourth value.

4.7 Alpha Blending

The « refers to the degree of visibility of a pixel. If a pixel is only half visible
(v = 0.5), we want to see half of the pixel behind it (e.g. glass, water). Having
cy referring to the foreground pixel’s color and ¢ to the color of the background
pixel, we get a kind of interpolation:

c=acs+(1—a)ey

4.8 Gamma

Monitors are non-linear in respect to the input intensity a (0.5 input intensity
can be displayed as 0.25). This degree of freedom is referred to as gamma value
.

displayed intensity = M - a”

34

where M is the monitors maximum intensity.

In0.5
In o

a=05"—y=

To find a you can for example let your monitor display two images: a black &
white checkerboard pattern and a grey value image at intensity 0.5. Fiddling on
the intensity you can find the grey value that corresponds to the checkerboard,
which will also look like grey. Having this you can deduce a.

Having v we can correct this non-linearity by the transform a = av
Without Gamma Correction we will encounter the following phenomena:

e color interpolation is not linear (without Gamma Correction mid tones

will appear too dark)
color fidelity: colors will differ from their true hue
distance-squared fall-off: colors fade out to darkness way too fast

dithering: blending of colors (see Screen Door Transparency 7.6), appears
only with color depths below 24bit

aliasing (Attention: gamma anti-aliased images for CRTs look jagged on
LCDs)

problems with the use of anti-aliased textures (MipMapping has to take
gamma correction into account)

4.9 Fog

There are four arguments for using fog;:

1. increasing realism
2. helps viewer to determine distances
3. helps culling (far objects are hidden in fog), avoids far-plane pop ups

4. implemented in hardware
Adding fog to a scene the user sets two variables

fog color ¢y

fog factor f € [0;1] decreasing with the distance from the viewer

If ¢ denotes the color resulting from shading, the color added fog ¢, computes

as
Cp:f'cs+(1_f)c.f

35

f computes by the distance given in z-values

~ Zend — ?p

Zend — Zstart

where start and end denote the fogged area or exponentially falling fog
f _ e—dfzp
where dy controls the fog’s density.

4.10 Color Conversion

RGB — CMY

c 1 R
M |=(1]|-1| B
Y 1 G

CMY — CMYK

K min {C, M,Y}
c | _ C—-K
M | M-K
Y Y -K
RGB — YIQ
Y 0.299 0.587 0.114 R
I | =1 059% -0.275 -0.321 B
Q 0.212 —-0.523 0.311 G
RGP—HSV

V =max{R, G, B}
g — max{R,G,B}—min{R,G,B}
- max{R,G,B}

60 - RO B e RGBT if max{R,G,B} =R
H = {60- M R.G B} —mm{R,G.B] 120 if max{R,G,B} =G
R-G . B
60 - max{R,G,B}—min{R,G,B} + 120 if max {Ra Ga B} =B
RGB — XYZ

Since the XYZ color model is the only discussed model, that is hardware inde-
pendent, it is hard to convert from the other models, because hardware infor-
mation is required.

X X, X, X, R
Y |=(v v, v B
Z Z. Zy Zy G

36

where X,.Y,.Z, refers to and description of the monitor’s red channel in the XYZ
color model. By linear algebra this conversion can be reduced, so that only
Y., Yy, Yy must be known. Additionally those three values can be approximated
numerically, when now hardware information is given. However the XYZ scale
can be directly converted to grey scale RGB color

Y =0.2125R 4 0.7154G + 0.0721B

5 Transformation Matrices

In general we want to use matrices to change a set of vectors representing an
object.

a1l ai2 T | _|a1tr a2ty
a1 a2 Y a1 +x az+y

We can partition these changes into categories:
Types
e Rigid Transformations: preserving distances and angles
— identity, rotation, translation
e Similitudes: preserving angles, preserving width/height ratio
— isotropic scaling
e Linear Transformations
— scaling, reflection, shearing

e Affine Transformations: parallel lines remain parallel, line ratios are
preserved

— translation

e Projective Transformations: parallel lines intersect at points at infin-
ity, preserves cross ratio)

— projective transformation

5.1 Scaling

Scaling changes length and direction.

37

O

Figure 10: horizontal shearing

isotropic scaling

Figure 8: Isotropic Scaling

scale (s) = [8 0 }

S

scaling

Figure 9: scaling

scale (84, $y) = [SS SO]
y

5.2 Shearing

Shearing pushes objects sideways.

horizontal shear (s) = { (1) i]

vertical shear (s) = [i (1) }

38

5.3 Rotation

s . T
COS— —SsI—
4 4

. T T
sm— COos—

4

—

Figure 11: Rotation

Rotation rotates a vector around a certain angle. We rotate around the origin.
cos¢p —sing
tat = .
rotate (¢) [sing cos¢ }
5.3.1 Arbitrary Rotations In 3D
Orthogonal Matrices
3D rotation matrices are orthogonal and preserve the orientation.
or-0=1

det (0) =1

The rows are three arbitrary orthogonal unit vectors (i.e. orthonormal) and the
columus are three different orthogonal unit vectors (i.e. orthonormal):

Uy Uy Us
Ruvw = Vg Uy Uz

with
U-U=0-"=w-wv=1
U-T=Uu-w=v-w=0
Therefore
R
u-U 1
Ruyw U= | -6 | =0 | =x
WU 0

and Ry ?722/7 Rypw - W =2

Note The inverse of an orthogonal matrix is its transpose: R L, = RL .

39

Rotation About An Arbitrary Axis/Vector

So we have found out that we can create arbitrary rotation matrices from a or-
thonormal basis. If we want for example to rotate about an arbitrary axis/vector
a, we

1. build an orthonormal basis with this vector @ = @
2. rotate the wvw basis to the canonical basis
3. rotate around the z-axis

4. rotate back to the uvw basis

Three Euler Rotations

Figure 12: Euler Rotations

Euler found out that any rotation in 3D can be described using three angles
(¢,0,1) (the Euler Angles). If we put these into rotation matrices, we can
make one matrix out of them: A = BCD

Usually the first rotation ¢ is about the z-axis, the second 6 about the z-axis
and the third ¢ about the z-axis again. This draws

cos¢ sing 0

B=| —sing cos¢ O
0 0 1
1 0 0
C=1|0 cosf sinf
0 —sinf cosf
cosy siny 0
D= | —siny cosy 0
0 0 1

The theory behind is that we are using a local coordinate €, e/, e’ system

x) Cyr Tz
defined by the three Euler angles
¢ = ((ez,€l))
0 = ((ex; L))

40

Y= <(L7 6;)>

where L is the intersecting line between e;e, and eje;. So instead of a real

rotation, we are just translating another coordinate system and the Euler angles
store the relationship between both coordinate systems.

- There is a problem with Euler angles called gimbal lock: We want to rotate
around the z-axis. First we rotate by 90° around the x-axis (pitching),
make no y rotation, finally any rotation around the z-axis. At this point
this z-axis rotation actually corresponds to a rotation around the y-axis?.
This problem does not appear when using Quaternions (see below).

Rotation Axis And Angle

In this method we describe an arbitrary rotation be giving an axis n and an
angle w.

1. partition a vector Z into a parallel part x = (z | ng) no and an orthogonal
part x| =z — 1

2. rotate the orthogonal component: ¥ = x| cos (w) + (np x) sin (w)

3. add the parallel part: ¥ =7+ z)

This can of course be represented by a matrix by mapping unit vectors.

If we are given an orthogonal matrix O we can find the axis of rotation n by
looking for the eigenvector to the eigenvalue of 1. The angle w can be determined
by:

<trace (0) — 1)
w = arccos | ——————

2

because
trace (O) =1+ 2 - cos (w)

Complex Numbers and Quaternions
Any 2D rotation can be described by a complex number zg
Z=n-2

And any 3D rotation of point ¢ about axis 7 and angle w can be described by
a quaternion ¢ (see 2.10)

[

tate (7, w) Y fsin?
rotate (nN,w) = COS — S — -
’ 2 2]

BN

2Try it with your head. Pitching / x-axis rotation means moving your head towards your
shoulder. If you now try to rotate it in z-direction (forward), you actually rotate around your
y-axis (imagine an extension of your spline through your head.

41

the result is of the form
g - (0,7)-q
Matrix representation can be acquired mapping the three unit vectors

Axis n and angle w can also be acquired easily.

Two Planar Reflections

A rotation has the form

et = [2050

a reflection can also be written in terms of trigonometry

| cos2¢ sin2¢
reflect (¢) = { sin2¢ —cos2¢ }

Therefore we get the equation
reflect (0) reflect (¢) = rotate (2 (60 — ¢))
allowing us to express any rotation by two planar reflections.

Note that rotation matrices have a determinant of 1 while reflection matrices
have determinant —1.

5.4 Reflection

Figure 13: Reflection

Reflecting an object on an axis.

x-axis reflect (s) = [(1) _01]

42

. -1 0
y-axis reflect (s) = { 0 1]
Later we will introduce an ordering of vertices of a triangle (see 10.1.8). A re-
flection might distort this ordering resulting in wrong illumination and lighting.
To determine whether a matrix is reflective, compute it’s determinant and check
the sign: —1 means reflective.

5.5 Translation

The problem with translation is that talking about the other transformations we

have seen every vector as offset from the origin, what makes them unmovable.

Therefore we artificially move a dimension up using homogeneous coordinates:
Translation usually is performed by adding a translation vector ¢:

a1 a2 t x T+t
a1 az to y | =1 ytt
0 0 1 1 1

after dehomogenization, we have what we wanted.

5.6 Composition of Transformations

A composition of matrix transformations corresponds to a matrix multiplication
of the transformation matrices involved. However matrix multiplication is not
commutative meaning it does matter whether you do a rotation before scaling
or a scaling before rotating.

Because it is associative we can combine all transformations into a single
matrix and use this matrix to transform all involved vectors only once.

Note matrices are multiplied from right to left
M = RS

means first a shearing is applied and then a rotation.

Decomposition

The opposite is of course possible as well. Using for example SVD (see 2.2.2)
we can decompose the matrix into a diagonal part (reflection and scaling) and
orthonormal /orthogonal parts (rotation). Interesting is that any transformation
can be decomposed into two rotations and one scaling:

1w o]n

A rotation on the other side can be decomposed into three consecutive shearings:

cos¢p —sing | |1 % 1 0 1 %
sing cos¢ | |0 1 sing 1 0 1

This is important since shearing is a very effective raster operation.

43

5.7 Transforming Normal Vectors

One problem is that we cannot apply the same transformation matrix both to
the object and to the object’s normal vectors. Consider a shearing, the direction
of the y-vectors are not changed, yet the form changes and the y-normal vector’s
direction is no longer perpendicular to the surface.

t Mn

*

Nn

Mi

Figure 14: Transforming Normals
The normal vectors are dealt wrongly with the transformation matrix applied
to the object

Therefore we need to deduce separate transformation matrices for the normal
vectors. We start with the fact, that the normal vector 77 and a tangent vector
t are perpendicular:

We add an identity matrix
il t=a" I t=i"M ‘M- t=0
and change the order
(ATM1) (Mt) = (RTM)ty =0
fiay =al M~
- — _\T _N\7T
= (nTM 1) = (M 1) 7
_I\T
N=(M")
If however we know our matrix to be orthogonal (e.g. it has been formed by ro-
tations), we can take the matrix itself for transforming the normals, because the
inverse of an orthogonal matrix is its transpose and two transpositions cancel
each other out. Finally since rotations and translations are rigid body trans-
forms (the shape is not changed) the matrix will return a unit normal vector.

In case of uniform scaling, the matrix can be used to transform the normals,
yet the resulting normals have to be normalized (they are no unit vectors).

5.8 Windowing Transforms

Often we will need to scale a window in a X-window system. The most easy way
to create a correct matrix for this task is to see it as three different transforms.

1. move the lower left point of the window to the origin
2. scale the window rectangle

3. move the lower left point to the target position

44

5.9 Inverse Transformations

Since ordinary matrix inversion is a costly operation, we can use background
knowledge to quicken the inversion:

translation £ — —t
rotation R — R”
scaling scale (s, sy, s,) — scale (L 11)

Sy) Sy’ Sz

Curiously enough we can make use of the SVD, because of the fact that we can
partition any transformation into

M = Ry scale (s, Sy, S2) R

the inverse is simply

1 1 1
M~ = RT scale (—, — —) RT

Sz Sy Sz

5.10 Projective Transformations

Projective Transformations have 1,2 or 3 vanishing points. These are points
where virtually parallel lines intersect in the perspective space. These 3 vanish-
ing points v; can be found at the bottom row of or homogeneous 3D transfor-
mation matrix.

1 0 0 #©
0 1 0 ¢t
0 0 1 3

v U2 U3 1

t; describe a translation of the object.

5.11 Big M

All together we now have a matrix of the form

a1 a1z a1z 4
G21 Q22 Qg3 to
asz1 aszz asg t3
U1 (%] U3 1

where a;; denote the linear part for all linear transformations, ¢; the affine part
for translations and v; the part for projective transformations.

45

6 Viewing

In this chapter orthographic and perspective projection as well as dealing with
occlusion and hidden lines is discussed.

orthographic three dimensional objects are displayed on the two dimensional
screen, but without perspective viewing. That means parallel lines are
still parallel in the orthographic 3D model

perspective perspective also refers to the displaying of 3D objects, yet as seen
by a camera/eye. That means parallel lines will intersect at some point
on the horizon.

occlusion When modeling 3D scenes some objects will be in front of others,
some will be partially occluded. We got to find out which are in front.

hidden lines both in orthographic and perspective transformations we will
have to deal with hidden lines (e.g. of wire frames). Since this easily
leads to artifacts and a wrong perspective/orthographic impression we
will discuss methods to deal with these phenomena

6.1 Canonical View Volume

(1,1,1)

(-1,-1-1)
-

Figure 15: Canonical View Volume

The canonical view volume refers to a cube with the dimensions (z,y,z) €
-1, 1]3. It serves as a intermediary between any viewing transformation and
the screen (Clipping is much easier inside this volume). Let n,,n, be the pixels
on the screen, then x = —1 will be mapped to the left half, x = 1 to the right
half, y = —1 to the bottom half and y = 1 to the top of the screen.

O Ne—1

ng
Tpixel 2 2 1 ZLcanonical
n Ny —
Ypixel = 0 Ty yT Ycanonical
1 0 O 1 1

maps the pixels of the canonical view volume to real pixel centers ([—0.5, n, — 0.5]x
[—0.5,n, — 0.5]) of screen pixels.

Coordinates inside this volume are called normalized device coordinates.
Advantages of using this intermediary step are

e the transformation can be expressed as a 4 x 4 matrix

46

e projection to the 2D screen becomes easier (throw away z)
e clipping against the unit cube is more efficient than against the frustum

e maintains relative depths (important for the Z-Buffer)

6.2 Orthographic Projection

Figure 16: Orthographic View Volume

Having a general orthographic view volume we differentiate the six planes
of it by:

left plane [=2«
right plane r =z
bottom plane b=y
top plane t =y
near plane n =z
far plane f ==z

Note that n > f!

Usually the camera’s or user’s head is pointing to the y-direction and looking into
—z-direction. Furthermore the y-direction in upwards, z-direction is sidewards
and z-direction in/outwards.

Mapping to the Canonical View Volume

For that we first move the orthographic view volume to the origin and then do
a scaling:

|

ZTcanonical —1 0 0 0 1 0 0 —H'TT T
Yecanonical _ 0 % 0 0 0O 1 0 % y
Zcanonical 0 0 n%f 0 0 0 1 %f -

1 0 0 0 1 000 1 1

47

If the matrix that maps the canonical view volume to screen coordinates is added
at the left, we can directly map to screen coordinates. The resulting matrix is
called M, and we get:

Tpixel
ypixel _ Mo

Zcanonical

1

—a e R

6.3 Viewing Direction

We often want to change the viewing direction, if e.g. the user or camera moves
it’s head. For specifying the view direction we define three variables:

eye position e, the position the eye sees from
gaze direction g, the direction the viewer is looking

view-up vector ¢, any vector bisecting the viewer’s head, where “up” is for the
viewer

Furthermore we define a special coordinate system for viewing with axes u, v, w
and the origin at e. Then we get:

__ 9
lgll

t X w
Uy=—-
([t x wl]

V=w XU

Mapping the viewing coordinates to the orthographic view volume

Again we first move the viewing coordinate system to the origin of the ortho-
graphic view volume and then align uvw to zyz.

i Yu m 0 1 0 0 —Te
oz oy oz 001 0 -y
My = Tw Yw Zw O 00 1 -z
0 0 0 1 0 0 O 1

And again we can combine the latter two matrices to directly transform to
screen coordinates:
M = M,M,

48

6.4 Perspective Projection

PICTURE PLANE/

Figure 17: Image Plane

The mathematical idea is to think of an image plane between the viewer and
the object. Now for every point in the viewing plane, think of a line pointing
directly to the viewer’s eye. This line intersects with some point of the object.
Draw this point on the pixel the line started from.

E

(0]
(o]
o
view plane
[

Figure 18: Image Plane with variables

d
Ys =Y
z

The key of dealing with perspective projections are the homogeneous coordinates
(see 2.3.4). They allow to use linear functions i.e. matrices even for those
transformations. If we are done with our object transformations we can use a
projective matrix M, for mapping to the orthographic view frustum:

1o 0 0
01 0 0
Mpzooﬂ_f
00 + 0

because of the dehomogenization (division by w), we can scalar multiply M, by

49

to make it more pretty (no divisions):

n 0 0 0

0 n 0 0
M, = 0 0 n+f —fn

0 0 1 0

The third entry in the last column has a special meaning. Since applying per-
spective projection depth information would get lost, we use this position to
map the original z-value to the homogeneous slot w. If we later dehomogenize,
we effectively divide by the z—coordinate and get the perspective view effect.

Mapping the perspective model to the orthographic view frustum

Figure 19: Perspective Projection

Thanks to the homogeneous coordinates we still found a matrix to map back
to the orthographic view frustum. Therefore once again we can combine our
matrices to directly map to the canonical view volume. Note that in general
this cannot be done, because the perspective matrix destroys angles and ratios,
which we would need for lighting calculations. So in general we will perform the
lighting stage after model and view and then apply the perspective matrix.

M = M,M,M,
2n r+l
= 2O ;—J_ré 0
o = = 0
M = t—b t;b
n+f 2n-f
0 0 -1 0

Items

Diagonal transforming the view frustum range [—o00, oo| to the canonical view
volume [—1,1]. Z= gives [0,1] and the 2 in the enumerator gives [—1,1].
The n and n + f is because of the perspective.

50

:—ﬂ, % shearing factors. The frustums side planes needs to be sheared to a

cube. n, [are already sheared correctly.

—1 very important. By this factor the z—coordinates are written to the w—coordinate.
That means dehomogenizing means division by z and therefore getting the
perspective into 2D coordinates.

2n-

[~

As mentioned above we will divide by z when dehomogenizing. That
would mean to loose our z-values. Therefore this term allows us to have
the original z-values (depth values) in the z—coordinate after dividing it
by z. This is important, because we will later need these depth values,
when we want to determine which object to draw (i.e. filling the Z-Buffer).

—

3

Properties
e maps lines to lines, triangles to triangles and planes to planes
e point/vector ordering may change (because oo is mapped to a finite point)
e line segments can be split (because co is mapped to a finite point)

e maps parallel lines to lines intersecting at infinity

points at infinity (vanishing points)

6.5 Field Of View (Camera Transformations)

Viewing
frustum

Figure 20: Field Of View

A camera is defined by intrinsic and extrinsic parameters:
extrinsic position and rotation

intrinsic focal length (Brennweite) and aperture (opening)

Extrinsic Transformations

Camera position is at the origin, view direction is —z and up is y. Extrinsic
transformations change these three values.

OpenGL gluLookAt (eye,,eye,,eye,, aty, aty, at,, up,, up,,up,)

o1

Figure 22: Mapping Of Z illustrated with colors
The vertical line represents the position of the eye. The orange part behind
the eye is mapped beyond the blue part representing everything beyond the far
plane+oo. The green part is the view frustum and below the canonical view
volume. The yellow part between the eye and the near plane remains.

Intrinsic Transformation

Figure 21: View Frustum

Describes the projection frustum. The image plane is located at n = —z. The
viewing frustum is important, because it corresponds to the visible world. Ev-
erything outside will be clipped to this frustum.

OpenGL gluPerspective(fovy, aspect, near, far)or glFrustum(left, right,
top, bottom, near, far) for asymmetric frustum
fovy opening angle of frustum along y-axis (typical 45° — 60°)

width 800 _ 13
height’ €8 Goo — 13

aspect

near/far distance between origin and near /far plane, e.g. n = 10cm, f = 100m

Note a tighter view frustum makes the occlusion test (Z-Buffer) easier

6.6 Mapping Of Z

Due to homogeneous coordinates and the special normalization matrix storing
values of z in w, we have to know what happens with out z-values. What will

52

BT .
S

[1

-1 +1 Z,

Figure 23: Mapping Of Z illustrated with arrows
The arrows indicate where the corresponding points are mapped to.

happen is that every z-value behind the eye will be mapped to beyond +o0o. But
since we have 400 as a vanishing point (last row, third column of the projection
matrix), we get finite points for these values again. Instead the eye point is

mapped to —oo when dehomogenizing the coordinates.

Consequences

e ordering of points on a line changes

e clipping draws wrong results (see below)

6.7 Clipping In Homogeneous Coordinates

As mentioned above the ordering of points may change with perspective projec-
tion. If we would do a standard clipping we miss parts of line segments, that had
been split during perspective projection. For example imagine a line starting
from a point behind the eye and ending inside the frustum. After dehomoge-
nization the point behind the eye will be mapped to some positive point behind
the far plane, the point in the frustum will remain. Displaying the line between
both points we get a line that wrongly leave through the far plane instead of
the near plane. This line will be wrongly clipped by the far plane.

The solution is to perform clipping in homogeneous coordinates.

That means we perform standard a-clipping to the six faces of the unit cube
resulting in six WEC per point: WEC,. (z,y, z,w) = w — 2, WEC; (z,y, z,w) =
w+z, WEC, (z,y, z,w) = w—y, WEC; (z,y, z,w) = w+y, WECy (z,y, z,w) =
w— 2z, WEC,, (z,y,z,w) =w — z

53

n+f 2/m |

:_u—}”—(n—f):J \‘\ z
T -1

wy

-f: far -n: near

Figure 24: Mapping Of Z illustrated with asymptotes
z: before the projection
Z: after the projection
The asymptotes indicate how the values behave after the projection. The left
most point of the graph is connected with the right most point, mapping infinity
to a finite point. On the other hands finite points between the near plane and
the eye (Z-axis) are mapped to infinity.

6.8 Viewing Pipeline

1. Geometric Transformation, Lighting, Clipping — model coordinates
y

..

2.)Model Transformation — world coordinates

TT 7T 1T
X

3. Viewing: Camera Transformations — camera/eye coordinates

54

(a) Normalization Transformation — mnormalized homogeneous coordi-
nates

(b) Clipping In Homogeneous Coordinates

(c) Dehomogenization — screen coordinates

5. Viewport Transformation — window coordinates

6. Rasterization — device coordinates

7 Occlusion & Visibility

In scenes we will always be faced with the problem of multiple objects occluding
each other. So we need a way to determine which object is at front and shall
be painted.

7.1 Painter’s Algorithm
1. sort objects from back to front

2. render them in this order

In this way front objects will simply be painted over the back ones.

—=-i0]

Figure 25: penetration and cyclic occlusion

- painting the back objects is unnecessary
- the sorting of several million triangles is highly inefficient

- cannot handle penetration and cyclic occlusion

7.2 Binary Space Partitioning (BSP)

Binary Space Partitioning is a kind of painter’s algorithm, but much more ef-
fective, since it lacks the disadvantages of sorting, unnecessary painting and can
handle penetration and cyclic occlusion.

The idea is to use the implicit representation of a plane (see 2.4) to make
advantage of the easy way to access distances to this plane. Now we pick a
triangle that best subdivides the scene in half® and build a plane, so that the

3usually the triangle that’s plane has the lowest number of intersections, this strategy is

called the least crossed criterion

35

triangle completely lies on this plane. We assume for now that no other triangle
penetrates this plane. Now depending on the eye position e we can decide the
safest drawing order (first draw triangles on the side where the eye is located).
Thinking of this process recursively like a tree (the BSP-Tree) we can give an
overall ordering for all triangles.

Penetration

We assumed that no triangle penetrates our plane, still we can handle this case
by cutting the penetrating triangle into two and handle them as three separate
triangles, which we add to the BSP-Tree.

Slivers

More often than assumed it will come to a case where a triangle only penetrates
a plane tightly with a vertex. In this case the triangle will be cut into three
triangles. One of which is a sliver and one of almost zero size. We do better in
detecting this special case and leave the triangle untouched.

Axis Aligned Binary Space Partitioning

T
\/

{—]
{—]

Figure 26: Axis Aligned Binary Space Partitioning

Alternatively we can use planes that cut the complete scene in half and test
against them (see figure). Always the line is chosen that subdivides the scene
best into halves (horizontal or vertical (axis aligned)).

7.3 Ray Tracing

Cast a ray through each screen pixel to find the first intersection (for Ray Tracing
see 9)

7.4 Z-Buffer

The idea is to create a buffer equal to the size of the image, where there is
depth information stored for every pixel. The depth value corresponds to the
z-coordinate after normalization. Occlusion checks can than be performed by
simple depth comparison. The buffer is initialized by the far plane.

56

Creation The Z-Buffer is filled during rendering/rasterization. The first ob-
ject’s depth values drawn on the screen are stored in the Z-Buffer. After-
wards in case of an successful test (the new object’s depth value is closer
to the viewer), they are overwritten.

Usage It is used when it is filled, during rendering/rasterization. Check a
pixel’s depth value, if it is closer to the screen draw it and update the
Z-Buffer value for this pixel, otherwise discard it.

Deletion After rendering the buffer’s allocated memory can be freed.

Issues & Strengths
- requires fast memory

- non-uniform depth values. The closer we are to the far-plane the smaller the
difference in the depth values become. Therefore precision is of fundamen-
tal importance for Z-Buffering

the precision is hardware dependent (the more far away near and far plane
are, the more precision comes into play) — depth difference becomes very
small for distant objects (try to move the near plane as close as possible
to the far plane! moving the far plane on the other hand does not help)

- Z-Buffer fighting

can handle cyclic occlusion and penetration

OpenGL

glEnable (GL_DEPTH_TEST)
glClear (GL_DEPTH_BUFFER_BIT)

Strategies

Z-Buffer Fighting This phenomena means the situation when the value in
the Z-Buffer so much resembles the current one, that a jumping for and
back with each screen update can be seen.

Polygon Offset Polygon Offset means to push certain values inside the depth
buffer a little towards the near plane. Since they are not touched on the
real framebuffer, this change cannot be seen. Still once the next depth
check occurs, this offset will come in handy and avoid Z-Buffer fighting.

[A] Hidden Line Rendering (Wire frame Rendering)

1. render polygon as a wireframe (render to the Z-Buffer only, not to the
screen)

2. render the polygon a second time as a solid, using a polygon offset (pushing
each depth value in the Z-Buffer towards the near plane by this offset)

a7

[B] Haloing Make use of gaps between hidden lines to emphasize depth
perception and avoid Z-Buffer fighting

1. render the polygon as wireframe using thick lines (render only to depth
buffer, not to screen)

2. render the lines again with normal thickness and polygon offset

This can also be done with two different kind of colors instead of different
thickness.

7.5 W-Buffer

The W-Buffer is an alternative to the Z-Buffer. Instead of depth values the
homogeneous w coordinate is stored. The advantage of this method is having
uniform “depth” values. Thus we do not need to pay attention to the distance
between near and far plane. However a disadvantage is that we cannot linearly
interpolate between those values of w (logarithmic scale, because of perspective
projection).

7.6 Transparency

Instead of occlusion objects from behind might shine through objects in front,
if these are transparent (e.g. a tree behind a window).

Screen Door Transparency

Figure 27: Screen Door Transparency

Instead of a solid objects, the transparent object is drawn as a checkerboard
pattern, where the number of gaps depends on the a-value. By this technique
objects behind may shine through these gaps.

- worsens if more than one objects can be seen through the transparent objects.

- if two overlapping transparent objects share the same a-value, they have the
same number of gaps on the same position and the rear one cannot be
seen

58

Blended Transparency
Draw the objects in the order given by the depth test.

- The depth buffer draws the foremost object first. That means, given the
scenario, the transparent object is drawn before the opaque one occluding
it, no transparent effects will be seen.

Delayed Blended Transparency

50% red over 50% green over
50% green over 50% red over
100% white 100% white

Figure 28: Problems with Delayed Blended Transparency

Draw opaque objects first, then continue with depth buffer test for transparent
objects.

- still wrong results when transparent objects in front are rendered before trans-
parent objects in the rear, because blending is not commutative

Sorted Blended Transparency

Draw opaque objects first, then sort the transparent ones from back to front.

- still problems occur when objects intersect and no precise ordering can be
given

7.7 Culling

When an entire triangle lies outside the view volume, it can be culled. Culling
means elimination of a triangle or a whole object from the pipeline. However in
practice perfect culling (i.e. of every single triangle, primitive) is more expensive
than letting the Clipping module take care of them. Yet if we use bounding
volumes around groups of triangles culling can become very useful. We only
check whether a whole bounding volume lies outside our volume, eliminate if it
does or pass it on to Clipping if it doesn’t.

Culling in hardware is very difficult, because it is not supported pretty well
and the entire scene has to be known. So often it is performed in the application
stage, where the entire scene is known or solved by precomputation. However
it can and is performed at any stage of the pipeline as well.

59

7.7.1 Back Face Culling

The idea of back face culling is that only those faces can be seen, that are facing
towards the user. Other will face the backside of objects and this be invisible to
the viewer. The orientation of a face can be checked by examining the outwards
facing normal of it in respect to the view vector. The face is visible if

v >0

Dealing with polygons the orientation is implicitly coded in the ordering of the
vertices (see 10.1.8). The orientation can be tested using the vector product
(thumb, indexing finger and middle finger). A polygon Agp. with p = a —b and
q = ¢ — a is ordered counter clockwise if

(pxq),>0
The question remaining is when to perform back face culling.

world space before the scene is transformed to screen space
fast (faces are sorted out quickly)

- real normal is needed

screen space (after screen space transformation)
no normal needed, more general
supported by OpenGL

- more expensive

Clustered Back Face Culling

A small extension to standard back face culling where polygon groups sharing
a similar normal are either rendered together or discarded altogether (If part
of the groups is front facing, the other not, all are rendered). These “normal
sharing” mathematically effects in a normal cone, a truncated cone containing
all the normals and points of a set. Now the viewing direction is compared
to the normals of the cone, and all points associated to normals which differ
significantly are discarded. The normals 77 of a cone are front facing the viewer
v if

L =
v—f

- | ——= | >sin(a)
7]
where « is the opening angle of the cone. This works because even if only part

of the polygons are facing towards the viewer, the unincidentally rendered are
later discarded during clipping.

60

7.7.2 View Frustum Culling

Figure 29: View Frustum Culling
all objects outside of the frustum are culled

The idea of view frustum culling is to check objects against the view frustum,
i.e. against what the view is actually seeing. Doing this by polygons would be
tedious and in fact the efficiency gain is worse than skipping culling altogether
and let the clipping module clip the frustum. However if we see the objects as
complete single entities, we gain a efficiency bonus.

Bounding Volumes

For that we must enclose them into geometric bounding volumes (e.g. cube,
sphere). Now we check the bounding volume by simple implicit geometry and
cull the object if frustum and volume share no common points and render it if
they share all or only some points. In the latter case we again leave the precision
work to the clipping module.

Bounding Sphere Finding sphere exactly fitting the object is complex and
since we look for speed, we go with sphere that will be bigger than the
object but easily computed: We take the center of mass as the center
of the sphere and choose the radius to cover all object vertices. A great
advantage of bounding spheres is that they are invariant to rotations.

Axis Aligned Bounding Box Creation is easy. A box is described by six val-
U€S: Tmins Tmaxs Ymins Ymaxs Zmins Zmax- Lhese values are simply the max-
imum/minimum of all vertices, e.g. Xy = min {z-value of all vertices}.
A disadvantage is that axis aligned bounding boxes are not invariant to
rotations and must be adapted for rotation. Like the sphere approach,
this approach results in much bigger boxes than objects inside.

61

Oriented Bounding Box A bounding box tightly fit to the object which con-
siders rotation. However the computation and intersection tests are more
difficult. Computation include: finding the center, compute the covariance
matrix (think of the center as mean), Eigenvalue analysis, use Eigenvec-
tors as directions (basis) and use them a box that includes all vertices of
the object.

Bounding Hierarchies

Figure 30: View Frustum Culling
all objects outside of the frustum are culled

Even more can be gained if we build a hierarchy of bounding volumes, i.e.
a bounding volume around several bounding volumes. If a big volume lies
completely in the volume, we render all its children objects; if it shares points
with the frustum, we check each volume inside it separately, if not all objects
inside are culled.

Other hierarchies can also be applied. They are discussed later on in the
chapters about Ray Tracing, see 9.3 and the chapter on Occlusion for Binary
Space Partitioning , see 7.2. However they usually perform worse under dynamic
changing scenes. On the other hand the deliver better results and should be
used for static scenery.

62

Intersection Test

Figure 31: View Frustum Intersection
Intersection tests with the frustum are not trivial, even if all vertices of an object
are outside, parts of the object might be in.

The intersection test is not as easy as it might appear (see figure). Therefor we
apply a strategy similar to those from clipping:

We model the frustum as six intersecting planes (half-spaces) and use implicit
plane representation. Then a point z lies in the half-space partitioned by the
plane spanned by plane point p and normal 7, if

(x—p)-1>0

We repeat this test for all six planes and combine the results to know whether
the point lies inside in respect to all planes or not.

A modification is to test only the most critical point (i.e. the point closest)
of the object against the current plane. To figure this critical point out, we
comparing the object’s vertices minimal and maximal in respect to a coordinate
direction to the plane, to the half-space’s normal. Then the object is inside if
the critical point is inside, outside if the critical point as well as it’s opposite
corner lies outside and partly inside otherwise. Taking errors into account we
increase the test efficiency by using the following rule of decision:

box within all half-spaces — render

box outside one half-spaces — cull

otherwise — render
In fact the outside test can decide an object as outside, which has parts inside.
This is called a critical error.

7.7.3 Occlusion Culling

Finally occlusion culling intends to cull objects that are occluded, i.e. hid by
other objects. This is important since only using the Z-Buffer several pixels will

63

be drawn multiple times, in fact whole objects later invisible will be drawn first.
While Occlusion culling intends to remove these objects, there are other methods
that try to sort the objects to only render the ones in front (see Chapter about
Occlusion & Visibility 7). In general aspects that have proven to be maxims for
good occlusion culling are:

Occluder Combination: combine several occluders to one big occluder
whenever possible

Occluder Choice: try to use the best occluders for checking occlusion;
best occluders are: big objects and objects close to the viewer

Precomputation: precompute as much as possible, but keep interactiv-
ity in mind

Validity Over Time: try to keep the current occlusion computations
valid for as long as possible (e.g. as long as the user is within one room
or cell) and don’t compute everything from scratch each frame

Level Of Detail: use object models in higher resolution for objects close
to the eye, and lower resolution ones for distant objects (see 10.7)

Hierarchy & Bounding Box: hierarchies and bounding volumes over
the scene are very useful, but it is usually hard to update them for quickly
changing dynamic scenes

Potentially Visible Sets (PVS)

Figure 32: Potentially Visible Sets separate the scene into arbitrary cells

This first approach separates the scene into cells and computes which cells can
be seen from a particular cell. This is done with precomputation. Then dur-
ing rendering we check the cell, the camera is positioned in and only render

64

the cells/sets that are potentially visible from here. Since it heavily uses pre-
computation, rendering time is efficient while we have a high memory load.
Furthermore the computations for a cell can usually be kept for a couple of
frames, as long as the viewer remains in that same cell.

The visibility of other cells can be precomputed using visibility rays (see
Chapter about Ray Tracing 9).

Portal Visibility

Figure 33: Portal Visibility

In the Portal Visibility approach subdivide the scene into cells that are con-
nected by portals (e.g. doors, windows, holes). It is a very excellent method for
rendering the inside of buildings. Now the algorithm goes:

e find the cell, the camera is located in
e render this cell

e for all portals in the cell: if portal is visible, render neighbouring cell
recursively

To check whether a portal is visible, we can check its bounding box against the
view frustum (see previous point “View Frustum Culling” above). Further more
this allows for a special integration of mirrors, by seeing mirrors simple as a
special kind of portal (sigh is reversed).

OpenGL Occlusion Test

OpenGL implements its own occlusion culling strategy by offering a special
render mode called OccCull-mode. In this mode actually nothing is rendered,
instead the number of potentially rendered pixels is counted. Now this can be
used for culling like this:

65

e set the counter to zero
e render the object’s bounding box in OccCull-mode

e render the object if the counter is above a threshold?

The disadvantage of this very simple test is, that it stalls the pipeline and that
even counting can be expensive for thousands of triangles. This behaviour can
be improved by installing several counters and parallelize the counting render
mode. Then the stalling of the pipeline does only occur one time instead of one
per object. This method is especially useful for very distant or complex objects
(leafs on a tree).

7.7.4 Hierarchical Z-Buffer

A hierarchical z-buffer has several levels. At bottom level 0, the actual z-values
are stored. One level above the highest value among a group of children z-values
is stored and so on.

Now if we want to test an object for culling we project the bounding box of
the object and search for the node in the Z-Tree that completely covers it and
compare depth values. This leads to many fast rejects. If the object is not
hidden, we proceed to its children. Passing level 0 we eventually render it.

For this to work the Z-Buffer hierarchy must be kept consistent. Using a tree-
like structure this is easy: Once a value changes, this change simply propagates
upwards.

This method works best when the scene is rendered from front to back. Check
the chapter about Occlusion & Visibility on page 7 for methods to achieve such
render orderings.

7.7.5 Occlusion Horizons

Occlusion Horizon is a specialized culling technique for urban scenes. We sep-
arate the scene’s objects into: plain ground, opaque buildings, buildings on
ground. Apart from that we geometrically subdivide the scene into equally
spaced quads. And we reduce the dimension a little bit to 2% by using height
fields for the height of buildings. For each building we compute a set of prisms
that are completely inside (inner hull) and a set of prisms describing the bound-
ing hull (outer hull).

Now we traverse the quadtree while moving away from the camera and pro-
cess the buildings with increasing distance to the camera. We keep track of a so
called occlusion horizon (e.g. for x, the current maximum value of x). Now
for every building being processed, we check whether the building is behind the
horizon (— invisible) or in front of it (— render building, adapt horizon).

40bjects only having a few pixels visible can usually be culled without great loss. Alter-
natively the object can be rendered in a highly simplified way.

66

Figure 34: Occlusion Horizon

This occlusion horizon is implemented as a constant piecewise function accessed
by x, stored as binary tree with values of y (see figure). Tests against the horizon
are performed with the buildings outer hulls and updated of the horizon are
made with the inner hulls.

Caveat

Figure 35: Occlusion Horizon: Difficult Occlusion

However it’s not always that easy, as the figure above shows. Although buildings
A is close to the camera, B occludes A. To avoid such scenarios we introduce
a priority queue with new buildings (entered at the current horizon) sorted by
maximum distance. Buildings from the queue are only then added to the horizon
once their minimum distance is smaller than the maximum distance from the
queue. With the queue, in the above scenario A would still be in this queue,
when B is tested:

67

test A - visible! - render A, put A into queue

test B - visible! - render B, put B into queue

e A and B definitely in front of C - insert A and B into horizon
e test C...

Last but not least the idea of the horizons can be connected with Mip Mapping
(see 11.5.2). Depending on the distance of the current horizon from the eye,
buildings and other objects can be rendered using a lower resolution. Objects
at horizons close to the eye should be rendered with an extra high resolution
for details.

7.7.6 Dual Ray Space Occlusion Culling

Figure 36: London

With Dual Ray Space Occlusion Culling the PVS for a single cell of size 100x100

m?2 can be rendered in 2.5 s

Imagine the map of London (see image) with an area of 160km?, this could
be rendered by about 1,7 - 105 polygons. The goal Dual Ray Space Occlusion
Culling is aiming at, is that a user can virtually walk through the streets, while
the data is downloaded via the internet. Only what user can see is rendered,
and while he walks data for buildings that soon come into vision is downloaded.

The strategy sounds familiar, we separate London into cells and determine
the PVS (see above) for each cell. The currently valid PVS is kept on the client
as well as the PVS of all neighbouring cells. As in occlusion horizons we restrict
the dimension to pseudo 3D (Q%D). In addition we also take occlusion horizons’
quadtree idea to recursively determine the nodes of the quadtree that are visible.
But how do we decide whether a quadtree node is visible from another or not?
We solve this by a new idea:

68

t

N

Q t
0 dual
« every ray from Q to Z corresponds ray
toa %oin){ € [0,‘1?2 P space

Figure 37: Dual Ray Space Occlusion Culling

First we find the two faces of Z and Q facing each other.

Then we model them as parametrized line segments: Qo+s (Q1 — Qo) , s € [0;1],
Z0+t(Z1 —Z()),t S [0,1]

And now we transform this model to a Dual Space, where every Ray in our
current space is represented by a point.

dual
ray
space

Figure 38: A line in the Dual Ray Space

For example all rays between Q and Z that hit a random point v will build a
line in this Dual Space.

—<

Figure 39: A double triangle in the Dual Ray Space

Now consider a whole line segment between Q and Z, all rays intersecting this
segment build a double triangle in the dual space.

Slowly the idea becomes clear, we represent the space of all rays in the dual ray
space as image [0; 1]2. Then we render this image black and compute for each
segment between Q and 7 the corresponding double triangle. After all segments

69

have been processed, we check whether there are any black pixels left, if there
are not, we assume total occlusion.

8 Lighting

8.1 Light

To understand algorithms of lighting it is important to understand light, re-
spectively the measuring of such called radiometry or the human perception
of light referred to as photometry.

8.1.1 Radiometry

Radiometry is the physical measurement of light. Since light is a form of energy,
we measure it in joule [J].

Photons

Light can also be seen as a large amount of photons. A photon is a light quantum
having a position, a direction and a wavelength A given in nanometer 1nm =
10~%m. Furthermore light has speed ¢ (depended on the material it passes
through) and a frequency f = §. Finally the amount of energy ¢ carried is
given by

hc

:h:—
qf)\

where h = 6.63 - 1034 is Plank’s Constant.

Energy

The energy of light in general (radiant energy, Strahlungsenergie) @ is then
simply the sum of the single photon’s energy g¢;.

" he

= —[J

Q=371

Furthermore we can give () relative to the wavelength A by integrating over an
interval on the wavelength:

Aq
@=ax
Then we can give @ relative to time (radiant flux, Strahlungsleistung)
d
o 99 [W - ﬂ
dt s

70

Example

A light bulb with 100 Watt emitting about 5% as light, then the radiant flux ®
would be: & =5W
The radiant energy @, relative to a surface (flux density, Flukdichte) is given

by
e | W
dA | m?
Irradiance

Irradiance is the amount of ingoing light that hit a certain point, the incident
light or incident flux density (Strahlungsenergie).

_ d®y, {W}

FE =
dA | m?

Radiosity

Radiosity is the light emitting from a surface. It is called exitant light or
exitant flux density (spezifische Ausstrahlung) and measured the same way:

dPout | W
B =
i o)

m?2

Example

e A big area light with ® = 5W and A = 1m? has a radiosity of 5%

e A small area light with ® = 5W and A = 100cm? has a radiosity of 500%

Radiant Intensity

Radiant Intensity (Strahlungsintensitét) is used for point light sources and gives
the emitted light per solid angle (see 2.11)

e | W
I=—|—
dw |:ST:|

This means, if by tilting the area is getting smaller, the same light is getting
brighter (the light becomes more compact).

Approximation Usually the dome is neglected, just the area is taken into
account

Note By /r? dimension and size leaves the formula. Thus dimension and size
of the sphere does not influence the outcome.

71

Radiance

Figure 40: Radiance

Finally radiance combines flux density with radiant intensity (Strahldichte)
adding a directional dependency to radiosity /irradiance.

L) 2 { W }

~ dw-dA-cos6 |sr-m?

where d2® is the flux®, dw is the differential solid angle and dA the differential of
the Area (cos @ is explained below). This results in the brightness. This is the
value measured by cameras. Radiance is also the most important radiometric
unit for computer graphics, since it is exactly what we want to store in a pixel.

Intuition

We want to measure how many photons originate from a certain point = into a
direction w. We use a light sensitive sensor as cameras use and place it above
the surface. Now to get sure only the rays originating from our point we need
to enclose the sensor by a black cone which has a broad opening towards x
and a small towards the sensor, so that rays coming from another direction are
absorbed by its black walls when bouncing.

Still some rays will get, through, therefore we need to make the cone infinites-
imal small (dw).

Still some rays will reach the sensor, cause it has a certain area size, therefore
we need to make this area infinitesimal small (dA).

Still our sensor will be oriented in some kind, therefore we need to take this
orientation into account (cos®)

(e.g. vertical, horizontal or in between).
Now we get only the desired photons. If on the other hand we want to measure
irradiance we place the sensor on the surface.

5d2because we differentiate two times

72

Invariant Radiance is constant along a ray

Figure 41: Relationship between incident and reflected light

An important relationship is between incident light L; and the light reflected
L, and transmitted by the surface A

Ei = Li COS Hldwl

Overview
Table 1: Physical Light Overview
| Measure | Meaning | Modeling |
Flux general light flow without differentiation

Intensity | light per angle (e.g. the intensity of a light bulb) power
Radiosity light per area (all directions) diffuse
Radiance light per area into a direction specular
Irradiance incoming light per area from any direction Lin

8.1.2 Photometry

Where radiometry covers the physical measurement of light, photometry covers
the human measurement of light. The human system is only capable of perceiv-
ing a limited range of radiation. Furthermore the human response system is not
linear: Some wavelengths appear brighter than others (e.g. red).

The average human vision capabilities (daytime) are covered in lumen V' () [ZW} .
L, covers how bright a certain wavelength is perceived.

Lv:km/L(/\)V(/\)dA

By, Q,, ®, are expressed correspondingly.

73

8.2 Lighting

Lighting is the simulation of physical light to make a 3D scene look real. However
a real approximation takes far too long, so that we make a lot of approximations,
simplifications and hacks. Our task is to compute the luminous intensity at a
point in the scene.

8.2.1 Simplifications

Since we are far from able to model light physically correct, we often are forced
to make some of these common simplifications:

e 10 interactions between wavelengths (e.g. fluorescence)

Figure 42: fluorescence

e time invariance (distribution remains constant over time, e.g. phospho-
rescence)

Figure 43: phosphorescence

74

e light transport in vacuum (no intermediary medium, emission and absorp-
tion just on objects, e.g. smoke, mist)

e isotropic objects (identical material)

e direct illumination (no or limited reflected illumination)

Light Hitting A Surface can be
e absorbed

e scattered

reflected

e refracted

transmitted

8.3 Illumination

Transport of energy (in particular, the luminous flux of visible light) from light
sources to surfaces & surface to eye. There are two major components of illu-
mination:
e light source
a light source has a certain spectrum (color), a direction and a shape
(e.g. point light source, parallel light, area light source).
e surface properties

a surface has a reflectance spectrum (color), a position, an orienta-
tion (given by a surface normal at every point) and a micro structure
(important for scattering and reflection)

Local Illumination

Illumination by one or several light sources (point, parallel). This results in

having no shadows. An example is Phong Lighting.

Global Illumination

Global light exchange (area light sources). Slower but with shadows and higher
quality. An example is Ray Tracing

75

8.3.1 Light Sources
Point Light Source

Figure 44: Point Light Source

Light is equally emitted in all direction originating from a single point. Thus
the light direction towards a surface varies for every surface point. Thus we
have to compute a normalized light direction vector for every point:

I
Ip — x|

R'm II l
'“-____R |
X \\\‘L

Figure 45: direction of light for point light source

76

Directional / Parallel Light

Y

1=d

Figure 46: Parallel Light

Light is modeled by parallel rays originating from a quasi infinite distant light
source (e.g. the sun). The direction of the surface relative to the light direction
becomes important.

Spotlight

A point light source with parallel light. Outside the spotlight, the light remains
parallel but fades away in intensity, limiting the light to a certain area. A
mixture of the two above.

Area Light Source

Defined by a 2D emissive surface (e.g. a flashlight). Area light sources are
capable of creating soft shadows.

8.3.2 Phong Lighting Model
Properties

e local illumination

e heuristic, no physical simulation

o fast

Variables
Reflected Light

In Phong Lighting, reflected light does not exist per se and is therefore approx-
imated by three components:

Ambient Light Indirect light modeled by a constant (omnipresent light)

77

| Variable | meaning

l direction of light

I light Intensity

U vector towards the eye

7 surface normal

k surface constant (color)

Nshiny empirical constant (spread of the highlight)

7 ideal reflectance vector

h halfway vector

Table 2: Phong Lighting Variables

Diffuse Light reflection from rough surfaces (uniform into all direction)

Specular Light reflection from glossy (no perfect mirrors) surfaces

Ltotal = Lambiebt + Ldiﬁuse + Lspecular

Ambient Light

Figure 47: Ambient Light

Covers objects that are not directly light, but that would be still visible by

indirect illumination.
Lamb = kamblamb

Some properties of ambient light:

e 1o physical base (necessary because indirect/global illumination is skipped)

78

e better results by giving ambient light per light source, so that if one light
source is turned off, it’s ambient light is removed from the objects

e if a surface is not covered by any light source, only ambient light is applied
giving the surface an uniform look and no 3D features (there often an
additional light source called head light is used above the viewer to make
sure everything visible is at least lit by some direct light source.

Diffuse Light

In principle the scattering/reflection of light depends on the surface’s micro
structure. In Phong Lighting we assume rough surfaces to be equally rough
scattering light equally in all directions.

Figure 48: Reflection from equally rough surfaces

For this case we may apply Lambert’s Cosine Law:

> © S 01

S Sk s g

Figure 49: Lambert’s Cosine Law
Reflected radiant intensity in any direction varies as the cosine of the angle
between light direction and surface normal.

Therefore we require the angle between the light direction [and the surface

79

normal 77 to compute diffuse light:

Laig = kil cos 0

Laig = kaigtin (ﬁ . f)

& .

Figure 50: Diffuse Light

As you can see the view direction does not appear in the formula. This means
the diffuse light is view independent and thus looks the same from any direction.
The angle 6 gives us more information. If

° (ﬁ . f) < 0: light is below the surface
e (7-7) > 0: eye is below the surface

In both cases we clamp I to zero.
Some properties of diffuse light:

e diffuse light is view independent

e diffuse light is based on Lambert’s cosine law and with that based on real
world physics

80

Specular Light

Figure 51: Specular Light

Reflection for glossy materials, e.g. polished metal. Light causes a bright spot on
this surface (specular highlight). This highlight depends on the direction the
viewer looks at the surface, thus it is view dependent. Specular light approaches
mirror like reflectance (see Figure).

Lspec = kspecIIn CcOs (¢)n5hiny

— MNshi
Lspec = kspecIIn (U : F) sy

Figure 52: Specular Light is view dependent

where ngniny determines the spread of the highlight. A large nghiny makes for a
rather glossy (narrow) highlight, and a small nghiny a rather diffuse one. The

81

vector 7 of ideal reflectance can be computed as
F=(2(a-0))a-T
Some properties of specular light:
e view dependent (the highlight moves with the viewer)
e halfway vector reduces computation time
e no physical base or validity

e looks unrealistic with per-pixel shading (Phong Shading, see below 8.4.3)

Complete Reflected Light

#lights
Lreﬁected = kambIamb + Z Iini (kdiﬁ (ﬁ : lz) + kspec (17 7?i)nsmny)

2

Halfway Vector Approach

Figure 53: Halfway Vector Approach

Computing the ideal reflectance vector 7 is costly. The Halfway Vector Approach
comes close to the results of using 7 but is far more efficient. The idea is that
this halfway vector h is exactly equal to 7 if the view direction v is parallel
to the reflection direction 7. When it deviates from 7, the angle of deviation

is ¢/ = % Therefore the inner product (ﬁ . ﬁ) equals cos (%) The halfway

vector specular formula is:

=

S

+
I+

ﬁ:

<y

82

Using h draws
Lspec = kspecIIn COS ((b/)nsmny

L,) Mshiny
Lspec = kspecIIn (n : h)

—

If the light is directional and the view parallel (orthographic), both [and ¥

3

-
become constant, resulting in a constant h.

Attenuation

For parallel light there is no attenuation, since we have parallel light rays every-
where, therefore we consider a point lightsource at position p, which is d away

from the surface point x it is lighting (d = ||p — z||*).
B 1
2

lp — x|

In

But this approach is problematic for close and distant light sources. Therefore
we add some constants and build a polynomial:

1

Iy=—
! co + c1d + cad?

where ¢; model for example atmospheric attenuation, smoke or vacuum.

Note that a physically correct attenuation proceeds quadratic in respect to
the distance to the light source. However we usually do not model this because a)
the sun is too far away (hardware float precision), b) it results in very unrealistic
looking light and c¢) we can model additional atmospheric attenuation like smoke.

Material Colors

The material constants k; may consist of two parts:
a brightness value k € [0, 1]
a color frequency Oy, A € RGBa«a
This allows the mixing of lightsource and material color frequency

8.3.3 Torrance-Sparrow Light Model

The Torrance-Sparrow Light Model tries to model physics. Here we do not
assume equally rough surfaces, but consider isotropic collections of planar mi-

croscopic facets.
F(f-ﬁ)G(ﬁ-ﬁ,ﬁ-f)D(ﬁ-ﬁ)
L= IIn '

(7 - 7) (ﬁf)

83

Variable | Meaning |
standard surface normal

normal for rough surfaces (current normal wandering across the hill)
view vector

light vector
accounts for surface roughness

SUIS |~ ey 3

distribution of micro facets / normals (Gaussian)

S
L

>
N—"]

attenuation, masking and self shadowing

Fresnel Term

|
2

Tl

=

Q
—
3t
=
NG
N

(1 - 7) (ﬁ : lv “maybe” for the specular highlight?

The Fresnel Term describes the relation between incoming and reflected
light and takes surface properties (glass, water) into account.
Self shadowing means that reflected light bounces against a facet:

Figure 54: Self-Shadowing

Schlick gives an fast and efficient approximation of the complex Fresnel Term:

F=fi+-f)(1-7F)

where f) is the Fresnel reflectance of the material at normal incidence.

8.4 Shading

Shading is a kind of parent to lighting, it decides for which pixels lighting is
computed and how these values are interpolated across a face.

84

8.4.1 Flat Shading

Figure 55: Flat Shading

The polygon is partitioned into faces. Each face has a uniform surface normal.
Therefore we compute lighting for a single point on the face, and take it for the
rest.

- inaccurate for faceted objects

OpenGL glShadeModel (GL_FLAT)

8.4.2 Gouraud Shading

Figure 56: Gouraud Shading

Instead of applying Phong Lighting with surface normals for complete faces, we
apply it with vertex normals. Each vertex of a polygon is assigned a normal,

85

which is an average by the surface normals of surfaces contributing to this vertex
(wireframe).
. Z?&faces ﬁz

Ny =— ——

o #faces -
‘ > T

Figure 57: vertex normals

The next step is then to interpolate the vertex values across the faces.

OpenGL glShadeModel (GL_SMOOTH)

86

Algorithm 6 Gouraud Shading

yt I,

scan line

V=3s Ia /:\- I‘E’

I

1. apply Phong Lighting Model to vertices Iy, I, I3

2. interpolate these values along the edges — I,, I}

I +

Ia:ys_yQ
Y1 — Y2
Ib:ys_y3
Y1 — Y3

I +

Y1 _ySIQ
Y1 — Y2
Y1 _ysI2
Y1 — Y3

3. use scanline algorithm to interpolate between the edges — I,

="""rp 4

Tp — Tq

Iy

Th — Tq

Th — Lq

As with the scanline algorithm a incremental update can be found to makes

things faster /numerically more stable

- fails to capture spotlight effects

- Through the interpolations highlights are smeared and light decreases slower

)

Figure 58: Gouraud Shading smears highlights

87

Gouraud Shading can be artificially modified to perform Phong Shading.

This is done by making the surfaces (triangles) smaller than pixels, so that
effectively shading per pixel is performed.

This is done because many graphics hardware support Gouraud Shading, but

not Phong Shading.

8.4.3 Phong Shading

Figure 59: Phong Shading

1. compute vertex normals at each polygon vertex
2. interpolate these normals across the face

3. recompute lighting for each pixel with the interpolated normal

The interpolation of the normals works just as the interpolation of light in
Gouraud Shading.

I looks really good

I good highlights — implement a highlight test ((ﬁ . ﬁ) > 7, Threshold 7)
and use Phong Shading only for faces with highlights

L correct size

high costs

three vector components

constant renormalization necessary (square root) — interpolate scalar prod-
ucts instead, saves renormalization

- huge amount of lighting calculations

88

Figure 60: Deferred Shading
We store all parameters important for shading in RGBa Render Targets (tex-
tures)

Figure 61: Storing shading parameters in the RGBa channels of three Render
Targets
Note that 16bit are overkill for diffuse reflectance.

8.4.4 Deferred Shading

The idea of deferred shading is postpone shading as far behind as possible. We
do this by saving all we need for shading during the modeling stages: pixel posi-
tion, normals, light/color: diffuse and specular albedo, material. To effectively
store all these values, we can use Multiple Render Targets or Multiple Texturing
(see 11.15) and make use of the individual RGBa« channels (see figure). This
patch of memory is then commonly referred to as G-Buffer.

Having all parameters, that we need, we can reduce the complexity significantly
and result in the following procedure:

-+ worst case: O (objects + light sources) (other shading techniques have: O (objects - light sources))

-+ works best for depth complex scenes with multiple light sources

Algorithm 7 Deferred Shading

For each object:

—render lighting properties to the G-Buffer.
For each light:

— framebuffer + BRDF(G-Buffer, light)

models many small light sources just as fast as one big one

allows for the integration of all popular shadow methods

8.5 Shadows

Computing shadows is not very easy, since the entire scene has to be known
to decide whether a point lies in shadow (does the light hit the point, is the
point occluded by another object, is it self-occluding). However the pipeline is
a sequential process where one triangle is rendered after the other, but each new
triangle could cast shadows to the previous ones.

8.5.1 Planar Shadows

Another idea is to generate a 2D projection of an object onto a plane:
1. render ground
2. render object
3. set matrices to the desired projection

4. render the shadow in black

Problems

Figure 62: Problems occurring with planar shadows

- shadow outside of polygon ground

- Z-Buffer fighting (because the shadow is so fine)
These can be solved by using the stencil buffer:

1. render the object

90

2. render the ground and set stencil buffer to 1 for ground pixels
3. turn off Z-Test

4. render shadow where stencil buffer is equal to 1

Properties
fast
simple
- only for shadows on planar object

- no self shadowing

8.5.2 Light Maps

One idea arising from this problem is to precompute shadows by light maps.
Light maps are textures that store the light conditions of a static scene in an
image. Often light maps are called static shadow maps.

8.5.3 Shadow Maps

Shadow Maps are more general than planar shadow projection and allow for the
casting of curved shadows on curved surfaces, however this technique requires
two rendering passes: One from the “view” of the light source and one from the
camera.

Light View everything that is visible from here, must be lit. All hidden parts
are in shadow. Since we are only interested in how deep the objects are
located, we only save the depth values (Z-Buffer).

91

Figure 63: The scene as seen from the light. Only the depth values are stored.

Render Pass now we transform our (z,y, z) coordinates to access the shadow
map (2/,y’,2') (see texture mapping 11 for details). Then we check
whether:

2" = shadow (2’,y’) — pixel is lit

2" > shadow (2/, y')— pixel is in shadow (render it black)

Figure 64: In the second pass, the shadow map is accessed to determine whether
a pixel is lit or in shadow.

Dimmed Shadows

Even nicer results can be obtained, when the shadow map returns grey values
instead of white and black. Then the shadows are dimmed and not entirely

92

black.

Colored Shadows

But still the shadows will not contain any of the materials property color. If we
want the shadows to return even a full spectrum of color, taking into account
material colors we just have to render the scene before the first pass with only
ambient light turned on. However this results in having three rendering passes.

Curvature Shadows

Figure 65: The blue arrow shows where the curvature can be seen in the shadow

We can even make curvatures visible in shadows by computing diffuse reflection,
although we are in shadow. We simply darken the (“not” incoming) light by some
factor and apply Lambert’s cosine law. To make the curvature look good we
can use a so called fragment shader.

Spotlight Shadows

shadow map
spotligh frustum

Figure 66: Spotlight shadows can be created by using the camera’s frustum as
a shadow frustum

If we are dealing with spotlights the shadows will be limited to the light spread
of the spotlight. We can obtain this effect by using the camera’s view frustum

93

as a shadow frustum when creating the shadow map. The camera’s frustum
parameters are adjusted to fit the spotlight (view direction is spot direction,
spot angle is fovy).

Directed Light Shadows

In case of a parallel/directed light source, we use the planar shadow method
from above if possible (surface for the shadow required). If not we have to use
an orthographic projection rather than a perspective one to render the lightview.

Omnidirectional Light

In case the point light is outside of the scene (what we have assumed), we can
use the standard methods presented. If however the point light is within the
scene we speak of an omnidirectional light and need a variation of the method.
A solution is to use a cube environment map for creating six shadow maps (or
a parabolic for two) and use the reference techniques of environment texture
mapping (see 11.10).

Properties

static one render pass, only one shadow map
dynamic two/three render passes, shadow map generated per frame

- machine precision allows only for the test z’ ~ shadow (2/, '), but not 2’ =
shadow (2/,y’) (render with a small depth offset, glPolygonOffset)

alternatively to real depth values polygons or even whole objects can be
assigned an ID. During rendering this ID is compared, and if it matches
the polygon/object is lit.

- aliasing: the resolution of the saved shadow map easily becomes visible (worst
for light from opposite direction: the shadow will be projected right to the
near plane and be huge, best for a miner’s lamp above the object: straight
projection without perspective distortion.)

- the light is assumed to be outside the scene. If it isn’t the “light view” trick
won’t work.

for this case environment maps could be used (e.g. a resp. six cube maps)

Aliasing can be met with antialiasing techniques such as linear interpolating the
shadow map (see 3.8). However because depth values may have hard jumps,
percentage closest filtering is suggested: We compare the current pixel’s
depth value with the surrounding ones and only take those for bilinear interpo-
lation that’s depth value equals at least X percent of the pixel’s depth value.

94

512x512

L \ —_—
512x 512x
512 512

512x 512x
512 512

/ \GR\
[] O

Figure 67: Adaptive shadow maps are ordered and accessed in a tree structure

Another idea are Adaptive Shadow Maps where similar to Mip-Mapping (see
11.5.2) shadow maps are stored in different sizes (here the resolution remains
the same, instead the size varies depending on the position on the screen, see
figure). Then depending on the screen section the appropriate is chosen. The
shadow maps are ordered and accessed in a quadtree structure (see figure). To
choose which shadow map is appropriate, Mip-Mapping hardware supported
technique can be exploited.

- very good shadows

- many passes until the quadtree has been cut
- difficult if the camera turns around

- not yet applicable in dynamic scenes

A third method to meet shadow map aliasing especially for large scenes are
Light Space Perspective Shadow Maps. The idea is to use a projective
mapping to shift resolution to regions close to the camera. A suggestion for
where to place the eye for this projective projection pop; (this is the degree of
freedom) is

=

popt:n+(n'f)

Figure 68: The shadow map resolution changes with a projective mapping

95

I- only one shadow map

8.5.4 Soft Shadows

Maybe the biggest problem dealing with shadows is the creation of soft shadows.
Soft shadows mean shadows respecting attenuation (by distance to the occluder)
and a blurred border line. Alas simple blurring of the border line by low-pass
filtering does not in the results we want. If computation time is unimportant
we can simulate an area light source by several point light sources (at least 64
necessary to avoid artifacts) and blend between them.

O area light

= occluder

receiver

il
il

Biquin

eiquinuad
eiqunuad

Figure 69: Partitioning of the scene into umbra, penumbra and lit areas.

Modeling real area light sources we come up with a model the separates the
scene into three regions: umbra, penumbra and lit (see figure).

Penumbra Maps

shadow map scene with hard shadow penumbra map scene with penumbra map

Figure 70: Shadow mapping combined with a penumbra map to soften the
shadow outlines

Penumbra Maps are an extension to Shadow Maps respecting soft shadows. We

simplify the model by modeling an arbitrary area light source with a “disc/sphere”
light source modeled again by a point light source and a radius. Then we add

96

a second shadow map, which we call penumbra map. This image contains
penumbra values between [0;1]. This value is used to modulate the already
computed hard shadow turning it soft (see image). The question remains how
to compute this penumbra map:

97

Algorithm 8 Creating Penumbra Maps

P e

! 7]:1gih Radius 7,
]

)

i

138

Penumbra Cone

Cone Radius ¢ 4

Far Plane

1. compute occluder’s silhouettes (see shadow volumes 8.5.4)

2. generate penumbra cones (silhouette vertices) and sheets (silhouette
edges)

3. render penumbra cones and sheet in light view

4. take the blue hulls/outlines for penumbra regions (use the Z-Buffer to
obtain blue region)

penumbra cone

(}/ penumbra sheet

L

occluder

4

penumbra map

compute penumbra value for each pixel

Light

Occhuder

Edge of umbra

in our method

/ Edge of penumbra

FarPlane 90

(2F — 2vi)

pen =
(2P — Zui)

where z,; is the distance of the occluder to the center of the light source,
zp the distance of the fragment and zp the distance of the receiver
(taken from shadow map) . zp lies on the intersection of the penumbra
edge with the line from the pixel z,to the light source’s center and
determines the penumbra value. Now if:
0

Zp—Zuvi

ZF = 2,; the penumbra value results in pen = = 0, meaning black a total

<hadow

-+ can be done by a fragment shader

- because of modeling any area lightsource as disc, we get rectangular light
sources, which prefer one direction, wrong (shadow is harder for one di-
rection as for the other)

- having a disc or sphere the proportions of the penumbra value determination
methods get wrong, because e.g. 40% of the diameter does not correspond
to 40% of the sphere’s volume (disc’s area), because it gets broader in the
middle. We can account for this by using this transformation:

pen’ = 3pen? — 2pen’

- overlapping: how to deal with overlapping penumbras (many different scenar-
ios, see figure)

maximum product
Figure 71: Overlapping Penumbras

As you can see there are several different cases, that would need to be differen-
tiated, when penumbras overlap

Shadow Volumes

light source

shadow volume /

Figure 72: Highlighted Shadow Volume

99

Shadow Volumes describe the boundary surfaces between lit and shadowed re-
gions. Their application is restricted to watertight, convex surfaces®. Imagine
connecting all vertices of a triangle with the light source (point) and extending
these lines into infinity. Above the triangle we will have a pyramid and below a
truncated pyramid. Everything that lies within this truncated pyramid is within
the shadow of the triangle. This truncated pyramid is what we call a shadow
volume.

Algorithm 9 Shadow Volume Algorithm

1. render the scene without shadows
2. generate shadow volume
3. determine for every pixel, whether it is within the volume

4. dim pixels within the shadow volume

Construction: Triangle

take the triangle and shadow surfaces of the edges connected to the light source’s
center.

Construction: Triangle Mesh

take the triangles facing the light source, and shadow the surfaces of the object’s
silhouette. Use the scalar product between surface normal and light direction
to determine the light facing triangles:

triangles where (ﬁ 1) > 0 are facing the light source

triangles where (ﬁ : lj < 0 aren’t

If with two triangles A and B, A is facing the light source and B ain’t, then we
add the edge between A and B to the silhouette of the object.

6We can break these restrictions by elongating the surface bottom wards or copying it and
sticking it to the backside. Because the problem arises with surfaces having no thickness and
normals only for one side. Also take special care with the borderline.

100

Algorithm 10 Constructing The Shadow Volume

1. determine (ﬁ . lj for all triangles and store it as signum +/—

2. for each neighbouring triangle (use face list for topology information, see

10.1.5):
if the signi of both triangles differ

(a) extrude the common edge [p,q] away from the light source towards

o0

(b) add the resulting surface to the shadow volume

Multiple Occluders

:‘6’/_
Light — 7INT Shadowing object
source s —
1 \
zero I+ N
! \
= \ \\ zero
@\ L N \
e \ hadow?
N +21 \ +2 \
Eye ! +1 143 o
position R A A
v v \

Figure 73: Dealing with multiple occluders

Having multiple occluders we build shadow volumes for each of them. But
then the problem arises that we can enter and leave shadow volumes.
possibility is to set up a counter, following the eye incrementing when entering
and decrementing when leaving a shadow volume. When the counter is greater
than zero, we are within shadow. However this is not very efficient (e.g. because

of intersection computations).
Another idea is to make use of the stencil buffer:

101

Algorithm 12 Shadow Volumes with Vertex Shaders

Two passes, for front and back facing triangles.

1.
2.

send all edges to the vertex shader as degenerated quad literals
check the edges for being silhouette edges (see above)

(a) if they are: two of their edges are projected away from the lightsource
(b) if they aren’t: render them as degenerate polygons covering no pixels

. all the transformed quad literals now define the shadow volume sides

Algorithm 11 Z-Pass Algorithm

1.

2.

render the scene with Z-Buffer turned on
lock writing to Z-Buffer and framebuffer (but leave the Z-Test enabled)

render shadow volumes facing the viewer: for every rendered pixel, incre-
ment the stencil buffer on this position

render shadow volumes back facing the viewer: for every rendered pixel,
decrement the stencil buffer on this position

Now every pixel where the stencil buffer is greater then zero is in shadow.
Step 3 and 4 can be rendered in one pass, if the shadow columns do not overlap.

Properties

infinite shadow volumes use infinity point with w =0

only one pass for rendering shadow volumes (front/back facing is supported

by OpenGL)

optimal quality

less silhouette edges than vertices

no sampling problems (does not use texture maps)

restricted to watertight convex surfaces

limited depth of the stencil buffer (8 bits, max counter 255)

simply use another buffer, e.g. color or a-buffer

- determining the silhouette in software is very expensive

- rendered shadow volumes are very large (high fill rate necessary), especially

close to the light source, rasterizer becomes a bottleneck

102

- viewer in shadow: counter values are wrong (determine alternate global counter
start value, place the viewer far away from the near plane)

- too close near plane: the near plane might be beyond the entry point of the
first shadow volume and remove it (different counter starting values)

There is an alternative algorithm called z-fail, which reverses the order
of the z-pass algorithm, but z-fail encounters the same problem with the
far-plane (we start at the far plane and increase/decrease the stencil, once
a depth test fails). However if we move the far-plane to co the problem is
solved. Note that because of matrix calculations the other way round, i.e.
setting the near-plane to 0 is not possible (choosing even —oco objects will
be perspectively stretched to infinity).

Disadvantages of this method is hardware dependency and that in general
the z-pass method will fill less pixel overall and thus be faster.

- disadvantage of the z-fail method is, that a lot more pixels have to be rendered
than using z-pass. Because usually the scene goes on quite a lot after the
view frustum far-plane.

In general it is important to find out where the bottleneck is located. For ex-
ample using simpler models for the occluders won’t help when using the shadow
volume approach, since its bottleneck is usually the fill-rate. Once the bottle-
neck is spotted a common approach is to use several simplifications (e.g. simpler
model, lower refresh rate for shadow information) and take wrong, inaccurate
shadows into account to get a acceptable frame rate (the idea is that it is hard
to determine the correctness of a shadow by the eye alone anyway)

8.6 Motion Blur

Motion Blur is a feature added to moving objects to support the illusion of
movement. A simple idea is, taking for example a sword slicing through the air,
to add copies of polygon at previous positions setting their a-value for blending
with the background. For this effect we need to gather a series of images. For
this purpose a special extra big buffer, called accumulation buffer has been
set up (see also 0.1).

To make this process fit for real time, we do not gather n images before
displaying them, but use image operations. If we rendered the n + 1** image,
we subtract the image n — = from the buffer and add the new image n + 1. By
this we only need two renderings per frame.

An alternative is to use vertex shaders (see 15) for the second pass. In the
first pass we render the object normally, in the second a vertex shader applies
the previous frame’s and the current frame’s transformation to each vertex. The
difference between both gives a motion vector: Check the dot product between
motion vector and surface normal, whether the vertex is facing away from the
motion:

if it is facing away: take the vertex’s previous position as output

103

if it is facing motion: take the vertex’s current position
The length of the motion vector can be used to determine the a-values for
blending.

8.7 Reflection

A common way to render reflections without Ray Tracing (see 9) is to render
the real scene again mirrored on the reflecting surface (e.g. written to a texture
map). Then these mirrored rendered objects are made semitransparent. To
avoid rendering over opaque areas the stencil buffer can be used to hide them
from rendering. Also remember to change from back-face culling to front-face
culling or turn it off (slower rendering), since everything will be reversed.

9 Ray Tracing

The idea of ray tracing is to cast a ray for every pixel on the screen to the eye
and follow it through all objects it intersects with. By that interactions between
objects become feasible. Especially shadows and reflections become easy prey.
We differentiate four kinds of rays:

e primary rays: ray from the eye through the screen pixel

e shadow rays: once a primary ray hits an object, a secondary/shadow
ray is sent towards the light source

e reflected rays: once a shadow ray hits a light source, it is reflected
according to surface properties

e transmitted rays: if the object is translucent, in addition to reflectance
transmission rays are created and the result is carried back to the first
intersection point

9.1 Viewing

The principle is very similar to what we got to know in perspective transforma-
tions, we simply draw the first object the ray, a 3D directed line with origin e
and uwv coordinates, intersects with.

e+t-d

- -
where b is the vectors direction. We can replace d with (§— €), where § is
the pixel on the screen we are processing. §’s coordinates can be found be
transforming the screen coordinates into the uvw-coordinate system.

we =1

1+ 0.5

us =1+ (r—1)
Ny

104

j+05

Ny

vs=b—+ (t—0)
where (7, j) are the pixel’s indices. Thus

§ =€+ Ul + vs¥U + wew
Note If ¢t < 0 the object is behind the eye, and we don’t have to render it.

Of course this method is highly view dependent, meaning, once the viewing
changes, we have to recalculate everything.

9.2 Lighting

Lighting can also be done by casting rays. Once our eye-ray intersects with an
object we send a ray from this intersection point towards the light source and
compute lighting. If it doesn’t hit the light source, we are inside a shadow. If it
does we cast reflection and transmission rays according to the surface properties
and then shade the pixel with the following component:

e direct illumination

— material properties (color)
— surface normal

— light from the light source
e indirect illumination

— incoming light from reflected rays

— incoming light from transmitted rays

105

Figure 74: Recursive Ray Tracing

We see that Ray Tracing is a highly recursive procedure. This sounds much like
a physical simulation of sun rays, yet it isn’t. If we’d to simulate reality, we
ought to start from the sun and cast rays on any point on any object and then
into all directions. If one of there rays hits the eye, we can see it and render it.
But the probability for a ray hitting the eye is really low.

Shadows

If a shadow ray does intersect with an object on it’s way to the light source, we
are in a shadow. We can basically use the same algorithm as for viewing rays,
but we can simplify it: Since we are not interested in the closest intersecting
object, we can stop the algorithm, when we find the first intersection with an
object.

Soft Shadows

Soft shadows can be obtained by modeling an area light source by a number
of point lightsources. However since casting rays for every of these point light
sources would be tedious and the resulting shadows would still show hard visible
boundaries of values of grey, an idea is to randomly select one or more of these
point light sources for every ray.

Reflection

In case the shadow ray did not intersect with an object and we are dealing with
a reflecting surface, we cast a reflection ray. The direction of the ideal reflection

106

7 can be computed by
F=v+2(U0-7)n

In reality color is reflected differently depending on the color of the reflecting
material. E.g. gold reflects yellow better than blue. We can respect this by
adding a function to determine the reflection ray’s color

colorc = ¢ + cgraycolor (§+ s7, s € [e,00])

Transparency / Refraction

As with reflection we send transmission rays, if the surface material is translu-
cent. Refraction is a bit different from reflection. The transmission ray will be
bent, like e.g. a sun ray entering water. Thus the next object it hits, will appear
translocated on the transmissive surface. We can make use of Snell-Descartes
Law to compute the refraction angle:

- N

I 0

Note that I is the negative of
the incoming ray

Figure 75: Snell-Descartes Law

sinf; m
sinf; n
72 (1 — cos? 6;
cos29t=1—¥

i

where 1 describes the refraction property of the material and 7 is the surface
normal, whereas 7i; is the bend surface normal.

107

Epsilon ¢

without epsilon with epsilon

Figure 76: Add a small constant € to counter numerical instability

Because of numerical instability, we always should add a small constant ¢ to the
rays mentioned above, else the first intersection might be with the surface itself
and result in unwanted self-shadowing.

Adaptive Depth Control

This recursive creating of reflection and transmission might never end. Therefore
we should add thresholds:

Number Of Reflections p: The number of reflections threshold obviously
stops if the ray has been reflected more than p times

Intensity 7: The intensity thresholds stops reflection when the reflection ray’s
intensity drops beneath 7. To reach a drop down of intensity we consider
each materials individual attenuation properties.

9.3 Intersection
We can determine intersections by using implicit representations of our ray and
of our objects.
Sphere
An implicit sphere is given by
2 2 2
(CE—.%‘C) +(y_y0) +(Z_Zc) _T2:0

or with vectors

(=) (77— 1> =0

108

Now we simply plug-in our implicit ray as a “point” on this sphere and check
whether we still get 0:

(+td-2)- (¢+td-2)-r* =0
rearranging for ¢ we can get a simple quadratic equation:

(J'-J)t2+2d’-(€—é)t+(é‘—é)-(5—5)—r2=0

Triangle
For triangles we can use the handy barycentric coordinates (see 2.3.3). Our
implicit triangle was given by
i+p(b—a)+v(@-a
Now for intersection we set them equal
g+tci:a+ﬁ(5_a) +v(E-a)

And we remember, that if 5,7 > 0 and 8 + v < 1 the point lies within the
triangle.

Polygon

Our given polygon has m vertices pj ... py, and the surface normal 7. We start
with checking whether the ray hits the plane the polygon is lying in

(P—p1) =0
by plugging the implicit ray in as a point
(5+tci'—pq) =0

solving for ¢
(1 —e)n

d—i
By that we find the point p where the ray hits the plane.

Now secondly we check whether p'is inside the polygon or not. We do this

by projecting polygon and point unto the most parallel coordinate-plane (e.g.
by throwing away the biggest component in the normal vector) and create yet
another ray, starting from p'having direction (p; — p). We only allow for positive
t and check whether this ray intersects one or two time with the polygon edges
(by checking consecutively against all edges).

t =

One p'is inside the polygon

109

Two p enters and leaves the polygon and must be outside

Attention: handle intersections at vertices and along edges with special care.
Further more concave polygons can also lead to wrong decisions and more
then 2 intersections.

Because of such an amount of special cases, most commonly testing per triangle
and tessellation is preferred whenever possible.

Acceleration Techniques

We now have a stable method to compute intersections between rays and ob-
jects, however if we do these intersection test for each ray and each objects, we
take 9x% of the computation time & power. But there are some strategies for
accelerating the procedure of finding the first intersection:

e bounding volumes
e space partitioning

e ray coherence

Bounding Volumes

For each object we add a simply geometric object that completely surrounds it.
E.g. a rectangle or a sphere. Then we intersect with those bounding volumes.
In case the ray hits one of the we do an intersection test with the object inside.
Another advantage is, that at the firsts step we do not even need to know where
the ray hit our bounding volume, which makes the intersection test much easier.

Hierarchical Bounding Volumes

At a next step we might combine several objects, which are close to each other,
to one big bounding volume (e.g. table + chairs + fruit bowl). If the big volume
is hit, we intersect with the smaller ones inside and eventually with the objects
themselves.

Uniform Space Partitioning

We partition the space into any number of uniform quadrants and only check
objects which are (partly) inside the quadrants, the rays hits. Furthermore we
can make use of the techniques developed for the Bresenham Algorithm (see
3.2). With that we do not need to check every space part but like with the line,
only the next of the upper next one.

Octree Space Partitioning

Again we can move one level higher and repartition every quadrant. If the ray
passes a quadrant we recursively scale down the partitioning for this quadrant
and then check for objects within the passed by smaller quadrants.

110

Ray Coherence

The idea is to combine several rays into a bundle of rays.

9.4 Different Usage

Instead of doing only ray tracing, ray tracing can be used as an auxiliary tech-
nique for standard rendering;:

e to generate high class textures (see 11 for all kinds of different textures)
e for vertex shaders: only cast rays from vertices (disadvantage: Gouraud
Shading Artifacts)
9.5 Limits

Caustics

Figure 77: Caustics

Appear with simple reflection at certain angle at the interior side of a shiny
cylinder and result in complicated curves (see figure).
Caustics can be modeled using photon maps (forward ray tracing):

1. Shoot a huge amount of photons from the light source.
2. Store their hitpoints in some 3D buffer

3. Get photon density: Use clustering algorithms to find hot spots (e.g. for
every hit point, get the 50 closest hit points and calculate the max distance
to the chosen hitpoint)

111

Figure 79: Color Bleeding

4. The denser the region, the more caustics we render

Color Transmission

Figure 78: Color Transmission

Color Transmission means that to the shadow of an object color is added due
to the translucent property of the object (see figure).

Color Bleeding

The transfer of color between nearby objects, caused by the colored reflection
of indirect light.

9.6 Properties

-+ enormously parallel: each ray could be cast in parallel, if we’d had enough
parallel computational power ray tracing would exceed all other methods

112

is speed and quality
global illumination
very excellent results

combines various different illumination aspects in one ray (reflection, refrac-
tion, transparency, shadows, soft shadows, global illumination, ...)

- very slow with current unfit hardware

10 Modeling

Modeling is all about choosing the right representation for the objects in a scene.

Postulations
e good representation of the object
e easy to render
e memory /runtime requirements
e interaction properties/possibilities

e creation process

10.1 Polygon Meshes

Polygons are the basis for most 3D applications, they can be rendered easily and
express almost every object given due conversion time. Usually either triangle
or quadrilateral meshes are used.

Polygon An ordered set of vertices: Py, Py,..., P,

Polygon Mesh A collection of polygons, such that any intersection between
polygons of the mesh is either at a vertex or across an edge.

OpenGL glBegin(GL_POLYGON): glVertex3fv(Fy); ... glVertex3fv(P,); glEnd();
It is important to differentiate between topology and geometry of a mesh:

Topology neighbourhood relations

Geometry the position of the vertices zyz-coordinates

In general whole object’s can not be represented by a single polygon mesh. So
our goal is to find the ideal decomposition into smaller polygon meshes. However
the complexity of the stated problem is NP-complete.

113

10.1.1 Indexed Face Set (Shared Vertex Set)

The idea of indexed face sets is to use two separate lists:

vertex list capturing geometry (coordinates)

face list capturing topology (which vertices form faces)

10.1.2 Triangle Strips

Figure 80: Triangle Strip

We try to model both geometry and topology in one list, by using a sequence of
vertices, where every three vertices form a face. Of course this means we have
to do a through ordering.

Example

Given is the list: POP1P2P3, P4, e ,Pn
This corresponds to the faces: Py Py Py; Py Py Ps; Po P3Py .

OpenGL glBegin(GL_TRIANGLE_STRIP): glVertex3fv(Fp); ... glVertex3fv(F,);
glEnd () ;

General Triangle Strips The generalization means that both edges of an end
triangle can be used to continue the triangle strip. If this method is not
available (e.g. it isn’t in OpenGL), you can insert dummy triangles to
choose the edge you want to continue with. The advantage of general
triangle strips is, that they can become much longer (see Stripification
below 10.1.9)

114

10.1.3 Triangle Fans

Figure 81: Triangle Fan

Triangle fans are very similar to triangle strips, except that every face starts at
the same point Fy.

Example

Given is the list: POP1P2P3, P4, e ,Pn
This corresponds to the faces: Py Py Py; Py Py Ps; Py P3Py .

OpenGL glBegin(GL_TRIANGLE_FAN): glVertex3fv(Fp); ... glVertex3fv(F,);
glEnd () ;

10.1.4 Quad Strips

Figure 82: Quad Strips

Similar to triangle strips, but every four vertices form a face, and the interpre-
tation of the ordering is different according to quadrangles.

Example

Given is the list: POP1P2P3, P4, P5, Pg, 1:)77 ceey Pn

115

This corresponds to the faces: Py Py P3Ps; Py P3PsPy; PyPsP; P .

OpenGL glBegin(GL_QUAD_STRIP): glVertex3fv(Fy); ... glVertex3fv(P,);
glEnd () ;
10.1.5 Enhanced Indexed Face List

Apart from modeling we often will want to access and change the rendered
model. For that we need an efficient way to answer calls like: what are adjacent
triangles, which triangles share an edge, which faces share a vertex or which
edges share a vertex, therefore we might want a data structure allowing for
faster access to those relations: the Enhanced Face List.

We enhance the face list by three reference pointer to the three neighbouring
triangles by e.g. a pointer to the third vertex creating the neighbouring triangles.

Figure 83: Enhanced Face List Example

vertex list Triangle, = o, Yo, 20, Triangle; = x1,y1, 21, Triangle, = 22, y2, 22,
Triangle; = x3,ys, 23

face list Facey =0,1,2, Face; = 3,2,5, Faces = 1,4, 3, Faces = 3,5,2

enhanced face list Facey = 3,—1, -1, Face; = 5,0,4, Faces = 6,2, —1, Faces =

~1,1,6

10.1.6 Directed Edges

This problem is commonly solved by giving edges a direction. This is by replac-
ing the face list with a list of directed edges, with two entries

e start vertex of edge

e pointer to the opposite edge index

indexed by an edge index.

116

Figure 84: Directed Edges

edge list Edge, = 0,—1, Edge; = 1,5, Edge, = 2, -1, Edge; = 1,8, Edge, =
3,z, Edges = 2,1
10.1.7 Normal Vectors

The normal vectors of surfaces can be obtained either in the design process (e.g.
when using NURBS or implicit surfaces) or taken as average of the involved
edges’ normals:

o= Pi-Pi1,Pup1 =P
i=1
10.1.8 Face Orientation (Back Face Culling)

This is rather important, since usually only one side of the object is visible (un-
less the viewer is inside the object, or there are holes in it). Thus we want only
to render the faces facing front (towards the eye) and leave the rest unrendered,
this effects in about 50% less polygons to render. The idea is to implicitly store
the orientation in the ordering of the vertices:

clockwise face is seen from the back

counter-clockwise face is seen from the front

Properties

- approximation to smooth geometry (no silhouettes)

very large number of polygons
- very bad interactivity
- difficulty to increase/decrease the resolution of the object

difficult to extract geometrical information (e.g. curvature)

117

10.1.9 Stripification

A simple approach to find a decomposition into triangle strips:

Algorithm 13 Simple Stripification

1. randomly select an unused triangle

2. start a triangle strip along one edge

O2: until an used edge has been reached

3. continue triangle strip into opposite direction

O3: until an used edge has been reached

4. O1: until the polygon is completely decomposed

The SGI approach adds a little improvement: The starting triangle (orange)
is not selected randomly, but by the number of least unused neighbours (if
ambivalent, check the neighbours as well)

Even better results can be obtained by using general triangle strips, since then
the strips can become much longer. Furthermore better usage of the vertex
cache (see below) can be made:

118

Algorithm 14 Tunneling

Each triangle is seen as a node in a graph.

Then we use graph algorithms to find paths between the nodes, without using
a node twice.

Eventually we seek for “edges” connecting two end points of such paths (dotted
lines). These are called tunnels.

The so discovered “best” path is then the general triangle strip.

1. generate a trivial path set of triangles (e.g. empty set, all isolated)

2. O for each path endpoint o;:

— for each other path endpoint o;: search for a tunnel o;0;

3. was a tunnel found?

(a) TRUE: swap all dashed and solid edges —2
(b) FALSE: Return path as general triangle strip

With every swap the number of triangle strips gets effectively reduced by one.

Note that even tunneling does not return the global minimum of strips, yet
the results are pretty good. For example a bunny object consisting of 70.000
triangles results in about 700 strips when using SGI Stripification and in 158
when using tunneling.

Note Be careful about the triangle’s orientation (vertex ordering)! When
trying to continue a strip at one of its endpoints, the strip might suddenly
end in a triangle that’s order is different to the original starting triangle.
However this new triangle will be chosen as starting triangle for the strip,
so the order of the complete strip is reversed resulting in wrong rendering.

119

10.1.10 Vertex Cache

The vertex cache is a cache for processed vertices, normals, texture coordinates
or color arrays. The idea is that for example in a triangle strip the same vertex’s
attributes will be used multiple times in short notice (up to 6 times). Therefore
a little cache for the last n processed vertices can give us an enormous speed im-
provement. However for the look-up statement to work, we require indexed face
sets (without we don’t know whether vertex; equals vertex;). In the optimum
case (see figure below), which is not as rare as you think (e.g. tessellation of
Bézier Surfaces), half of the vertices are already in the cache or in other words,
fetching one single vertex can lead up to two new triangles.

Example

Figure 85: Triangle Strips, where the vertex cache can be optimally used (a
vertex may be called up to 6 times)

If we use a vertex cache of size 7 for this strip, we reuse half of the vertices:
Cache: | 7 | 4 | 1 | 5 | 2 | 6 | 3 |, the vertices 4,5,6 and 7 are used again.

If however we limit the size to 6:

Ch ache:| 3 | 7 | 1 | 5 | 2 | 6 |, the vertices 4,5,6 and 7 are overwritten, before
we can reuse them, and we end in no reuses.

A typical size for vertex caches is n = 16,32,64. The optimal ratio between

processed vertices and triangles is 2.

A combination between Stripification using the Vertex Cache is to stop the strip,
once the cache overruns. In this case the next strip started will make reuse of
at least half of the cached vertices.

Triangle Strip Length

Note that we need to distinguish two cases to determine the optimal triangle
strip length. This differentiation is made on the used data-type. If we use
indexed face sets, only then will we be able to make use of the vertex cache,
and the optimal length of an indexed face set should be limited by the vertex

120

cache capacity. If we however have simple triangle-strips without topology in-
formation, the rule: the longer the better, counts and we might use tunneling
to greedily get longer ones.

Indexed Face Sets limit size to vertex cache capacity

Triangle Strips the longer the better

10.2 Parametric Surfaces

We can decide between using polynomial or rational curves and between using
global or piecewise models.

| 42 [global | piecewise |

polynomial Bézier B-Splines
rational rat. Bézier | NURBS

Instead of simple monomials (z™) we will use more suitable basis functions:

Bézier Bernstein Polynomials (see 2.7)

B-Splines B-Spline basis functions (see 2.7)

A curve is then represented by a polynomial linear combination of one these
basis functions and so called control points ¢,

n
F(z) =) cBi()
i=0
This is only one possible kind of representation, we could also use implicit curves
(see 2.4):

f(a?,y,z):()

where the implicit function f returns 0 if the point (x,y,z) lies on the curve.
Implicit representations are especially useful for geometric primitives like spheres
or planes, where fixed formulas exist. In the other cases Computer Graphic
Designer usually prefer parametric curves, since because of the free parameter,
they are easier to sample and to draw.

Interpolation

Having these control points ¢, we have to estimate the values in between, ap-
proximating them by a polynomial. One problem is, that whilst a polynomial
interpolating points ¢,, is unique for every degree, a curve has infinite many
representations. The process of transforming one representation of a curve into
another of the same curve is called reparametrization. We can make use of
this to find a representation that is most convenient for our application.

Apart from that polynomials are functions, that means for every x there is

121

one and only one y. Yet for a curve, there can be more than one y (e.g. a
circle). Secondly polynomials of a high degree tend to oscillate (overfitting, see
Pattern Recognition). Therefore instead of a global model often a piecewise
model appears to be more fitting.

Linear Interpolation Linear Interpolation means to find the simplest
curve between any number of points and distributing the values of these points
in between linearly. E.g. for two points we have

p(t)=t-po+ (1 —1t)p1,t €[0;1]

Bilinear Interpolation Bilinear Interpolation means linear interpolation
in two directions (across a patch).

p(s,t)=(1—=s)(1—t)poo+s(1—t)pio+ (1 —s)t-po1+s-t-pn

where s, ¢ € [0; 1] are the free parameters defining the patch.

Trilinear Interpolation Trilinear Interpolation means linear interpola-
tion in three directions (through a room).

Approximation

Interpolation Approximation

curve must pass curve is influenced
through control points by control points

Figure 86: Difference between interpolation and approximation

We differentiate the terms interpolation and approximation in so far, that with
interpolation the curve/polynomials must pass every control point, while with
approximation they only influence the curve’s graph.

122

10.2.1 Bézier Curves

b, cubic Beézier curve

Figure 87: A Bézier Curve with four control points: by, b1, b2, b3

Bézier curves chose the later idea and approximate control points rather than
interpolate them. Exceptions are the end points of the curve, which are inter-
polated. As you can see in the figure above, the direct lines between the points
are tangents of the actual curve. The degree of the Bézier curve is the number
of control point minus one.

An intuitive way to understand how we can draw such a non discrete func-
tion, i.e. a perfect curve, to the screen is illustrated by corner cutting

Corner Cutting

Figure 88: Corner Cutting

Corner Cutting means to successively cut the corners off, to make the corner
points more smooth. We cut them of by spanning lines between a corner point
and cut/clip off the outside. The limes of infinite many subdivisions is indeed
a smooth curve.

123

Algorithm 15 Corner Cutting

subdivide (pg, p1,p2) {

— +
Po1 = P02P1

— +
P12 = P12P2
D = Pm;rplz

subdivide (po, po1, Pm)
subdivide (py,, P12, P2)

P1 P2

Po

Figure 89: The midpoints (black points) resulting from corner cutting, make
up the curve approximating the control point p; and are thus those, which we
draw on the screen. Some threshold can determine the number of subdivisions.

We use corner cutting to approximate the control points and draw our “smooth”

curve on the screen. We only use the midpoints p,, resulting from corner cutting
to define the shape of our curve (see figure above).

124

E

v
¢

v

"
P el

Figure 91: Ordering of Bézier control points

Note that the order of the control points is very important, as illustrated in this
figure.

Algorithm Of Casteljau

Figure 90: Algorithm of Casteljau

An generalization to corner cutting is a number of successive linear interpola-
tions called the algorithm of Casteljau.

125

Order
Continuity

Of course we also will have to connect Bézier Curves. In this case we want to
assure that we have at least C° and C' continuity”:
We have

C° if the graph has no gaps
C' if the tangent vectors match (no sharp corners)

With these assurances we have a curve without gaps and sharp corners. How-
ever for some applications continuity up to C° is useful, so we bid special care
depending on the application. For example C? continuity is needed, when the
object is in motion and we want the motion to be smooth.

Quadratic Bézier Curves

Quadratic Bézier Curves have only one approximation (control) point p;. For
t €[0;1] we get
p(t) =1 =) (L =t)po+t-p1)+t(t-po+ (1 —t)p1)+t-ps

pt)=(1—1t)po+2(1—1t)p1 +t°p2

thus we result in having the weights wg = (1 — t2) Jwp = 2(1—1),we = t2
These weights or control points are often referred to as blending functions.
So the curve is the weighted average of the control points:

The weights must always sum up to 1 and we allow no negative weights.

Cubic Bézier Curves

Cubic Bézier Curves are also based on the subdivision procedure and have
one additional point to approximate. This results in 4 control points wy =
(1—8) w1 =30 =) t,wy =3 (1 —t) 12, wy = 13

Bézier Curves Of Higher Order

Dealing with Bézier Curves of any order, we can find a generalization of the
blending functions using Bernstein binomial coefficients:

(n—1)!

Wi) = g T

7C™continuity means the function is continuous and all of it’s derivatives up to the nt’
also are.

126

Bézier Surfaces

Bézier Surfaces are a generalization of Bézier Curves in 3D. A Bézier Surface is
also given by the average of all control points:

n

p(S,t) = Zzww (Svt) " Pij

§=0i=0

where the blending functions w;; must be continuous.
There is a great property of Bézier Surfaces (continuous blending functions),
that allows us to separate the 2D blending functions into two 1D ones.

p(s,) =D > w;(s)-w(t)-py

§=0 i=0

where w; (s) - w; (t) is a tensor product (see 2.1.2), since one goes in z and the
other in y direction. This also means we can give two 1D curves to make a
surface. We simply have to find a matrix representation of our function (which
we can, because we are dealing with linear functions) and handle these matrices
as they would be vectors and apply the tensor product.

Properties

the most striking advantage is that an object described by such curves is
completely resolution independent and will show no signs of aliasing.

easy adjustment: the curve’s shape is manipulated by manipulating control
points (define tangents on the curve)

the curve always remains in the convex hull of control points

. A .
affine transformations on the curve = affine transformations of the control
points (affine invariant)

- the curve depends on all control points, so changing a single one reshapes the
whole curve (this can sometimes be an advantage as well)

- many control points lead to a high-degree polynomial (degree — number of
control points minus one)

A small simple applet to play with Bézier curves can be found here Bézier Curve

Applet http://www2.mat.dtu.dk/people/J.Gravesen/cagd/decast.html. Look

how moving a single control point influences the whole curve. If you still want

to see more, here’s an applet illustrating Bézier Surfaces Bézier Surface Applet
http://www.nbb.cornell.edu/neurobio/land/01dStudentProjects/cs490-96t097/
anson/BezierPatchApplet/index.html

127

10.2.2 Uniform B-Splines®

A way to avoid both negative properties mentioned above is to use splines.
Splines are polynomials of a lower degree that are combined to approximate a
polynomial of a higher degree. Basis functions for B-Splines can be looked up
here: 2.7. With these basis functions a B-Spline is defined as:

S = pibi (1)
1=0

Now geometrically speaking we combine these splines by shifting the basis func-
tions to given so called knot points k;, which serve as connection points be-
tween the splines. In our case we choose them uniform.

ki =ki—1+1

m‘r-:»

=1 s ag) =2

&
wit+g wit+3) wit+d e wg o witd) witd o wiEd

=3 =2 =1 = =2 3 =4 £6 =6
Figure 92: Shifting the splines basis function to the control points

This choice for knot points in uniform distance results in having the same spline
over and over again, only translated to the knot point. This also means we don’t
have to store the knot points, since they can be created automatically and need
only to store the control points.

Subdivision Process

The subdivision process is similar to the Bézier case, yet we do not take the
midpoints. Instead we use the midpoints between midpoints:

8From Basis-Splines, cause they are all created from the same set of basis functions

128

Algorithm 16 Subdivision Process for B-Splines

(0

1. Choose midpoints in each segment of the control polygon

2. Connect midpoints of these and the original control points

3. Also use midpoints of the corner segments

Cubic B-Splines

2P
F . Py
‘.l' N’ "
P'l re L= ’!. t=1
v “. &*
t = 0 5.’ Pa

Figure 93: Cubic B-Spline

Like with cubic Bézier Curves we have four points, but now, even the end points
are not necessarily on the curve. All the properties of Bézier Curves do also
count here, but only locally: local convex hull, locally continuous, local control
by control points.

Properties

every spline has C2-continuity

constant degree of basis functions: more efficient and more numerically stable
local control of control points: effects are only local

bound by the convex hull of the points

affine invariant

- only an approximation like polygons, no accurate modeling

129

- no control points on the curve (the curve will be defined by parameter values)

- removing of control points can lead to a complete restructuring of the whole
curve, since the number of control points between two knot points is con-
stant

A series of applets illustrating uniform B-Splines can be found here: B-Spline
Applet http://www.ibiblio.org/e-notes/Splines/Basis.htm. Look how
the B-Spline functions all look equal, expect for being translated to the knot
points. Try to move the control points to influence the curve. Moving one
control point will only influence the part of the curve, that is dependent on it.

You can also try to destroy the uniform spacing of the knot points on the
right side of the applets and see how the representation changes.

10.2.3 NURBS
Non Uniform Rational B-Splines (NURBS) are a generalization of B-Splines

rational ratio of two polynomials instead of one cubic one (results in an exact
representation of conics (e.g. cylinders, circles)

non-uniform different spacing between knot points (results in an easier adding
and deleting of control points, simply add the point 2.5 between 2,3 —
2,2.5,3 or simply remove the point 3 between 2,3,4 — 2,4)

These changes mean that we have to define and store two knot sequences for
x and y direction; w; (x),w; (y). We can combine them for a knot matrix
defining a surface, like we did with Bézier Curves, by combining them with a

tensor product.
n

N(w,y) =D > wi(@)-w;(y) Py

j=0 i=0
or written with the ratio
Do hipiw, 7 (1)

N (1) = il
@ Z?:o hiw; . 7 (@)

i)

where #'is the knot vector and k the B-Spline degree parameter. Where P;; is
an array (a matrix) containing all the control points.

130

10.3 Constructive Solid Geometry (CSG)

INTERSECTION

Figure 94: Basic Operations of Constructive Solid Geometry

The idea of Constructive Solid Geometry is to use a set of operations to combine
solid shapes. These operations can be seen as operations on sets (U, N, —).

can efficiently be combined with ray tracing

10.4 Subdivision Surfaces

10.5 Procedural Models

Procedural models provide procedures that can generate points on a curve
(model), that are neither implicit nor parametric. A good example for pro-

cedural models are fractals.

10.6 Hierarchical Modeling
10.6.1 Scene Tree / Scene Graph

The idea of hierarchical modeling is to gather objects as chunks. The root is
the scene itself, partitioned by object groups that share a certain geometry (e.g.
tables), partitioned by single objects, partitioned by object parts, partitioned
by primitives. This hierarchy is called scene tree. When focusing on shared
geometric properties, we speak of scene graphs rather than trees.

131

10.6.2 Scene Description

A scene consists out of: Camera, Light, Background, Materials and Objects.
We describe each of them separately.

10.6.3 Class Hierarchy

A kind of object oriented approach. For example a possible super class is
Object3D. This super class is inherited by Sphere, Cylinder, Plane, Triangle
or Group.

Plane

Box Box Box

N\
Box Box Box Box Sphere Sphere

Figure 95: Organization tree using a class hierarchy
Using such a class hierarchy, we can describe the scene as a tree of groups.

In this approach we can define materials inside of group classes for each group
member.

132

Scene Transformations

- - Pla“c
S - -

Box Box Box Box s]'hm Sphere

Figure 96: Scene Transformations
Adding a transformation class as Object3D, we can also describe transforma-
tions within the scene.

Add a class Transformation as an Object3D. By making Transformation
Object 3D we can logically place them in the organization tree and order all
affected real object groups below it.

10.6.4 Scenegraph API

OpenGL is powerful, but we have to create objects from the bottom by lines
of code, and have little assistance in picking and transforming objects during
the creation. Furthermore OpenGL is more hardware than user oriented and the
process of creation is imperative rather than descriptive (which would be more
intuitive). Now scenegraph APIs are usually based on OpenGL and therefore
share it’s advantages (e.g. hardware independent), yet they offer the above
mentioned features making the process of creating easier and more intuitive.
A typical scenegraph API covers

e scene description: geometry and attributes (hierarchical modeling)

e reutilization: leads to DAGs

validity and propagation attributes

a GUI for easy modeling and arranging of objects

typical basic elements/nodes: camera, light sources, background, shape,
group, geometry, transformation, root

133

Some popular APIs are:

e Openlnventor (SGI)
e Java 3D

e OpenScenegraph

10.7 Level Of Detail (LOD)

Representing a model in detail may not always be good, especially if we look
for speed. For example imagine a car close to the far plane, very distant to
the viewer. To model this car taking up so few pixels, a really simple model
is sufficient. However if the car is right before the user, we need it with every
detail, we can get. Now the idea of LOD is to provide objects and textures
in a different level of detail resp. resolution, decide which LOD is best for the
objects in the scene and provide a way to switch between different LODs for
interactivity.

Also note the LOD rendering is completely solved by curves, NURBS etc.
(see previous sections), since they provide different LODs in their geometric
description.

10.7.1 LOD Creation
First of all to select and switch between LODs, we need different LODs per se.

Handmade the most straightforward method is to provide them yourself. Ad-
vantage is that they will be asjusted to the application and can be tested to
look good. On the other hand this takes time and makes them application
dependent.

Edge Collapse move two vertices forming an edge to one point making an
edge collapse. One collapse removed two triangles, three edges and one
vertex. Supplying a history of collapses, we can lostless reproduce the
higher LOD and don’t have to save different LODs per se.

Contraction a generalization of edge collapse allowing edges and triangles to
collapse as well. Also very important is to avoid critical contractions at
any cost (critical in the sense of hugely deforming the object), however
those can be easily detected by the direction change of affected surface
normals.

Bump Maps a curious idea is to turn actual geometry information into a bump
map and render the object flat (just take the normals and put them into
a normal map).

Actually “maintaining surface properties”, like avoiding direction changes
of surface normals, has proven to be a good cost function. Another good cost

134

function is based on the “least perceptible change” in the resulting image.
It is measured by a simple distance comparison between the images resulting
from both LODs, however simple it is expensive to compute.

10.7.2 LOD Switching

LOD Switching is quite important, because without a proper strategy a signif-
icant blopping between LODs will be visible. In the worst case the levels will
rapidly switch for and back resulting in blopping and flickering.

Blending doing a blend over two LODs over a short period of time. For exam-
ple by rendering the old LOD opaque and the new with increasing a-value
(- blending is very expensive).

Alpha «o-LODs actually use only a single model, but this model’s avalue in-
creases with distance to the viewer disappearing at some point all together.
After this disappearing a significant speed up will happen, but in contrast
to the speed idea of LOD this method will result in no efficiency gain,
while the object is still visible.

CLOD standing for Continuous Level Of Detail. The idea is to provide one
complex model and successively derive less complex models from it (e.g. 2
pixels less complex per stage). The idea is to successively shrink all edges
until both endpoints meet and the edge will entirely disappear. Each
“model” must thus contain a pointer to the next LOD (some LODS will
look ugly, the object always appear to be changing).

10.7.3 LOD Selection

Range The most forward way is to place the decision on the distance to the
viewer.

Projected Area In this method the bounding volume of the object is projected
onto the screen and the number of pixels is counted to determine the LOD
(requires approximation of solid angles).

Projected Pixel Another possibility is to project a pixel onto a associated
texture map (if given) and measure the number of textures influencing it.
This is especially useful for finding the right Mip Mapping (see 11.5.2)
LOD resp. resolution. E.g. by using the longer edge of the parallelogram
formed by the pixel’s cell as a measure.

Object Type E.g. a clock on the wall is less important than a wall.

Focus The viewer’s focus determines the LOD. E.g. during a soccer game the
area around the ball needs a high LOD, whereas the other playground can
be rendered at a low LOD.

135

Since almost the only value of using LODs is a gain in speed, in general an
objective function can be approached and used as a metric for selection:
%Cts Benefit (O, L)
Cost (O, L)

where O is the object rendered and L the associated level of detail. This can
be especially useful when we want to guarantee a minimum frame rate.

11 Texture Mapping

Figure 97: A scene with and without texture mapping

The problem of the techniques we introduced so far, is that if we really want
a detailed surface on an object, the means various different materials, height
differences, colors and other features, the modeling process would become re-
ally complex and inefficient. Therefore Ed Catmun and Jim Blinn thought of
something else that works much like wallpapers on walls. Instead of really mod-
eling the outward appearance we define a 2D image and wrap it around the
object (1D and 3D “images” are also possible). This is called texture mapping.
Effectively we have to find a coordinate mapping from the image coordinates
to our object coordinates. We differentiate static textures (raster images) or

136

procedural textures that are computed on the fly:
T :R?* — RBG (4)

texel a pixel in the texture (from texture element)

Properties
adds visual complexity to objects in a simple way
great performance compared to “real” modeling
can even be used for reflectance properties (see environment maps)

- dependent on the rasterization method (ray tracing, scanline deliver different
results). Solution: Do Perspective Interpolation 11.2

11.1 Noise Textures

Noise Textures are an example for procedural textures. We randomly assign
color values of a certain range to get something like a TV static. This is also
called white noise, because it’s following an uniform distribution. For a more
smooth noise we can use a technique called Perlin Noise. Key features of
Perlin Noise is to use a lattice and color vectors rather than color values and
interpolate between them using weighting function w.

[z]+1 ly]+1 [2]+1

n(x,y,z) = Z Z Z Qiji (. —t,y—j,2—k)

i=lz] j=ly] k=|z]

Qiji (u,0,w) = w (u) w (v) w (w) (Tijh - (u, v, w))

21 + 3P +1 if |t <1
w(t) = .
0 otherwise

where I' contains a hash function ¢ for accessing precomputed unit vectors in
an array G:

Lijp =G (p(i+ (i +0(k))))

11.2 2D Texture Mapping

We are given a texture image of size (ng,n,) and have texture coordinates u, v
to access texels on the texture. Often 2D texture mapping is done by first
mapping texels to every vertex and then interpolating between them.

1. Normalization: First we see that we limit the texture range to [0; 1], values
outside of this range can for example be computed by a periodic extension
of the texture or by clamping (both discussed later on 11.7).

137

2. Interpolation: A pixel value usually does not directly correspond to one
single texture value, but lies e.g. close to the center of four neighboured
pixel. In such a case we can apply a interpolation technique like: Nearest
Neighbour, Bilinear or Trilinear Interpolation.

(a) Nearest Neighbour: Take the texture value closest to the pixel

. + Square > 4

2x2-Texture

Figure 98: Nearest Neighbour Interpolation

(b) Bilinear Interpolation: Interpolate between neighbouring textures
close to the pixel

. + Square >

2x2-Texture

Figure 99: Bilinear Interpolation

(c) Trilinear Interpolation: The same as bilinear interpolation for tex-
tures close to the pixel in three directions (3D)

Texture Coordinates

The texture coordinates u,v can be gotten by:

e delivered by model data

The u,v coordinates are generated during the modeling phase (e.g. para-
metric surfaces) and stored in a second list next to the vertex list. This
means every vertex in the list has both x,y, z coordinates as well as u, v
coordinates. This also means that we can easily add additional features
to vertices.

138

e run time computation (parametrization)

This is trivial for geometric primitives like spheres or cubes. For other
objects, we can enclose them into a geometric primitive and project from
this enclosing primitive onto the object. Of course the results vary for
each method, therefore it is application dependent which to choose. The
easiest way is to use planar projection (see figure).

Possible are: parallel (planar) projection, cubical, cylindrical or spherical
projection

Figure 100: Planar Projection

e automatic generation from vertex coordinates

This is what OpenGL does (glTexGen()). Think of it as a dia/beamer
projection (see figure). We do this by giving a fixed rule how to map
coordinates for all objects by defining a linear function, i.e. a matrix. Now
by this matrix we can define an arbitrary projection, e.g. an orthographic
one, using only the linear 3 x 3 part or a perspective making use of the last
row of the whole 4 x 4 matrix. With the latter one we can e.g. perform
a dia projection from the light source. Using vertex shader, we can get
even more sophisticated projections by defining rules how to transform
vertices.

One advantage of this method is that we can manipulate the texture coor-
dinates by this 4 x 4 texture matrix (which has its own texture stack). Not
that we don’t have direct access to world coordinates, therefore we need
to apply the object’s coordinates first to the ModelView matrix before we
can throw them into the texture matrix.

Ptexture =]\/ftextureMl\/lodelViewpobject

139

Figure 101: Dia Projection

Usage With this method you can for example go out into the RealWorld©
take a picture with a digicam and use it as dia-texture. However the
most used application are shadow maps.

Example: Sphere / Runtime Computation

1. Get polar coordinates for the vertex (z,y,z) on a sphere with center
(Zey Ye, 2e) and radius r:

T =X+ 7T Ccospsinb
Yy=1y.+r-singsinf
z=2z.+1r-cosb

¢ =arctan2 (y — Y, T — T¢)

Z— Ze¢
0 = arccos
r

2. Now we can easily get 2D surface coordinated for this polar coordinates
by dividing by the spherical component m:

o+
u =

2

T —0
v =

™

Current graphics card allow for loading the computation code for rather than
the texture coordinates itself to the card. These are called vertex programs.

140

Rasterization: Perspective Interpolation

A problem is that the texturing method is currently rasterization dependent and
scanline interpolation will even distort our textures, since the used barycentric
coordinates do not respect the distortion of the perspective transformation of
the texture. The solution is pretty straightforward and the idea is already
know from clipping in homogeneous coordinates: We do the interpolation in the
perspective space.

Figure 102: Perspective Interpolation

On the figure you can see above, the process is illustrated. s is the texture
coordinate in world space, and ¢ in screen space. As you can guess, the inter-
polation in both spaces is not the same, therefore we look for a mapping ¢t — s
that allows for a correct interpolation.

(2)-(m)s(mmm)

Figure 103: So instead of the standard rasterization we now interpolate with
the values returned by the mapping to the perspective space.

11.3 1D Texture Mapping

1D texture maps are often used for visualization. E.g. for scalar fields (color
coding).

141

11.4 3D Texture Mapping

Figure 104: A 3D map to model the inside of a human head

Especially for visualization. For example medical modeling of organs or systems
of the human body or for technical modeling of machines.With 3D maps volume
effects can be obtained.

11.5 Texture Antialiasing

Often the object we want to wrap out texture around is larger or smaller than
the texture. In this case we need a larger or smaller form of or texture gotten
by expanding or shrinking it’s resolution. However this easily leads to visual
artifacts (called Aliasing). because the sampling theorem is hurt:

11.5.1 Sampling Theorem

Nyquist once stated an important theorem about the sampling of a signal. The
sampling frequency fs must be at least twice as high than the highest frequency
occurring in the signal f,, else the signal’s representation will not be accurate:

f822'f0

In our case that means the function’s frequency sampling the texture must be
twice as high as the texture’s frequency.
Antialiasing methods and algorithms have been thought of to counter this effect

or keep the sampling theorem valid.

142

11.5.2 Mip Mapping’

MIP-Mapping

Figure 105: Mip-Mapping

The idea of Mip Mapping is to provide the same texture in several different res-
olutions (correspond to different frequencies). Than when it comes to sampling
we choose the texture, whose frequency is most fitting the sampling frequency
(e.g. by taking the highest absolute value of the following differentials mea-

suring how much texels contribute to one pixel projected to the texture map:

Qu Qv Ju vl 4oy measure, for more selection methods, refer to the section
OJx’ Jy’ Oy’ Ox))

on Level Of Detail Selection 10.7.3).

Value at level n+1

Texture n+1

_—

@ Final value

Texture n

==

Value at leveln

Figure 106: Trilinear Interpolation with Mip-Mapping

Mip Mapping also provides an interesting possibility for doing trilinear interpo-
lation using 2D textures. In a first step we do bilinear interpolation between
two succeeding textures of the Mip Mapping hierarchy and then linear interpo-
late between the two resulting values. The result is a three dimensional looking
image.

L takes a constant amount of time no matter the resolution

- only squared areas can be retrieved, this leads to overblurring of rectangular
scenes, if they minimized /maximized too much

9MIP — multum in parvo (Latin: many things in a small place)

143

11.5.3 Ripmapping

The ripmapping technique tries to avoid the overblurring appearing with mip
mapping. The idea is simple, we extend mip mapping as to include down sam-
pled rectangular areas as subtextures that can be accessed. Two more param-
eters are used to access this rip map, but they can be computed on the fly by
using the pixel cell’s v and v extents on the texture.

no overblurring

- very memory intensive

11.5.4 Summed-Area Table

The “Table” is referring to an underlying array, having the size of the texture
but more bits. Now on every position in the array all pixels included by the
rectangle having lower left point [0, 0] and the position as upper right point are
summed, divided by their number and stored in this position. By that we can
compute the average of any arbitrary rectangle within the texture (by simple
subtractions).

less overblurring than mip mapping (only at the diagonals)

- memory intensive

11.6 Blending Functions

When we found the texture coordinates we want to have at a certain point on
our object, we have several possibilities how to proceed further. These include

replace simply replace the underlying object point with the texture value
decal like replace, but apply a-blending

modulate multiply the surface color with the texture value (also called mul-
tiplicative blending)

In the first case already computed lighting will be overwritten and the object
will appear to glow on its own account (glow texture).

11.7 Corresponder Functions

Corresponder functions describe what is to be done with pixels outside of the
normalized texture range [0; 1[:

wrap repeat tile The texture image is repeated across its borders. For ex-
ample the value at 1.2 equals the value at 0.2.

144

mirror

The texture image is repeated, but mirrored. For example the value at 1.2
equals the value at 0.8.

clamp

Values outside the range are “clamped” to the closest edge. There is an alter-
native called clamp to border, where a special border color is defined, where to
cast, outside values to.

11.8 Bump Maps

% Bumpmap: Direct3D EnvMap/BumpMa.__ 1T | % Bumpmap: Direct3D EnvMap/BumpMa_.. F[1F5

405.78 fps [292x260x16) 201.00 fps [292x260x16)

Figure 107: Bump Maps adding height features

As discussed at the beginning of the chapter there are additional features we
might want to add to mere color wallpapers, to make them look more realistic.
One approach to do this are bump maps. A bump map is an “image” which
contains height information for a texture map. So at each point of the texture
we know the depth/height of it.

145

current scanline
Figure 108: Bump Maps contain height information

We can make use of this knowledge by developing a way to alter the surface
normal at this position according to the texel’s height value. This does not result
into an actual change of shape, yet due to shading being differently applied at
this point, it looks like it was. This change in normals can be obtained by
sampling the bump map and using partial derivatives (gradient) to express the
changes in height and perturb the normals with them.

Emboss Bump Maps

Bump Mapping: Shift And Subtract Image (Embaoss)

Figure 109: Emboss Bump Map

Emboss Bump Maps is an approximation to standard bump mapping, that is
far more efficient, since it skips lighting calculation at each pixel. The idea is
to render the bump map as an image, translate the texture towards the light
source, render it again as a subtractive texture (see below for multi texturing
11.15):

L-T(s)—T(s+ As)

146

Gouraud Bump Maps

Figure 110: Gouraud Bump Map
In contrast to Emboss Bump Maps, Gouraud Bump Maps are a complification.
Instead of changing the surface normals, the bump map changes lighting normal

per vertex. It requires a high geometric resolution and is hardly useful.

Per-Pixel Bump Maps / Dot Product Bump Maps

Figure 111: Normal Map used for bump mapping

Instead of height, the bump texture contains normals (z, y, z coded in RGB). So

we read the normal from the texture 7, interpolate ¢ and [and normalize them
and finally compute lighting with 77, [, . However in a first step we still need per
vertex operations to map world space coordinates to the texture coordinates.

147

Parallax Bump Maps

Figure 112: Left: standard bump map, Right: parallax bump map

Parallax is the apparent shift of an object against a background caused by a
change in observer position. Standard bump mapping does not cover this visual
effect, but they can be elegantly extended to provide this effect. We estimate
the parallax due to the bump texture and apply the effect by adding a offset to
texture coordinates.

) offset
height map

polygon

Figure 113: Computation of the parallax offset
Ty the actual point the eye would see without bump mapping
A the point T} offseted according to the bump map
T, corrected point

B what the eye would see, if the bump was real (by offsetting the corrected 7},)

T, =Ty+H =%
e

where H is the height according to the bump map.
Limit the offset for grazing angles
T, =To+ H -ezey

T, corresponds to the gradient and can be found by for example using Newton
Iteration.

148

Properties

efficient: simple geometry stage,
visually complex

- no change in geometry: shadows are not affected by the bumps, silhouettes
are unaffected

- looks still flat, when viewed from the side

11.9 Displacement Maps

Displacement
maps

\
L e
Original object " -

Figure 114: Displacement Maps

In contrast to bump maps, displacement maps really do change the geometry
of objects. Surface points are displaced according to a displacement map com-
monly towards the surface normal.

11.10 Environment Maps

Environment Maps are textures that allow for a mirroring of the background.
They can be implemented as cube maps (6 textures), sphere maps (1 texture)
or paraboloid maps (2 textures).

149

Cube Maps

Figure 115: Environment Map with a cube

We think of a cube surrounding the whole scene having one texture on each side.
We access the cube’s textures by casting a ray from the center of the scene.

1. compute reflection ray 7 for the surface point (where the eye vector would
be reflected to)
r=2(€-n)n—¢€

2. find the corresponding cube sub-texture: Choose the highest absolute!®
value among the three coordinates and determine the sub-texture by it’s
sign
E.g. 7 = (-8,2,1) has highest absolute coordinate |—8|, the sign is —
resulting in the left sub-texture

3. get the texture coordinates (u,v) by the intersection of ray and sub-
texture. This can easily be obtained by dividing the other two coordinates
by the absolute value of the one chosen in 2. and scaling the unit cube
range [—1; 1] to the texture range [0; 1] by adding 1 and dividing by 2.
E.g. 7= (-8,2,1) results in L‘ and — and after scaling the range:

-8 [-8

2 1

241 N

—5] _ I=E
S and v = 5

u =

- uniform sampling characteristics (no excessive number of pixels at a pole,
like spherical ones)

I the six faces are easy to compute

|- view independent

10Tf two coordinates have equal absolute values, we are on a border between two cube maps
and can choose any of them. This however will seldom happen, because of hardware precision
failures. However we can account for it, by putting these border lines into both neighbouring
textures.

150

Spherical Maps

mirror
sphere

Figure 116: Environment Map on a sphere

We make some assumptions to make this process more efficient:

e parallel camera rays (uniform direction eg)

e environment map is infinitely far away (color depends only on the direction
of reflection 7)
r=2(€-n)n—¢€

With these assumptions made, our environment map odes only need to store
one color value for every direction of reflection. After ¥ has been normalized,
texture coordinates can be gotten by

ry +1
U= —-
2
oyt 1
T

The sphere texture image is created/recorded by placing a perfectly mirroring
sphere in the middle of the scene and save the reflection (also called “probe”, see
image above).

OpenGL glTexGenfv(GL_S,GL_SPHERE_MAP,0)
- no seam at the border of the texture

- irregular sampling at the boundary, because many pixels are mapped closely
on the sphere’s poles (use other environment maps, e.g. cube maps or
parabolic maps)

- moving between two points is not linear (no linear interpolation possible)

- only valid for one viewing direction (no environment rotation)

151

Parabolic Maps

Texture 1 \ A/ / Texture 2

T . \/\/ /""

1L 1
/N
1 / /\q N\ 1

Figure 117: Parabolic Environment Map

Parabolic Maps are very similar to spherical environment maps, yet they use two
textures and mirror the environment at two paraboloids rather than a perfect
sphere. All reflection rays share the same origin and viewing rays are parallel
to the z-axis. The paraboloid is given by:

f(x,y):%—%(xQﬂLyQ)

The we get the texture coordinates from the reflection vector:

Tz
u =

1+7r,
V= "y

1+7r,

This works especially well if the hardware allows to reflection vector to texture
coordinates.

view independent
uniform sampling (linear interpolation) even better as with cube maps

- very hard to create

Properties of Environment Maps
supported by hardware

- for planar objects (flat objects) the color becomes unrealistically constant
(worst for orthographic projection)

- the color of a point on the reflecting surface does not only depend on the
reflection vector 7 but rather on the area of a cone having it’s peak in the
point (use prefiltered environment maps accounting for this).

152

11.11 Environment Bump Maps

¥ Bumpmap: Direct3D EnvMap/BumpMa... 5[5 F7

201.00 fps (292x260x16)

Figure 118: Environment Bump Map with normal texture, environment map
(+light source) and a bump map

There exists an interesting combination of bump and environment maps, that
will be presented here. The first aspect is that we will perform lighting via a
texture:

lighting via texture

a 2D texture that maps surface normals 77 to color Ly
Thus we result in having three texture maps: standard texture, environment

map + light source, bump map (see picture). The bump map returns an offset
for accessing the environment map (changing the normal):

L = Lz - Brightuness (environment) + bump offset

11.12 Interactive Horizon Maps

The disadvantage of bump maps is that although the bumps look good, they
provide no real geometrical bumps and therefore those bumps do not cast shad-
ows. Horizon Maps try to counter this by storing the horizon around a point
in texture maps, enabling to decide whether a point lies in shadow or not. The
height of the horizon simply depends on the direction (i.e. the angle), so the
direction will give us access to the map. If the light source lies below the horizon
we are in shadow.

Following this idea we precompute horizon heights for each pixel in at least
eight directions (N, NE, E, SE, S, SW, W, NW). Then during lighting calculation
we compute the height angle of the light source and check whether the height
of the horizon surpasses the light source’s height.

153

Figure 119: Does the light ray lie above the horizon?

By this eight directions we sample the horizon enclosing our point in 8 points.
Now having a point we could simply interpolate the two involved samples, how-
ever the results are very bad. Therefore we rather use the samples as coefficients
of basis functions (stored in textures, one for each direction) and use them to
evaluate the height in between two directions with weighted interpolation (co-
efficients — weights).

Since the horizon height samples are 1D float values, we will be able to store
them in merely two textures, storing four samples in one texture’s RGBa-
channels.

Figure 120: North basis function texture and the resulting horizon map using
only this basis texture

In the figure on the left we see the basis function for the direction north. If we
have a point and access a direction influenced by the north basis function, we
will result in a horizon map like the figure on the right. The bright circles are
totally lit and not occluded by horizons in the north. The closer we go north
from such a circle the closer we will get to a northern horizon and the more we
will be in shadow.

For example we assume the position to be the blue point on the left figure.
Then the horizon height will depend on something about 20% on the northern
horizon sample point and about 80% on the north western one. All other samples
contribute 0% to the interpolated height.

11.13 Shadow Maps

The idea of shadow maps is to store a map, which we can access, if we want to
know whether a point is lit or not. This can be done by rendering the scene with

154

the eye at the light source, then naturally every position not lit, lies in shadow,
since the light cannot reach it. We then store this result in a picture we can use
as a shadow map. These kind of texture maps are excessively discussed in the
chapter about shadows on page 8.5.3.

11.14 Tllumination In Textures

Another different way of making use of textures is to use them for lighting
calculation. This of course is limited to scenes where the light remains the same
from any angle, (e.g. a chamber with one light source on the ceiling). Using
textures we can efficiently realize the Torrance-Sparrow Light Model (see 8.3.3).
Remember the color was given by

L rEs(ean) ()
1 (1)

we reorder the formulated

and then store the functions F (f ﬁ) () in a first texture with w = h
and v = 7 - h as texture coordinates and — v(n }) in a second one (for color),

r'i
(77

R
where we use s =7 -0 and t = 71 - | as texture coordinates.

Algorithm 17 Illumination In Textures

1. set vertex color to I,

2. turn on texture #1

3. use u, v as texture coordinates
4. render the scene

5. set vertex color to 1 (white)
6. turn on texture #2

7. use s,t as texture coordinates

8. render the scene with multiplicative blending (multi texturing, see above
11.6)

Due to the resulting gain in efficiency Phong Shading can be used.

155

Optimization

If we simplify the physical model again by assuming parallel light, [becomes
constant. If we further assume a parallel viewer ¥ becomes constant. Assuming
both even h becomes constant. If light and viewer are indeed far from the object
this assumption is justified.

In this case we use simply the normal 77 as texture coordinates and generate
u, v, s,t automatically by having stored ZH,U in a texture matrix. This further
allows us to use OpenGL display lists (see 14).

If we are still not content we can even store the diffuse reflection (1 — f)

in the texture. The a-channels of both textures are not used yet, so we can
store the diffuse reflection in the a-channel of the first texture. In this case
however, we must add a third render pass at the end of the algorithm for diffuse
illumination and blending;:

L = a/(destination) - L (source) + 1 - destination (source)

where « (destination) corresponds to 1 — f L (source) + 1 corresponds to the
diffuse fraction and destination (source)to the specular fraction.

if changes in l_:ﬁ are required from time to time, the optimization can still
be used, simply the texture matrix has to be recomputed

- two/three passes required

11.15 Multi Texturing

Multi Texturing describes a method to apply multiple textures in a single ren-
dering pass for one object. Today’s graphics hardware supports this. It defines
operations to add, subtract, multiply, etc. textures with/from each other. The
advantage against simply applying multiplicative blending (see 11.6) is that
instead of rendering multiple texture one after another, we get the textures
rendered in one single pass.

Note To avoid visual quantization artifacts, choose an appropriate color model
(24bit, 32bit)

supported by modern boards

only one rendering required

11.16 Texture Cache

A scene might contain a high number of textures, which are consequently ac-
cessed. Therefore most graphics hardware offers a cache for textures. Usually
the textures should be kept small. An exception is to combine small textures in
a mosaic like pattern on a larger textures. In this case we have implicit smaller
textures, but save the overhead for switching textures.

156

Last Recently Used (LRU)

Now to make good use of the texture cache, each texture is assigned a time
stamp. Every time a texture is called, it gets a new time stamp assigned. If the
cache is full the texture with the oldest time stamp will be dropped. In case of
a draw OpenGL and DirectX offer additional priority assignments.

Most Recently Used (MRU)

MRU checks the texture currently being swapped out of the texture cache,
whether it has been used in the current frame. If it was, it is kept. While being
in one frame MRU should be preferred to LRU, since otherwise every single
texture of the frame would first be swapped in. Leaving a frame, we switch
back to LRU.

Prefetching

As the name suggests prefetching loads the textures into the texture cache,
before they are needed or required. By that a lot of latency can be hidden.
Of course this technique requires a good precomputation of which textures are
required at a future time.

11.17 Texture Compression

Textures are images and images can be compressed by e.g. JPEG or PNG
compression. Now this would allow a faster loading and a better usage of the
texture cache, however the decoding algorithms for JPEG and PNG are to
complex to put them in hardware. Therefore SGI has created a special texture
image compression format that is especially easy to decompose: S3TC (S3
Texture Compression). The main disadvantage is that this format is lossy,
i.e. it cannot be recreated without information loss. If a texture image shows
especial color depth at a certain region, this will be lost. Furthermore S3TC
should never be used when dealing with normal maps used for bump maps.

157

12 BRDF (Bidirectional Reflection Distribution
Function)

General function — 12 D

Assume qual (ne

l Assume time doesn’t matter (no phosphorescence);

Scattering Function — 9D

Assume is di i ori into RGB
(This is ion for i

Single-wavelength Scattering Function — 8D

Ignore subsurace scattering - (x,y) in = (x,yV NM dependence on position

Bidirectional Texture Function (BTF) or Bidirectional Subsurface Scattering Distribution
Spatially-vVarying BRDF (SVBRDF) - 6D Function (BSSDF) - 6D

Ignore dependence
Ignore dirsction of .)
. on position Ignore subsurface scattering
incident light Assume diffuse,
nearly tlat

Light fields, Lumigraphs, and Bump Maps - 2D Bidirectional Reflectance Distribution Function
Surface Light Fields (SLF) - 4D (BRDF) - 4D

Assume diffuse Assume flat surface Assume isotropy

Texture Maps - 2D 3D

Measure only plane of incidence

Assume glossy BRDF model

"Gloss" - 1D or 0D

Figure 121: From physical radiance to BRDFs and other lighting /shading meth-
ods

12.1 Maxims
e plausible (obey energy conservation, reciprocity)
e anisotropy
e intuitive parameters (like in Phong Lighting)
e Fresnel behaviour (for peculiarity)

e non-Lambertian diffuse term (for a diffuse term with energy conservation
for the Fresnel term)

e Monte Carlo support (to support Ray Tracing)

A BRDF which manages to fit all these maxims is called: Fresnel-weighted
Phong-style anisotropic cosine lobe model.

158

12.2 Theory

Bidirectional Reflection Distribution Functions describe how light is reflected
from a surface. To describe this a BRDF covers:

e material properties

e incoming/outgoing azimuth and elevation angles
e incoming light’s wavelength

e surface area

You can see BRDFs as giving the probability that an incoming photon will leave
in a particular direction. So they relate incoming and outgoing radiance, but
they do not describe physical material light interactions. It makes another sim-
plification by neglecting scattering of light within a surface, and only takes into
account light coming from above and being reflected at one specific point (A
function type modeling surface scattering are Bidirectional Surface Scat-
tering Reflectance Distribution Function (BSSRDF) which will not be
discussed).

The outgoing radiance for a given point x and light L;, incoming at angle
Win 18

L (xa wout) = / f (xa Win, wout) LG (xa win) (win : ﬁm) dwin
Q

where f is the BRDF. It returns for some incoming light direction w;, what
percentage of light leaves at some exitant direction wyy,:. The second term
denotes the radiance arriving at point = from direction w;,. The last term is
just the application of Lambert’s cosine law for diffuse surfaces: cos(w;,) =
(Win - Mz). Since we are interested only in the light that will turn out on point
x we integrate over all incoming and outgoing light angles fQ.

If the surface is diffuse, the BRDF f becomes constant (f (2, win,wout) =
p (z), with p (z) €]0;1[where 0 means perfect reflectance and 1 no reflectance)

L (z,wout) = p () / Lin (2, win) cos (win) dwin
Q

If we are dealing with a single point lightsource the equation further simplifies
to
L (z,wout) = p (@) Lin, (2, win) cos (win)
where cos (w;,) can be computed by the surface normal at the corresponding
point:cos (win) = (Win - Tz)
Having more than one light source we discretize the integral to a sum and sum

up over all light sources.
If we for example take the Phong Light Model, (see 8.3.2) the BRDF f becomes

-\ Mshiney
k. (ﬁ : h)

fphong ({E, Win, wout) - - Win

in this way other models like the Torrance-Sparrow Light Model can be used.

159

Microfacets

0 ANASAIAA

W

Figure 122: Surface microfacets.
a) The surface is assumed to be made of millions of tiny facets. The facets are
used to find a probability distribution of facet normal directions.
b) The surface is rendered as a geometrically flat surface with the normal dis-
tribution used to reproduce the shading effects of the facets.

Surfaces will seldom be nice and flat, in fact even those which look flat have
a microscopic rough structure. We introduce the concept of microfacets which
model this micro structure and thus describe how surfaces behave. Microfacets
are tiny mirrors on the surface with random size and angle (see figure). Instead
of random (uniform), a Gaussian distribution of sizes and angles is assumed,
because they are better to work with.

Microfacets cover:

e specular reflection (by direct reflection)
e diffuse reflection (inter reflection or scattering)
e self shadowing (facets shadow each other)

e refraction (use Fresnel Reflectance for dielectrics F'!)

Properties

- BRDF do not cover anisotropy'?

They could if we would add a second type of angle (@i, out) to the BRDF.
However this can hardly be covered with graphics hardware and methods.

12.3 Praxis (Implementation)

A first idea is to evaluate BRDF on every vertex in the scene. However as
usual this leads to Gouraud artifacts, when changes are either smeared away or
overemphasized. As discussed earlier this can be countered by fine structuring,
however then we have a bottleneck and lack performance (using vertex shaders,
the performance goes slightly up).

117 describes the reflectance of a surface at various angles
12the property of being directionally dependent

160

A second common idea is to precompute as much as possible and store it in
a texture map. For isotropic surfaces the BRDF needs three variables, so we
would be able to store everything in a three dimensional texture map. Again
the usual lacks of this method are sampling problems, noise, gaps and memory-
intensiveness.

12.3.1 Factorization

A more sophisticated implementation uses factorizations of the BRDF basis
functions into a sum of two term products. The idea is to factorize the four
dimensional (four variables) BRDF into two texture maps. Then we multiply
the two values from both maps and sum them up:

n

f ($7win)w0ut) ~ ij (wzn) *qj (Wout)

j=1

where p and ¢ denote access functions to the two texture maps. Looking at
the term closely, we see that factorizations tries to separate the BRDF into a
function covering the incoming light and one covering the exitant light. The tex-
ture maps itself are accessed like environment maps (cube, parabolic or sphere
(best)), which cover a similar task (reflection).

Properties

- rendering artifacts from using texture maps and interpolation (minor)
- two texture accesses for every light source

- limited to point and directional light sources

12.3.2 Environment Map Filtering

Environment Map Filtering extends the environment map concept (see 11.10)
from mirror like reflection to glossy and diffuse reflection. The idea is to filter the
result of the environment map access. For example by blurring it the specular
reflection will appear rougher.

Now either we hope for the forgivingness of the eye and blur the whole map
uniformly /linearly or we use a equation called Phong Specular Equation to
filter it non-linearly. This equation determines a weight for each light direction
depending how much every texel contributes relative to the direction. So the
light color is given by the ambient light and the diffuse light resulting from an
environment map covering the radiance of an environment (light + reflected
lights with contributions falling off according to Lambert’s Cosine Law, 8.3.2).
This kind of environment map is also called Irradiance Map.

161

Incident Light Visibility

Figure 123: The three major components of PRT
The first sphere is the environment map covering lighting L;,, (p, s)
The second sphere covers visibility (shadows) V (p, s)
The third sphere covers Lambert’s cosine law for reflection cos (s) = (s - i7)

Properties

- wrongly assumes the same specular lobe for all viewing/surface directions
yielding the same reflection direction (this is only valid for perfect mirrors)

This assumption is necessary to be able to restrict to one single environ-
ment map. Accordingly this problem can be covered by using multiple
Environment Maps. In fact interpolation and blending between 20 sphere
maps already draw high quality results.

- view dependency: by storing every information in a single sphere map, we
also have view dependent specular reflection stored

use two sphere maps instead and use one for view-dependent and one for
view-independent radiance information

- environment maps assume light sources and objects to be distant

- the dynamic range of light is limited to 8 bits per color channel, yet direct
lighting from a light source is hundreds of times brighter than indirect
illumination. So 8 bits do not suffice to cover the full range of incident
illumination (as it is needed in the environment map).

12.4 Precomputed Radiance Transfer (PRT)

Precomputed Radiance Transfer is a global illumination technique covering
BRDFs (with precomputed environment maps), soft shadows and inter reflec-
tion. The key feature of PRT are spherical harmonics that make up the environ-
ment map. Advantages in comparison with previous BRDF techniques covered
so far are:

e PRT is fast and simple (can be done in a vertex shader)

162

e interactive: the environment can be changed dynamically

Furthermore PRT allows for arbitrary illumination (direct, indirect, caustics)
and for any kind of light transportation. Because of the environment map
covering lighting, illumination can come from any direction. However objects
need to be static (environment map) and interactions between objects is very
limited (e.g. color bleeding).

Spherical Harmonics

=10
b=1
=2

Figure 124: Spherical Harmonics
[is called band and m is bound by —I < m <

Spherical Harmonics are a set of basis functions with a spherical domain. They
can be used to represent spherical functions with a set of coefficients:

£(0,0) = me (0, 9)

where f is a spherical function, angles (6, ¢) parametrize the spherical domain
and Y; are complex basis functions with coefficients f;.
I

Y™ (0,0) = Klme‘(“b)Pllm‘ cos (0)

P/ are Legendre Polynomials (see 2.7) and normalization coefficients K™ are

K= \/(21+1) (1 — |m))!

a7 (I — m))!

The higher the number of basis functions n, the more precise the outcome
(typical are about 25).

163

Now we want a real values basis function and thus differentiate:
V2R (Y)) m>0
Yt =4V23 (V) m <0

Ylo m=20

Since y;" build an orthonormal basis, we can easily find the coefficients f; by
using the function scalar product

1
fog=/0 f (@) g () da

fi=f"oy"

Computation: Incident/Exitant Light

So what we do is to approximate the lighting function with a polynomial using
Spherical Harmonics as basis functions and the environment map as coefficients.
We compute the incident light L;, as

1o~
Lin = - Z L, (0) y; (¢)
=1

where (6, ¢) are used as indices for accessing the environment map. The envi-
ronment is split up like in environment map filtering. Where L7 is a BRDF.
Often L;, is constant for a whole object. If it isn’t we can take some samples
of the object and interpolate them.

Next we check the exitant light L., for every vertex p and texture map
access s = (0,¢) :

Lout () = p () 3 3" I, (0,5) 1 9, 9)

where H (p, s) = s-7i,, transformed to the spherical domain: H (p, s) = > | Hiy; (p, s)

Shadows

Having this formula we can easily include shadow by an additional term V' (p, s)

Low (9) = p (1) /Q Lin (9, 5) V (p,5) (s - 1,) ds

where V' (p,s) = 1 if the point p sees the environment in direction s, and 0 if
not.

164

Inter Reflections

Figure 125: PRT with inter reflections
From the point p direction s does not return environment map texels, therefor
we use the exitant light of ¢

In case p does not see the environment in direction s (V (p,s) = 0), it might
see it’s own surface point ¢ (see figure). In this case we use the exitant light of
q to model the interreflection between those two points. We can compute this
value by assuming L;,to be the same at p and ¢q. Then we just apply a global
illumination methods like ray tracing and compute the diffuse color for p.
Shadows combined with inter reflections result in having soft shadows!

Properties
extension: translucent objects

extension: all-frequency lighting (wavelet basis instead of spherical harmon-
ics)

- glossy reflection: exitant radiance depends on viewing direction
- the more specular the surface, the more basis functions are needed

- very bad for high frequency light: High frequency light is an euphemism
and has nothing to do with wavelength. Every real lightsource lites the
area perpendicular and closest to it more than the surrounding one build-
ing a light disc of intensity on it. This disc is brightest in the center.
Transforming this disc into a frequency diagram we will encounter a peak
at the center. If this peak if very high, we talk about high frequency light,
if it’s low and broad about low frequency light. For example a point light
source will have a Dirac peak/impulse. Now to model such a peak we’d
need spherical harmonics or wavelets of a very high degree. Apart from
that that “a very high degree” per se is a problem, spherical harmonics of
a high degree are very similar and show almost no differences.

165

Alternative Computation

An alternative algorithm that is faster, because the BRDF is computed with

L;, in SH basis

1. transform incident light L, to transferred light L, ignoring the object

at p

this gives the local incident light for p, as well as self shadowing and inter
reflection (L, L}, in SH basis)

2. now apply BRDF for every vertex using L/,

13 Rendering Pipeline

A scene is described by geometry, material properties, viewing and lighting. But
the question is in what order should or rather can we perform these steps and
convert the 3D scene description to a 2D raster image.

Pipeline 1 (Single Stages)

| Step | Actions Variables Coordinates
Application interactivity, collision detection pixel/color screen coordinates
Model Transforms translation, rotation, ... vertices/normals model coordinates: (u,v,w)
World Transforms translation, rotation, ... vertices/normals world coordinates: (z,vy,z2)
Viewing Transforms perspective projection vertices/normals viewing coordinates: (e, g,t)
Illumination lighting vertices/color world coordinates
Projection normalizing transforms vertices/color normalized coordinates

Window Mapping

?

?

?

Clipping Z-Buffer fragments, depth/color normalized device coordinates
Rasterization shading pixel/color screen coordinates

Texturing texture mapping texel texture coordinates
Framebuffer window to view port pixel/color screen coordinates

Pipeline 2 (Culling/Clipping)

backface culling — modeling transforms— clipping — homogeneous divide —
shading, lighting — rasterization

Pipeline 3 (Vertex, Primitives, Fragments)

1. Application: Custom Operations

(a) collision Detection

(b) Interactivity (e.g. drag & drop)

166

o DX

0]

=

vertices primitives fragments pixel

Figure 126: From vertices to fragments

2. Geometry: Vertex Operations

(a) Affine Transformations (transformation matrices)
(b) Mlumination (local Hlumination at the vertices)
(c¢) Primitive Assembly (lines, triangles)

)

(d) Projection (Normalizing Transform, Unit Cube, Z-Values)
3. Rasterization: Operations on Primitives

(a) Polygon Rasterization (decompose primitives to pixel fragments)
(b) Shading (with the fragments)

(c¢) Texture Generation (Interpolation of texture coordinates / texture
values)

(d) Texture Mapping (Projection unto the object)
4. Fragment Operations: Operations of Fragments and Pixels

(a) a Test (reject fragments above a certain a-value)
(b) Stencil Test (reject fragments with stencil buffer enabled)
(c) Depth Test (reject fragments where the depth test fails)
(d) « Blending (combine values of color fragments)

)

(e) Fog (a fragment is blended with a fog color)

Runtime Considerations

The speed of a single data packet is determined by the sum of all stages on
the Pipeline, but the overall throughput is determined by the slowest stage,
referred to as bottle neck (e.g. if there are two stages under 2 minutes and
one requiring 3 minutes for assembling a car, one car can be completed every 3
minutes). The event if the whole process is stand to wait for a certain stage, is
called stalling. Optimizations include

167

Sequentiation Partition the the bottle neck into two sequential stages
Parallelization Insert parallel pipelines at vertex and pixel operations step

Sorting Sort polygons by material (render 1... X with the same texture, much
faster than per triangle)

Potential bottle necks include

Application data generation, data transfer

— this stage is done in software, so optimize the code. a good code here
can also fasten the next two stages. furthermore you might be able to
make use of parallel processors.

Geometry lighting computation, number of light sources, number of triangles,
complex per vertex computations

Rasterization degree of occlusion (e.g. leaves on a tree), mutlitexturing, com-
plex per pixel computation

14 OpenGL

OpenGL is a hardware independent version of GL (Graphics Library) from
Silicon Graphics. A review board out of consortium of graphics companies is
maintaining the language. OpenGL is specialized but not limited to 3D scenery.

Properties

e hardware abstraction: API (application programmer interface)

low level hardware optimized

hardware independent

e boundless extensions

high level modeling: scene graphs

window system interfaces: GLUT, GLX, AGL, WGL

Syntax

functions gl-Prefix: glClear, glPolygonMode
constants in CAPITAL LETTERS: GL_POLYGON, GL_RGB

datatypes GL-Prefix: GLbyte, GLdouble, GLfloat

168

Libraries

e GLU:

prefix glu

content advanced routines, B-splines, complex objects
e Openlnventor
content object oriented toolkit, scene graphs

e Graphics Display: GLUT (glut) OS independent, GLX (glx) X-Window
System, AGL (agl) Apple, WGL (wgl) Windows

Matrix Stacks

Since the matrices needed for transformations will be used more than one time,
we should store them in a kind of stack push(Matrix m) and re-access them we
needed pop().

With this stack we can easily include a rendering command.

Group: :render ()
push(Matrix transformation) ;
forall children ¢ : c.render();

popQ);

push matrix duplicate current matrix m — m/. apply m’ to the matrix on top
of the stack m — mx.

(s [[| |

We have a matrix history: the last step is always multiplied with the newest to
create the stack entry.

pop matrix remove the top matrix from the stack.

OpenGL differentiates between two different types of matrix each having it’s
own matrix stack:

GL_PROJECTION normalization (gluPerspective())

GL_MODELVIEW camera, modeling (gluLookAt (), glTranslate(), glScale(),
glRotate(),...)

By the command glMatrixMode () we may choose on which kind of matrix we
currently want to work.

169

GL_TEXTURE In fact there is a third kind of matrix assigned a third sep-
arate stack of it’s own. The texture matrix. This matrix is used for pro-
jecting textures onto objects. It can be defined by: glTexCoords4f (s,
t, r, q

Output Primitives

The definition of primitives always starts with glBegin(Primitive Type) and
end with glEnd(). Single vertex coordinates can be set by vertex position
(glVertex(position)). Primitives are:

points (GL_POINTS), straight lines (GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP),
circles, other conic sections, quadratic surfaces, spline curves and surfaces, poly-
gon color areas, character strings.

Additionally size and color can be set.

Display List

Display Lists are rendering macros (e.g. for rendering a chair) that are directly
loaded unto the graphics card and can easily be recalled multiple times. This
gives a speed improvement by a factor of 10.

glNewList (1, glCompile); ... glEndList(); ... glCallList(1);

Cartesian Reference Frame

The coordinate frame for screen display can be set by glu0rtho2D (xmin, xmax,
ymin, ymax);

15 Programmable Graphics Hardware

Configuration matrices, lighting parameters (Phong), texture maps

Problems portability, short innovation cycle, vendor dependent, too many ex-
tensions (OpenGL)

Unification Upload per-vertex and per-pixel code directly to the graphics
device. Vertex and Pixel stages on the pipeline are replaced by pro-
grammable units.

vendor independent
effect libraries

Having several fragments per pixels, which can even be shared by multiple pixels,
we can do antialiasing. If we’d simply say fragment = pixel, we would encounter
ugly aliasing effects.

170

Pixel average value of multiple fragments that is displayed.
Fragment one sample of a high resolution image.

Antialiasing By rendering the image at a higher resolution and scaling it down.

Vertex Unit (Vertex Shader)

The vertex unit deals with all per-vertex operations like transformations and
lighting per vertex (see 13, Pipeline 3). Per-Vertex operations are required every
then, when data is changing slowly enough to only change the vertices (and risk
minor artifacts). A vertex program is built out of three components:

Input glVertex(), glNormal(), glColor(), glTexCoord()

Parameters constants like light direction f material

Output normalized 3D screen position, color, secondary colors (glossy), texture
coordinates, ...

Currently a creation of new vertices or removal of existing ones is not possible
(added in 2006/2007, XBox 360°). There is no such thing as an early return
statement or flow control statements'?, that means the hardware will need ex-
actly the same time for each vertex. Also, small vertex programs run faster.
Vertex shaders can be used for

e shadow volume creation (see 8.5.4)

e lens effects (e.g. underwater)

e object definition (making a mesh only once)

e object twist, bend, taper operations

e procedural deformations (flag, cloth movement)
e primitive creation (send degenerated meshes)

e page curls, heat haze, water ripples

Fragment Unit (Fragment Shader, Pixel Shader)

The fragment unit deals with per-fragment or per-pixel operations like textur-
ing or phong-shading (see 13, Pipeline 3). Per-Pixel/Fragment operations are
needed to accurately capture rapidly varying changes. A fragment program is
also built of three components:

Input interpolated color, interpolated depth, interpolated texture coordinates,
textures

130f course those can be simulated by register swaps as in Assembler

171

Parameters constants like light direction l_: material, ...

Output color, depth

The light direction is given in the eye-space, because of the OpenGL ModelView
matrix (we can only work in the eye-space).

=-also transform the normals into eye-space before passing them to the
shader
Like Vertex Shaders flow control and early return is not possible without tricks.
Pixel Shader use an API instead of free programming code, resulting in hardware
dependent optimized code.

Possibilities include

e customized texture mapping (bump mapping, environment mapping)
e accessing multiple textures (environment bump mapping)
e texture projection
e killing whole fragments (not rendering them)
e clipping with arbitrary “planes”; e.g. a sphere
e multiple passes before rendering (allows for complex rendering techniques)
e rendering to a texture (e.g. to store multipass results, if no multi passing
is available)
e Torrance-Sparrow Lighting using the Schlick approximation
Programs
P pervenes merpo
attributes attributes attribpuc;:stec’ ;Z%ts
vertex fragment | "
shader shader

Figure 127: OpenGL Shading Language

ARB VERTEX PROGRAM assembler like vertex shader

172

ARB FRAGMENT PROGRAM assembler like fragment shader

The program itself is passed as string: glProgramStringARB(enum target,
enum format, size len, const ubyte* program)
And bound by: glBindProgramARB(enum target, uint program)

Shading Language mainly macros for the ARB_ PROGRAMS

OpenGL Shading Language (GLSL) C-like language, global state/variables
for the passing of parameters (e.g. state.material, state.light), re-
sult parameters (result.color, result.depth), flow control (loops, branches,
conditionals)

vertex shader glPosition = glModelViewProjecjtionMatrix * gl_Vertex;

fragment shader glFragColor = vec4(1,0,0,1);

These shaders can be included into OpenGL code by: shader = glCreateShaderObject(),
glShaderSource(shader, char* source), glCompileShader (shader)

Variable Qualifiers
attribute application defined vertex attribute (vertex shader input)
uniform application defined global variable (vertex/fragment shader input)

varying computed by vertex shader, interpolated by rasterization step, sent to
fragment shader (vertex shader output, fragment shader input)

const constant variables (e.g.)

16 History

Some Numbers

fps complex global illumination (1 frame per day), movies (1 frame per 8 min-
utes), interactivity (5 fps), games (50 fps)

throughput 10° pixel with 20 fps:
e processing 20 - 10° pixels per second
e 50 cycles per pixel (1 GHZ CPU)
e 3 bytes per pixel (760 MB)

triangles games: 100.000 triangles, cave: 40.000 triangles (20 fps), reality:
80 - 10° triangles

per triangle we have three vertex coordinates, material properties, a tex-
ture

173

rendering perspective projection to screen, occlusion computation, rasteriza-
tion, illumination, texturing

GPU speed doubles every 6-12 months (CPU 18 month), denser, more tran-
sistors and FLOPS than CPU (CPU are more flexible)

Today: 600 - 10° vertices / second, 6.4 - 10° pixels / second, 6 parallel
vertex stages, 16 parallel pixel stages

History

Sinclair ZX81 (1982) complete pipeline is performed by the CPU

Commodore 64 (1982) graphic chips generates video signal (after CPU has
written to the framebuffer)

Atari ST (1985) GPU deals with 2D graphics operations
SGI Indy (1993) GPU does rasterization step

SGI O, (1996) GPU does transformations and rasterization
SGI Onyx,Nvidia,ATI GPU does the entire pipeline

Today programmable stages

17 Virtual Reality

Virtual Reality in general is a computer generated world, that can be manipu-
lated by the user. It’s all about immersion, the feeling that what surrounds you
is really real. For reaching immersion not only vision, should be considered, VR
tries to capture other senses as well:

Senses

e vision: real time graphics, stereo vision

e sound: surround sound

haptics: force feedback, input resistors

smell

taste (not yet given)

Input

The manipulation can be achieved with 3D mouses, spaceballs, data gloves,
tracking devices or whole data suits. Another goal for data input is that the
camera or eye can be moved by the user by moving the head. Even more difficult
is eye tracking. Furthermore the ability to move objects and grab and drop are
favorable immersion boosts.

174

Output (Stereo Vision)

Figure 128: CAVE
An output system called CAVE for an example for a great level of immersion.

Graphics are often displayed by special Head-Mounted Devices (HMD),
special beamer technology or whole rooms. The special is referring to giving
the possibility of stereo vision, which means to separate images for the left and
for the right eye. The first device, the HMD, achieves this by supplying one
LCD screens for each eye. HMD can easily combined with sound output and
position tracking input. However they are very heavy and uncomfortable and
thus reduce immersion. A softer version of head glasses are Shutter Glasses.
They alternately blacken the left and the right eye, thus providing the right
frames, simulate spatial viewing. However apart from them still being somewhat
uncomfortable, the images appear darkened synchronization must be assured.

Talking about beamers we can use two separate beamers projecting their
images through projection filters. Polarization filters let pass light only in one
direction. Supplying the user with glasses which have two projection filters with
the corresponding directions, the images can be separated for stereo view again.
This is what 3D cinemas usually do. This is usually done by front projection,
however then often the user shadows the projection by his geometrical physical
form. Using a mirror we can use back projection as well, avoiding this problem.
However then we need some room behind the screen.

A third alternative are work benches. The screen is like a drawing desk
where upon the image is projected. The user’s position is tracked and the image
is adjusted accordingly to provide 3D vision.

Finally we can use a whole room or chamber to maximize the level of im-

175

mersion. This is called Cave Automatical Virtual Environment (CAVE).
This is one of the most expensive VR architectures, since we need six (twelve for
passive stereovision) beamers for every wall of the chamber including a beamer
for the bottom floor underneath the room. Furthermore the computation and
synchronization takes the power of graphics clusters.

Stereo Projection

virtual object
)

projection screen

eye points

Figure 129: Stereo Projection

Assuming we know the position of the viewer, resp. her eyes, how can we
calculate the right stereo images?

A straightforward method is to place the camera successively onto the left
and the right eye and render the image towards the center of the “screen”.
However this method fails when the viewer is not centered and looks at the
screen at a different angle.

Another method is calls sheared perspective. The projection screen is
the image plane and we allow the eye point to be anywhere. This means our
viewing frustum becomes sheared. OpenGL offers a sheared viewing frustums
called glFrustum.

176

List

0~ O Ui W N+

[e T e S e e = =)
N O Ut W= DO

List

O = ~J O U = W N =

DO DD DD DD = = e e e e e e = O
W HEHNOOOWIO Ui W =

of Algorithms

Bresenham Algorithm 0oL 24
Seed Fillo 25
Scanline 26
Cohen Sutherland oo 0oL 27
a-clipping 28
Gouraud Shadingo o 87
Deferred Shading Lo 89
Creating Penumbra Maps 98
Shadow Volume Algorithm 100
Constructing The Shadow Volume 101
Shadow Volumes with Vertex Shaders 102
Z-Pass Algorithm oo 102
Simple Stripificationo o000 118
Tunneling 119
Corner Cutting 124
Subdivision Process for B-Splines 129
Tllumination In Textures 155

of Figures

mapping from one coordinate system into another 13
solid angleo 21
Solid Angle Differential 21
outcodes for the clipping rectangle 27
reversed clipping in a x-window system 28
Sutherland Hodgeman Classes 29
Comparison with the RGB color model 34
horizontal shearing 38
Isotropic Scaling o 38
scaling 38
Rotation 39
Euler Rotations o oo 40
Reflection 42
Transforming Normals 44
Canonical View Volume 46
Orthographic View Volume 47
Image Plane oo 49
Image Plane with variables 49
Perspective Projection oo oo 50
Field Of View 51
Mapping Of Z illustrated with colors 52
View Frustumo 52
Mapping Of Z illustrated with arrows 53

177

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
35
56
a7
58
99
60
61

62
63
64

65

Mapping Of Z illustrated with asymptotes 54

penetration and cyclic occlusiono 55
Axis Aligned Binary Space Partitioning 56
Screen Door Transparency 58
Problems with Delayed Blended Transparency 59
View Frustum Culling 61
View Frustum Culling 62
View Frustum Intersection 63
Potentially Visible Sets separate the scene into arbitrary cells . . 64
Portal Visibility oo 65
Occlusion Horizon 67
Occlusion Horizon: Difficult Occlusion 67
London 68
Dual Ray Space Occlusion Culling 69
A line in the Dual Ray Space 69
A double triangle in the Dual Ray Space 69
Radiance 72
Relationship between incident and reflected light 73
fluorescence 74
phosphorescence L 74
Point Light Source oo 76
direction of light for point light source 76
Parallel Light 0 7
Ambient Light 78
Reflection from equally rough surfaces 79
Lambert’s Cosine Law 79
Diffuse Light 80
Specular Light o o 81
Specular Light is view dependent 81
Halfway Vector Approach 82
Self-Shadowing 84
Flat Shading 85
Gouraud Shading Lo 85
vertex normals L Lo 86
Gouraud Shading smears highlights 87
Phong Shading 88
Deferred Shading L oo 89
Storing shading parameters in the RGBa channels of three Ren-

der Targets Lo 89
Problems occurring with planar shadows 90

The scene as seen from the light. Only the depth values are stored. 92
In the second pass, the shadow map is accessed to determine

whether a pixel is lit or in shadow. 92
The blue arrow shows where the curvature can be seen in the
shadow 93

178

66

67
68
69
70

71
72
73
74
75
76
7
79
78
80
81
82
83
84
85

86
87
88
89

91
90
92
93
94
95
96
97
98
99
100
101
102
103

104

Spotlight shadows can be created by using the camera’s frustum

as a shadow frustum o000 93
Adaptive shadow maps are ordered and accessed in a tree structure 95
The shadow map resolution changes with a projective mapping . 95
Partitioning of the scene into umbra, penumbra and lit areas. . . 96
Shadow mapping combined with a penumbra map to soften the

shadow outlineso 96
Overlapping Penumbras, 99
Highlighted Shadow Volume 99
Dealing with multiple occluders 101
Recursive Ray Tracing 106
Snell-Descartes Law L. 107
Add a small constant € to counter numerical instability 108
Caustics 111
Color Bleeding o 112
Color Transmission, 112
Triangle Stripo 114
Triangle Fan oL oL oo 115
Quad Strips 115
Enhanced Face List Example 116
Directed Edgeso 117
Triangle Strips, where the vertex cache can be optimally used (a

vertex may be called up to 6 times) L. 120
Difference between interpolation and approximation 122
A Bézier Curve with four control points: by, by, bo, b3 123
Corner Cutting 123

The midpoints (black points) resulting from corner cutting, make
up the curve approximating the control point p; and are thus
those, which we draw on the screen. Some threshold can deter-

mine the number of subdivisions. 124
Ordering of Bézier control points 125
Algorithm of Casteljau L. 125
Shifting the splines basis function to the control points 128
Cubic B-Spline 129
Basic Operations of Constructive Solid Geometry 131
Organization tree using a class hierarchy 132
Scene Transformations 133
A scene with and without texture mapping 136
Nearest Neighbour Interpolation 138
Bilinear Interpolation, 138
Planar Projection o 139
Dia Projection oo 140
Perspective Interpolation 141
So instead of the standard rasterization we now interpolate with

the values returned by the mapping to the perspective space. . . 141
A 3D map to model the inside of a human head 142

179

105
106
107
108
109
110
111
112
113
114
115
116
117
118

119
120

121

122
123
124
125
126
127
128
129

Mip-Mapping 143

Trilinear Interpolation with Mip-Mapping 143
Bump Maps adding height features 145
Bump Maps contain height information 146
Emboss Bump Map 146
Gouraud Bump Mapo 147
Normal Map used for bump mapping 147
Left: standard bump map, Right: parallax bump map 148
Computation of the parallax offset 148
Displacement Maps L 149
Environment Map with acube 150
Environment Map on a sphere. 151
Parabolic Environment Map 152
Environment Bump Map with normal texture, environment map

(+light source) and a bump map L. 153
Does the light ray lie above the horizon? 154
North basis function texture and the resulting horizon map using

only this basis texture L. 154
From physical radiance to BRDFs and other lighting/shading

methods 158
Surface microfacets. oL oL 160
The three major components of PRT 162
Spherical Harmonics 0 L. 163
PRT with inter reflections 165
From vertices to fragments. 0oL 167
OpenGL Shading Language 172
CAVE 175
Stereo Projection oo Lo 176

List of Tables

1
2

Physical Light Overview 73
Phong Lighting Variables 78

180

Index

2D Scan Conversion, 25

Accumulation Buffer, 7
accumulation buffer, 103
Active Edge Table (scanline), 26
Adaptive Depth Control, 108
Adaptive Shadow Maps, 95
adjoint matrix, 11

affine invariant, 127

Alpha Blending, 34
alpha-clipping, 27

Ambient Light, 77

Angle, 20, 21

Anistotropic Filtering, 30
Antialiasing, 25, 29
Antialiasing (Textures), 142
Area Light Source, 77

Bézier Curves, 123

Bézier Surfaces, 127

Back Face Culling, 60, 117
Barycentric Coordinates, 14
Bernstein Polynomials, 18

BSSRDF, 159
Bump Map, 145

Camera Transformation, 51

Canonical View Volume, 46

Cartesian Coordinates, 13

Casteljau, 125

Cathode Ray Tube, 23

Caustics, 111

CAVE, 176

Cave Automatical Virtual Environment,
176

Clustered Back Face Culling, 60

CMY, 32

CMYK, 32

Cofactor Matrix, 11

Cohen Sutherland, 27

Color Bleeding, 112

Color Transmission, 112

Constructive Solid Geometry, 131

control point, 121

Corner Cutting, 123

Corresponder Function, 144

Bidirectional Reflection Distribution Funeross product, 10

tion, 158

Crossratio, 22

Bidirectional Surface Scattering Reflectat€®T, 23

Distribution Function, 159
Bilinear Interpolation, 138
Binary Space Partitioning, 55
Blended Transparency, 59
Blending Function (Texture Mapping),
144
blending functions, 126
bottle neck, 167
bottom plane, 47
Bounding Hierachies, 62
Bounding Volumes, 61, 110
Box Filter, 25
BRDF, 158
Bresenham Algorithm, 23
brightness, 31
brightness (light), 72
BSP, 55

CSG, 131
Cube Map, 150
Culling, 59

Deferred Shading, 89

Delayed Blended Transparency, 59
Determinant, 11

Diffuse Light, 78

Directed Edges, 116

Directional Light, 77
Displacement Map, 149

Display List, 170
Doppelverhitniss, 22

Dot Product Bump Map, 147
Double Buffer, 7

Dual Ray Space Occlusion Culling, 68

Edge Table (scanline), 26

181

Eigenvalue, 12
Eigenvector, 12

Emnboss Bump Map, 146
Energy (light), 70
Environment Map, 149
Environment Map Filtering, 161
Euler Angle, 40

Euler Rotation, 40
exitant flux density, 71
exitant light, 71

eye position, 48

far plane, 47

Field Of View, 51
Flat Shading, 85

flux density, 71

Fog, 35

Fragment Shader, 171
Fragment Unit, 171
Framebuffer, 7, 23
Fresnel Term, 84

Hierarchical Modeling, 131
Hierarchical Z-Buffer, 66
high frequency light, 165
HMD, 175

Homogenous Coordinates, 14
HSV, 33

hue, 31

Identity Matrix, 11
Illumination, 75

Nlumination (Textures), 155
Implicit Functions, 16
incident flux density, 71
incident light, 71

Index Face List (enhanced), 116
Indexed Face Set, 114
Intensity (light), 71
Interactive Horizon Map, 153
Inverse Matrix, 11

Irradiance (light), 71
Irradiance Map, 161

Fresnel-weighted Phong-sytle anisotropicisotopic luminance, 34

cosine lobe model, 158
FSAA, 30
Full Scene Antialiasing, 30

G Buffer, 7

G-Buffer, 89

Gamma, 34

gaze direction, 48

General Triangle Strips, 114
Geometry (Mesh), 113
gimbal lock, 41

Global lumination, 75
Glow Texture, 144

GLSL, 173

Gourad Bump Map, 147
Gourad Shading, 85
Gouraud Interpolation, 24

Halfway Vector, 82

Haloing, 58

Head Light, 79

Head-Mounted Devices, 175

Hidden Line Rendering, 57
Hierarchical Bounding Volumes, 110

Isotrophic Scaling, 38
Jittering, 30
knot points, 128

Lagrange Polynomials, 18
Lambert’s Cosine Law, 79
Last Recently Used, 157
LCD, 23

least crossed criterion, 55
left plane, 47

Level Of Detail, 134
Light, 31, 70

Light Map, 91

Light Maps, 91

Light Space Perspective Shadow Map,

95
Lighting, 74
Liquid Crystal Display, 23
Local TMlumination, 75
LOD, 134
LRU, 157

luminance, 31

182

Matrix Stack, 169
Microfacets, 160

Midpoint Algorithm, 23
Mip Mapping, 143

Most Recently Used, 157
Motion Blur, 103

MRU, 157

Multi Texturing, 156
Multiplicative Blending, 144
Multisampling, 30

near plane, 47

Nearest Neighbour Interpolation, 138
Noise Textures, 137

normal cone, 60

Normalized Device Coordinates, 46
NURBS, 130

Occlusion Culling, 63
Occlusion Horizons, 66

Octree Space Partitioning, 110
Omnidirectional Light, 94
OpenGL, 168

OpenGL Occlusion Test, 65
OpenGL Shading Language, 173
orthogonal, 10

orthogonal projection, 10
Orthographic Projection, 47
orthographic view volume, 47
orthonormal, 10

overblurring, 143

Painter’s Algorithm, 55
Parabolic Map, 152

Parallax Bump Map, 148
Parallel Light, 77

Penumbra Map, 96

Per-Pixel Bump Map, 147
Percentage Closest Filtering, 94
Perlin Noise, 137

Perspective Interpolation, 141
Perspective Projection, 49
Phong Lighting Model, 77
Phong Shading, 88

Phong Specular Equation, 161
Photometry, 73

photometry, 70

Photons, 70

Pixel, 22

Pixel Shader, 171

Planar Shadow, 90

Plank’s Constant, 70

Point Lightsource, 76

Polar Coordinates, 14
Polygon, 113

Polygon Mesh, 113

Polygon Offset, 57

Portal Visibility, 65
Potentially Visible Sets, 64
Precomputed Radiance Transfer, 162
Prefetching, 157

Prefiltered Environment Map, 152
Procedural Models, 131
Procedural Texture, 137
Projective Transformations, 45
PRT, 162

Pseudoinverse, 12

PVS, 64

Quad Strip, 115
Quadratic Matrix, 10
Quaternions, 20

Radiance, 72
radiance, 31

radiant energy, 70
radiant flux, 70
Radiant Intensity, 71
radiometry, 70
Radiosity, 71

Raster, 22

Raster Display, 23
Ratio, 22

Ray Acceleration, 23
Ray Coherence, 111
Ray Tracing, 104
Reflection, 42, 104
reparameterization, 121
RGB, 32

right plane, 47
Ripmapping, 144
Rotation, 39

183

S3TC, 157

Sampling Theorem, 142
saturation, 31

scalar product, 10
Scaling, 37

Scanline, 22

Scanline (algorithm), 25
scene graph, 131

scene tree, 131

Screen Door Transparency, 58
Seed Fill, 25

Shading, 84

Shadow, 90

Shadow Map, 91, 154
Shadow Volumes, 99
Shared Vertex Set, 114
Sheared Perspective, 176
Shearing, 38

Shutter Glasses, 175
Singular Value Decomposition, 12
Singular Values, 12
Snell-Descartes Law, 107
Soft Shadows, 96

Sorted Blended Transparency, 59
specular highlight, 81
Specular Light, 78
Spherical Harmonics, 163
Spherical Map, 151
Splines, 19

Spotlight, 77

stalling, 167

Static Textures, 136
Stencil Buffer, 7
Stochastic Sampling, 30
Stripification, 118
Subdivision Surfaces, 131
Summed-Area Table, 144
Sutherland Hodgeman, 29
SVD, 12

Teilungsverhiltniss, 22
tensor product, 10

texel, 137

Texture Chache, 156
Texture Compression, 157
Texture Mapping, 136

top plane, 47

Topology (Mesh), 113
Torrance Sparrow Light Model, 83
Translation, 43
Transparency, 58
Transpose Matrix, 11
Triangle Fan, 115

Triangle Strip, 114
Trilinear Interpolation, 138
Tripple Buffer, 7
Tristimulus Theory, 31
Tunnel (Stripification), 119

Uniform Space Partitioning, 110

vanishing points, 45
Vector Display, 22
Vertex Cache, 120
Vertex Program, 140
Vertex Shader, 171
Vertex Unit, 171
View Frustum Clling, 61
view-up vector, 48
Viewing Direction, 48
Viewing Pipeline, 54
Virtual Reality, 174
VR, 174

W-Buffer, 7, 58

wavelength, 31

White Noise, 137

Window Edge Coordinates, 27
Windowing Transforms, 44
Wireframe Rendering, 57

XYZ, 33
YIQ, 32

Z-Buffer, 7, 56
Z-Buffer Fighting, 57
Z-Fail, 103

Z-Pass, 102

184

