
Computer GraphisMihael PrinzingerApril 14, 2007Contents0.1 De�nitions . 60.2 Bibliography . 80.3 Copyright . 91 Appliation 92 Math 102.1 Vetors . 102.1.1 Properties . 102.1.2 Operations . 102.2 Matries . 102.2.1 Determinants . 112.2.2 Eigenvalues & Eigenvetors 112.3 Coordinate Systems . 132.3.1 Cartesian Coordinates . 132.3.2 Polar Coordinates . 142.3.3 Baryentri Coordinates 142.3.4 Homogeneous Coordinates 142.3.5 Mappings . 152.4 Impliit Funtions . 162.5 Parametri Funtions . 172.6 Curves . 182.7 Polynomials . 182.8 Linear Interpolation . 192.9 Triangles . 192.10 Quaternions . 202.11 Misellaneous . 203 Raster Algorithms 223.1 Display Types . 223.1.1 Vetor Display . 223.1.2 Raster Display . 233.2 Line Rasterization . 231

3.3 Triangle Rasterization . 243.4 Polygon Rasterization . 253.5 Line Clipping . 263.6 Polygon Clipping . 293.7 Culling . 293.8 Antialiasing . 293.8.1 Line . 303.8.2 Sreen Based . 304 Color 314.1 Light . 314.2 RGB . 324.3 CMY . 324.4 YIQ . 324.5 HSV . 334.6 XYZ . 334.7 Alpha Blending . 344.8 Gamma . 344.9 Fog . 354.10 Color Conversion . 365 Transformation Matries 375.1 Saling . 375.2 Shearing . 385.3 Rotation . 395.3.1 Arbitrary Rotations In 3D 395.4 Re�etion . 425.5 Translation . 435.6 Composition of Transformations 435.7 Transforming Normal Vetors . 445.8 Windowing Transforms . 445.9 Inverse Transformations . 455.10 Projetive Transformations . 455.11 Big M . 456 Viewing 466.1 Canonial View Volume . 466.2 Orthographi Projetion . 476.3 Viewing Diretion . 486.4 Perspetive Projetion . 496.5 Field Of View (Camera Transformations) 516.6 Mapping Of Z . 526.7 Clipping In Homogeneous Coordinates 536.8 Viewing Pipeline . 542

7 Olusion & Visibility 557.1 Painter's Algorithm . 557.2 Binary Spae Partitioning (BSP) 557.3 Ray Traing . 567.4 Z-Bu�er . 567.5 W-Bu�er . 587.6 Transpareny . 587.7 Culling . 597.7.1 Bak Fae Culling . 607.7.2 View Frustum Culling . 617.7.3 Olusion Culling . 637.7.4 Hierarhial Z-Bu�er . 667.7.5 Olusion Horizons . 667.7.6 Dual Ray Spae Olusion Culling 688 Lighting 708.1 Light . 708.1.1 Radiometry . 708.1.2 Photometry . 738.2 Lighting . 748.2.1 Simpli�ations . 748.3 Illumination . 758.3.1 Light Soures . 768.3.2 Phong Lighting Model . 778.3.3 Torrane-Sparrow Light Model 838.4 Shading . 848.4.1 Flat Shading . 858.4.2 Gouraud Shading . 858.4.3 Phong Shading . 888.4.4 Deferred Shading . 898.5 Shadows . 908.5.1 Planar Shadows . 908.5.2 Light Maps . 918.5.3 Shadow Maps . 918.5.4 Soft Shadows . 968.6 Motion Blur . 1038.7 Re�etion . 1049 Ray Traing 1049.1 Viewing . 1049.2 Lighting . 1059.3 Intersetion . 1089.4 Di�erent Usage . 1119.5 Limits . 1119.6 Properties . 1123

10 Modeling 11310.1 Polygon Meshes . 11310.1.1 Indexed Fae Set (Shared Vertex Set) 11410.1.2 Triangle Strips . 11410.1.3 Triangle Fans . 11510.1.4 Quad Strips . 11510.1.5 Enhaned Indexed Fae List 11610.1.6 Direted Edges . 11610.1.7 Normal Vetors . 11710.1.8 Fae Orientation (Bak Fae Culling) 11710.1.9 Stripi�ation . 11810.1.10Vertex Cahe . 12010.2 Parametri Surfaes . 12110.2.1 Bézier Curves . 12310.2.2 Uniform B-Splines . 12810.2.3 NURBS . 13010.3 Construtive Solid Geometry (CSG) 13110.4 Subdivision Surfaes . 13110.5 Proedural Models . 13110.6 Hierarhial Modeling . 13110.6.1 Sene Tree / Sene Graph 13110.6.2 Sene Desription . 13210.6.3 Class Hierarhy . 13210.6.4 Senegraph API . 13310.7 Level Of Detail (LOD) . 13410.7.1 LOD Creation . 13410.7.2 LOD Swithing . 13510.7.3 LOD Seletion . 13511 Texture Mapping 13611.1 Noise Textures . 13711.2 2D Texture Mapping . 13711.3 1D Texture Mapping . 14111.4 3D Texture Mapping . 14211.5 Texture Antialiasing . 14211.5.1 Sampling Theorem . 14211.5.2 Mip Mapping . 14311.5.3 Ripmapping . 14411.5.4 Summed-Area Table . 14411.6 Blending Funtions . 14411.7 Corresponder Funtions . 14411.8 Bump Maps . 14511.9 Displaement Maps . 14911.10Environment Maps . 14911.11Environment Bump Maps . 15311.12Interative Horizon Maps . 1534

11.13Shadow Maps . 15411.14Illumination In Textures . 15511.15Multi Texturing . 15611.16Texture Cahe . 15611.17Texture Compression . 15712 BRDF (Bidiretional Re�etion Distribution Funtion) 15812.1 Maxims . 15812.2 Theory . 15912.3 Praxis (Implementation) . 16012.3.1 Fatorization . 16112.3.2 Environment Map Filtering 16112.4 Preomputed Radiane Transfer (PRT) 16213 Rendering Pipeline 16614 OpenGL 16815 Programmable Graphis Hardware 17016 History 17317 Virtual Reality 174

5

PrefaeThis sript tries to merge information on omputer graphis and interativeomputer graphis from the letures, the exerises, the books: FundamentalsOf Computer Graphis (from Peter Shirley) and Real Time Rendering (fromMöller and Akenine-Haines) and last but not least intuition and idea that arosefrom talking to Professor Stamminger and talking to and the help from ChristianGraef and Arian Baer.In it I tried to present the information in the way we understood it with manyhints and pitures that help understanding it. I think it is a valuable seondaryresoure, in ase you did not understand a ertain topi or want to know moreabout it.As a merge from the above soures the ontents exeed the leture at manyplaes, you simply have to deide for yourself how muh you want to know andwhere to stop (I think knowing a little bit more than neessary does no harm,and instead you are more self on�dent and get a better overall understandingof the general problems and methods of omputer graphis, beause they repeatover and over again in di�erent ontext. One you had this realization, you anrest assured that you will pass the exam splendidly).0.1 De�nitionsGraphisComputer Graphis Any use of omputers to reate or manipulate images.Modeling mathematial spei�ation of shape and appearane propertiesRendering reation of shaded imagesAnimation illusion of motion through sequene of imagesInterativity allowing the user to interat with the sene, immediately dis-playing the results (e.g. grab & drop) 5-6 fpsReal-Time render hanges in the sene fast enough, that illusion of motion isreated 20-60 fpsUnitsPixel PICture ELement. The smallest unit on the sreen.Texel TEXture ELement. The smallest unit on a texture.Fragment Before the sene is rendered on the sreen it often is rendered to abu�er having a greater (theoretially also lesser) resolution. Sine some ofthe bu�ers elements are ast to one pixel, we introdue the term fragmentfor disambiguation. 6

Bu�ersZ-Bu�er A bu�er idential to the framebu�er ontaining depth information forevery pixel. Thus by having new objets ome into view, we an omparethe objet's pixels' depth with the value stored in the Z-Bu�er and drawor disard them aordingly.W-Bu�er An alternative to Z-Bu�ering. Instead of depth value the homoge-neous perspetive w oordinate is stored. The advantage of this methodis having uniform depth values.Stenil Bu�er The stenil bu�er is another dupliate of the framebu�er on-taining integer values (1 byte per pixel). It is mainly used to limit thearea of rendering: Render only to pixels highlighted on the stenil bu�er(e.g. for drawing shadows). It an be e�iently ombined with the depthbu�er, for example every time a depth test fails inrease the pixels integervalue on this position in the stenil bu�er by 1.Framebu�er A ertain hunk of memory used for display on sreen. Graphisintended to be written to the sreen is written to the framebu�er.Double Bu�er Writing to the framebu�er while the monitor's photon annonis displaying it's ontent, leads to �ikering and artifats. Therefore atehnique alled double bu�ering is ommonly used. Graphis are �rstwritten to the double bu�er (another framebu�er) and one the photonannon reahes the bottom the two bu�ers are swapped.Triple Bu�er Double Bu�ering still an lead to artifats: Image the pipelinejust writing to the double bu�er, when it is swithed with the framebu�er.In this ase no �ikering will be seen, but depending on the amount ofhange, the sene's integrity will be broken for an instant. Thereforetriple bu�ering was suggested. The rendering is started on the triplebu�er, one a sreen update has been made, double and triple bu�er areswapped and rendering is ompleted on the double bu�er, then in thenext step it is displayed to the viewer. Another advantage is that duringthe rendering of the double bu�er, the triple bu�er an be leared, whihtakes an onsiderable amount of time. Therefore using triple bu�eringmore frames per seond an be displayed than using double bu�ering. Adisadvantage you should take into aount is the lateny of 3 frames. Auser ommand/input will only have no e�et on the next two frames.Aumulation Bu�er A bu�er used to gather images of an objet with setoperations. It is mainly used to generate motion blurs, but also for softshadows or depth antialiasing. Usually out of this set a single image withhigher preision is reated inluding the motion blur e�et.G Bu�er A bu�er used for deferred shading (see 8.4.4). In short in it we storeevery piee of information we need for an aurate lighting omputation,so that we are able to perform the lighting stage anywhere in the pipeline.7

Some words on the required memory. If we assume 1280x1024 pixels with trueolor, results in 8 bit per olor hannel = 3.75 MB. Using double bu�ering weneed twie as muh: 7.5 MB. The Z-Bu�er with 24 bit per pixel requires 3.75MB. Adding an aumulation bu�er with 48 bit and a stenil bu�er with 8 bitper pixel would result in 8,75 MB. Summing up to a total of 20 MB.ComputerCPU Central Proessing UnitGPU Graphis Proessing UnitFLOPS Float Operations Per Seond0.2 BibliographyFundamentals of Computer Graphis by Peter Shirley (Seond Edi-tion)A very good book that overs all the basis. If even with this sript you havenot ompletely grasped a ertain topi about the very fundamentals, open thebook and read the whole hapter about it. If however this topi of yours is alsoto be found in the book Real Time Rendering (see below), try the other one�rst. Although Shirley and Friends give real good explanations, the authors ofthe Real Time Book even surpass his explanations.A word on the edition. The �rst edition was written by Shirley alone, theseond one by Shirley and seven other authors, whih added some minor hangesto existing hapters and added ompletely new hapters on their own. So tryto get hold of the seond one.Real Time Rendering by Tomas Akenine-Möller and Eri Haines (Se-ond Edition)In my opinion this book even surpasses Shirley's. The authors really give in-tuitive and splendid explanations going hand in hand with huge amounts ofexellent pitures, �gures and graphis illustrating what is being explained.Furthermore they over the topis really good and an enrih your knowledgeabout the topis overed in the leture. I've almost read through all the haptersand did never regret even one. If I didn't understand a topi with the slides andthe leture, I usually did understand it after reading through the orrespondinghapter, if existing.Other ResouresApart from the slides you have from the leture, you should from time to timetry to �nd di�erent explanations of illustratory applets with google.The page of the leture of Professor Stamminger (Interative Computer Graph-is http://www9.informatik.uni-erlangen.de:81/Teahing/SS2006/InCG/8

Material) o�ers a great fundus of additional free internet resoures. Alsothe page of Möller's and Haines' Book (Real Time Rendering http://www.realtimerendering.om/) and of Shirley's book (Fundamentals Of ComputerGraphis http://www.s.utah.edu/~shirley/books/fg2/) o�er nie slidesbased on their books and various other helpful links. Last but not least Wikipediafrequently helps with di�erent approahes to topis.0.3 CopyrightThis doument is to be seen as OpenSoure and I would be happy if anyonedeides to enrih this sript by adding additional onepts, better explanationsor additional examples and illustrations and of ourse orreting all the mistakes,that I made. The soures (.lyx or .tex) an be aquired by writing a short e-mail to me: . However as in the GNU-Liene, I hereby fobidanyone to postulate money for this doument or use parts from it for ommerialworks. It is meant to be a free help for students all over the world and it shouldremain free.1 AppliationMoviesomputer generated foregrounds, Animations, speial e�etsGamesthe drive behind graphis developmentComputer Aided Design (CAD)arhiteture, produts, ars, planes, mehanial partsEduation & Trainingsimulation of realisti environments, �ight simulatorVisualizationmedial appliations: model ling of (parts of) the human bodyVirtual Reality (VR)Immersion, response to head motion, stereo pitures, additional omponents(Sound, Fore Feedbak)
9

2 Math2.1 Vetors2.1.1 Propertiesorthogonal vetors building a right angle: ~u · ~v = 0orthonormal orthogonal vetors having length 1: ~u ·~v = 0 and ‖~u‖ = ‖~v‖ = 1onstrution use Gram-Shmidt Orthognoalization / Orthonormalization2.1.2 Operationslength ‖~a‖ =
√

a2
x + a2

y + a2
zsalar produt ~aT ·~b = ‖~a‖
∥

∥

∥

~b
∥

∥

∥ cosφusage: ompute the angle between two vetors.
~aT ·~b =

b1
b2
b3

(

a1 a2 a3

)

a1b1 + a2b2 + a3b3tensor produt ~a ·~bT = Mn×nusage: ombine two vetors to a matrix. e.g. for ombining two 1Dfuntions to one 2D one (see Bézier Curves & Splines 10.2).
~a ·~bT =

(

a1 a2 a3

)

b1
b2
b3

a1b1 a2b1 a3b1
a1b2 a2b2 a3b2
a1b3 a2b3 a3b3

ross produt ∥∥∥~a×~b∥∥∥ = ‖~a‖
∥

∥

∥

~b
∥

∥

∥ sinφusage: ompute a third vetor perpendiular to ~a and ~b (3D)orthogonal projetion ~a→ ~b = ~a·~b
‖~b‖ = ~a · cosφ2.2 Matries

A =

[

a11 a12

a21 a22

]Quadrati An×m where n = m 10

Identity An×n having 1 on the diagonal and 0 everywhere else
I2×2 =

[

1 0
0 1

]Transpose AT : An×m → Am×n swith rows with olumnsAdjoint Ā. This matrix has the entries
aij := det (Aij) ·

{

−1 if (i+ j) odd
1 if (i+ j) evenwhere Aij means the matrix resulting from A when removing the ith rowand the jth olumn. The resulting matrix is alled the ofator matrix.Take its transpose to get the adjoint matrix Ā.The adjoint has the following nie property:

A · Ā = det (A) · InInverse A ·A−1 = I

A−1 =
1

det (A)
Ā2.2.1 DeterminantsVetorsThe determinant of two vetors, ~a,~bis a parallelogram.

∣

∣

∣~a~b
∣

∣

∣ = xayb − yaxbHaving three vetors it is a ube with parallel parallelograms as sides.
∣

∣

∣~a~b~c
∣

∣

∣ = xaybzc − xayczb − xbyazc + xcyazb + xbycza + xcybzaMatriesThere are several methods to ompute the determinant of a given matrix. Lookthem up in a linear algebra sript.2.2.2 Eigenvalues & EigenvetorsCondition matrix A has to be quadrati.11

Eigenvalues
A~x = λ~xwhere λ is alled eigenvalue.

A~x = Iλ~x
(A− λI) ~x = 0

a11 − λ a12 a13 · · ·
a21 a22 − λ a23 · · ·
a31 a32 a33 − λ · · ·... x1

x2

x3...

solve this to get λ1 . . . λn.EigenvetorsPlug in λ1 . . . λn into A results in the eigenvetors.Singular Value Deomposition (SVD)For non quadrati matries.Bene�t singular values, eigenvalues, orthonormal basis, pseudo inverse, ondi-tionSingular Values σfor symmetri matries they are equal to the eigenvaluesin ase A is not quadrati we have A = MMT and thus the singular valueswould be σMMT =
√
λADeompose A ∈ R

n×m into A = UΣV T , where
Σ =

σ1

σ2

σ3

with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0
U ∈ Rm×n and U · UT = I (orthonormal olumn vetors)
V ∈ Rn×n and V · V T = V T · V = I (orthonormal olumn and row vetors)Condition κ := σ1

σnIf κ is lose to one, the problem is well onditioned, if it is large the problem isunstablePseudoinverse At = V Σ′UT where Σ′ results from Σ when replaing all sin-gular values by their reiproal values (σi | 1
σi

→ Σ′
)

12

2.3 Coordinate Systemsworld without expliitly storing the oordinates of the origin, we usually haveone world oordinate system, where loal objet oordinate system will beplae in.loal a loal oordinate system refers to an objet. If it is plaed in a worldoordinate system, a mapping must be made to aess points in the objetrelative to the world oordinate system.eye a perspetive spae with viewing oordinates.sreen the sreen spae is the oordinate system of the omputer sreenmapping
Figure 1: mapping from one oordinate system into anotherThe world origin is o, the loal one e. The world basis vetors are denoted

x, y, z, the loal ones u, v, w. Then
e = (xe, ye, ze) = o+ xe · x+ ye · y + ze · zAdditionally the loal oordinate system may be rotated. Model ling bothrotation and translation by a matrix we an easily move forwards and bakwardsthrough di�erent oordinate systems (see 5).Example

px

py

1

 =

1 0 ex

0 1 ey

0 0 1

ux vx 0
uy vy 0
0 0 1

pu

pv

1

Mapping the eye spae to the sreen spae requires a mapping to the viewfrustum (a unit ube) with normalized oordinates �rst.2.3.1 Cartesian CoordinatesWe use a orthonormal basis vetor system, with the three basis vetors x-axis
(1, 0, 0), y-axis (0, 1, 0) and z-axis (0, 0, 1).

p = (x0, y0, z0) = x · x0 + y · y0 + z · z013

2.3.2 Polar CoordinatesWe use two parameters to desribe any point in the oordinate system: distanefrom the origin r and angle between oordinate axes and the vetor φ.
p = (r0, φ0)2.3.3 Baryentri CoordinatesMainly used for interpolating olor values on triangles. We use non-orthogonalbasis vetors. a is the origin and (b− a) and (c− a) the basis vetors.

p = (β, γ) = a+ β (b− a) + γ (c− a)

p = (1 − β − γ)a+ βb+ γc

α ≡ 1 − β − γ

p = αa+ βb+ γcresulting in the onstrain that α+ β + γ = 1.2.3.4 Homogeneous CoordinatesUsed for matrix transformations. They are based on projetive geometry and ir-replaeable useful in graphi transformations. The idea is to arti�ially inreasethe dimension.So being in 2D, we would result in having three oordinates
(x, y) → (x, y, 1)where 1 is the homogeneous oordinate. See (x, y, 1) as the line α · x, α · y, α |

α ∈ R
3Diretion And LoationThe homogeneous oordinate w ats as a kind of pointer to a loation (trans-lation from the origin). But often we want a vetor to store a diretion ratherthan a loation. In the latter ase we simply set w = 0 ind the �rst ase w = 1.DehomogenizationIf our vetor is ~p =

x
y
z
w

, the dehomogenized vetor is ~p =

x
w
y
w
z
w

14

PropertiesHomogeneous oordinates have some very useful properties justifying their usage
• any two lines interset in one point
• points at in�nity
• a�ne transformation beome linear
• preserves ross-ratio2.3.5 MappingsCartesian -> Baryentri

[

xb − xa xc − xa

yb − ya yc − ya

] [

β
γ

]

=

[

xp − xa

yp − ya

]Imagining a lines AC and AB passing through a baryentri triangle, we anget β, γ and α by:
β =

fac (x, y)

fac (xb, yb)

γ =
fab (x, y)

fab (xc, yc)

α = 1 − β − γwhere fab (x, y) an impliitly written as
fab (x, y) = (ya − yb)x+ (xb − xa) y + xayb − xbya = 0A third possibility is using areas Aa, Ab, Ac resulting from drawing lines fromthe enter to the three points (A = Aa +Ab +Ac):

α =
Aa

A
=
~n · ~na

‖~n‖2

β =
Ab

A
=
~n · ~nb

‖~n‖2

γ =
Ac

A
=
~n · ~nc

‖~n‖2in the 3D ase, we an use normal vetors instead of the area.
15

2.4 Impliit FuntionsImpliit LinesThe ommon line de�nition is:
y = m · x+ tthe impliit form is easily obtained by:

y −m · x− b = 0where m is the slope (Steigung) and b the y-value, where the line rosses the
y-axis.Sine this form still laks some lines like x = 0 where m would be in�nitelarge, we advane to the more general

ax+ by + c = 0Any point (x0, y0) on this line must satisfy the equation: ax0 + by0 + c = 0Distane Point to Line:The distane from point (x1, y1) to the line ax+ by + c = 0 isdistane =
f (x1, y1)√
a2 + b2If (a, b) is a unit vetor, the distane is diretly given by f (x, y).Impliit CirlesA irle with enter (cx, cy) and radius r has the impliit form

(x− cx)
2

+ (y − cy)
2 − r2 = 0Impliit EllipsisA ellipse with enter (cx, cy) and minor and major semi-axes a and b

(c− cx)
2

a2
+

(c− yx)
2

b2
− 1 = 0Given: funtion f (x, y, z), point ~p = (x, y, z)Surfae NormalThe surfae normal is given by the gradient

~n = ∇f (x, y, z) =

(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)16

Impliit Planes
P : (~p− ~a) · ~n = 0A plane P given by three points ~a,~b,~c

~n =
(

~b− ~a
)

× (~c− ~a)

P : (~p− ~a) ·
((

~b − ~a
)

× (~c− ~a)
)

= 0Impliit Spheres
f (x, y, z) = (x− cx)

2
+ (y − cy)

2
+ (z − cz)

2 − r2 = 02.5 Parametri FuntionsParametri Funtions use parameters to desribe the funtion.Parametri LinesA parametri line passing through points p0 = (x0, y0) and p1 = (x1, y1) an bewritten as
[

x
y

]

=

[

x0 + t (x1 − x0)
y0 + t (y1 − y0)

]

p (t) = p0 + t (p1 − p0)Parametri CirlesA irle with enter (cx, cy) and radius r an be written as
[

x
y

]

=

[

cx + r · cosφ
cy + r · sinφ

]Parametri Ellipsis
[

x
y

]

=

[

cx + a · cosφ
cy + b · sinφ

]3D parametri surfaes have the form
x = f (u, v)

y = g (u, v)

z = h (u, v)17

Parametri SpheresConsider a sphere, that's enter is at the origin having radius r
x = r · cosφ sin θ

y = r · sinφ cos θ

z = r · cos θwhere φdenotes the longitude (angle between x-axis the y-axis and the vetor onthe xy-plane) and θ denotes the latitude (angle between the z-axis the xy-planeand the vetor). See FoCG p.41 .
θ = acos

(

z
√

x2 + y2 + z2

)

φ = acos (y, x)By that we get
~x = r ·

r · cosφ sin θ
r · sinφ cos θ
r · cos θ

+ ~c2.6 Curveslinear p (t) = c1t+ c0quadrati p (t) = c2t
2 + c1t+ c0ubi p (t) = c3t

3 + c2t
2 + c1t+ c02.7 PolynomialsBernstein

Bn
i (x) =

(

n
i

)

(1 − x)
n−i

xiLagrange
Li (x) =

n
∏

j = 0
i 6= j

x− xj

xi − xjLegendre
Pn (x) =

1

2πi

∫

√

(1 − 2tx+ t2)t−n−1dt

18

Splines
b0 (t) =

1

6
t3

b1 (t) =
1

6
·
(

−3t3 + 3t2 + 3t+ 1
)

b2 (t) =
1

6
·
(

3t3 − 6t2 + 4
)

b3 (t) =
1

6
·
(

1 − t3
)

bn (t) = (n+ 1)

n+1
∑

i=0

ωi,n (t− ti)
nwhere

ωi,n =

n+1
∏

j = 0
j 6= i

1

tj − ti2.8 Linear InterpolationLinear Interpolation is the proess of passing through a geometri surfae by aparameter t.E.g. as we have already seen:
p = (1 − t) a+ t · bis a linear interpolation. It is linear, beause t and t− 1 are linear polynomialsof t.Interpolating through a set of points on the x-axis having assigned a height

yi to eah point xi, interpolating over those height values, we get
f (x) = yi +

x− xi

xi+1 − xi

(yi+1 − yi)Conseutively you an think of the x-values as 3D vetors and the y-values asolor values.2.9 TrianglesTriangles usually are the fundamental primitives for graphis programs. Mostommonly their verties store a olor value, whih is then interpolated aross thetriangle. To make this interpolation straight forward, we will use baryentrioordinates.Given: triangle △ABC 19

Area(2D) area = 1
2 |xayb + xbyc + xcya − xayc − xbya − xcyb|Internal Point a point p is inside the triangle if and only if 0 < α < 1,

0 < β < 1, 0 < γ < 1.Edge one point is zero, the other two between zero and oneVertex two points are zero, the other one is oneNormal Vetor ~n =
(

~b− ~a
)

× (~c− ~a) (a vetor perpendiular to the triangleedges)Area(3D) area = 1
2

∥

∥

∥

(

~b− ~a
)

× (~c− ~a)
∥

∥

∥2.10 QuaternionsThe quaternions H an be seen as an extension to the body of omplex numbers
C. Quaternions Complex Numbers

H = R × R
3

C = R × R

q = (q0, ~q) = a+ ib+ jc+ kd z = x+ iy
n+ = (0,O) n+ = (0, 0)
n· = (1,O) n· = (1, 0)

i· = 1
|q| (q0,−~q) i· = 1

|z| (x,−y)
q = |q| (cos (t) , sin (t) · ~n0) z = |z| (cos (t) , sin (t))2.11 MisellaneousAngleThe angle θ of a irular ar of length l and radius r is equal to

θ =
l

r
[rad]Example: Cirle

l = 2πr
θ = l

r
= 2πr

r
= 2π [rad]

20

Solid Angle

Figure 2: solid angleA solid angle is the equivalent to the angle in 3D. The angle Ω witha spherial area a is equal to
Ω =

a

r2
[stearradians]Example: Sphere

a = 4πr2

Ω = a
r2 = 4πr2

r2 = 4π [sr]Solid Angel Di�erential

Figure 3: Solid Angle Di�erentialFor light purposed we need to di�erentiate the solid angle:21

ar length [θ, θ + dθ] : rdθar length [φ, φ + dφ] : r sin θdφarea di�erential dA = (rdθ) (r sin θdφ) = r2 sin θdθdφangle di�erential dω = dA
r2 = sin θdθdφ [sr]We an use this result to integrate over the entire sphere and get the solid angle

S

S =

∫ π

0

∫ 2π

0

sin θdθdφ = 4π [sr]Ratio (Teilungsverhältniss)Having three points A1, A2, A3 on a line, we have the ratio
|A1A2|
|A2A3|Crossratio (Doppelverhätniss)Having four points A1, A2, A3, A4 on a line, we an de�ne a rossratio
|A1A2|
|A2A3|
|A2A3|
|A3A4|3 Raster AlgorithmsPixel (piture element) a single element of a raster display indexed by rowand olumn (i, j)Raster retangular array of pixelsSanline row of pixels in the raster3.1 Display Types3.1.1 Vetor Displayadvaned osillosope, ontrolled by horizontal/vertial plate voltage, reationof whole objets (i.e. vetors) instead of single pixels+ high resolution, interativity, saling- few olors, wire frames without surfaes, low omplexity, expensive
22

3.1.2 Raster DisplayCathode Ray Tube (CRT) traditional monitor with blobby pixels assoi-ated with a path of phosphor, that's glow depend on the eletron beam'sintensity (olor CRTs have three beams red, blue, green)Liquid Crystal Display (LCD) almost perfet squares at as �lters, whihvary their opaity to darken a bak light. They do this by liquifying whenshot at with heatFramebu�er memory array in whih an image is stored, before it is displayedon the sreen+ �lled surfaes, olor variation per pixel (lighting, shading), real time refresh- aliasing: artifats, moire patterns, di�ult seletive update, disrete sampling,jaggies3.2 Line RasterizationGiven start and end point, we want an algorithm that draws a line betweenthem. Usually only integers are respeted (i.e. whole pixels are used for theline).Ray AelerationDraw every pixel the line touhes.+ fast- uglyBresenham Algorithm (Midpoint Algorithm)Makes use of a impliit form of the line:
f (x, y) = (y0 − y1)x+ (x1 − x0) y + x0y1 − x1y0 = 0where (x0 < x1). The key idea of the algorithm is the line's slope m

m =
y1 − y0
x1 − x0The algorithm assumes the line to proeed more horizontally than vertially fromstart to end point, so the next pixel is either on the same level (x+ 1, y) or oneabove (x+ 1, y + 1). All other ases an be dedued straight forwardly (e.g. forthe vertial ase, swith y and x. Now the idea is to look at the midpoint betweenthose andidates (x+ 1, y + 0.5) and ompute whether the line goes above orbelow it and make a deision aordingly. We an get the distane betweenpoint and line as explained in 2.4 by simply evaluating f (x+ 1, y + 0.5). Sine23

x1 > x0, (x1 − x0) will always be positive. Thus we an read whether the line isbelow or above the point, by looking if (x1 − x0) y has inreased or dereased.Algorithm 1 Bresenham Algorithm
y = y0for x = x0to x1 dodraw(x, y)if(f (x+ 1, y + 0.5) < 0) then

y = y + 1For more e�ieny, we an reuse previous results using the following properties
f (x+ 1, y) = f (x, y) + (y0 − y1)
f (x+ 1, y + 1) = f (x, y) + (y0 − y1) + (x1 − x0)

y = y0
d = f (x0 + 1, y0 + 0.5)for x = x0to x1 dodraw(x, y)if(d < 0) then

y = y + 1
d = d+ (y0 − y1) + (x1 − x0)else
d = d+ (y0 − y1)We still have a real operation when adding 0.5, yet the ode uses only integersapart from that. We an outmaneuver this by multiplying with 2.

d = 2f (x0 + 1, y0 + 0.5)

d = d+ 2 (y0 − y1) + 2 (x1 − x0)

d = d+ 2 (y0 − y1)If the line is very diagonal, it will have fewer pixels than a straight line and thusappear less bright. As a solution you may take the distane to the midpoint dand use it to adjust the pixels brightness aording to d. For grey-sale olor
1√

2 cos α
has proven to be a good ompensation.3.3 Triangle RasterizationGouraud InterpolationDetermine the triangles pixels olors by interpolating the olor at it's verties:

c = αc0 + βc1 + γc2where (α, β, γ) are the pixel's/point's baryentri oordinates (see 2.3.3).24

If the pixel is on the edge of two adjaent triangles, there is no �right one� toassign it to. Therefore we just deide for one of them, as long as the deision iswell de�ned. One solution is to hoose a random o� sreen point, and make thedeision depending on it's position.AntialiasingThe edges of triangles will appear pretty �jaggy� blurry on the sreen. A simplesolution for this problem is to allow pixels to be half on (αvalue).Box Filter: One easy method is to underlay a retangle and use it as a�lter, where the pixel's olor is set to the average values inside the retangle.3.4 Polygon RasterizationIf we are dealing with polygons in general rasterization is getting a bit thougher.Our task is still to draw all pixels within a polygon.Seed FillAlgorithm 2 Seed Fill1. draw polygon edges with the Bresenham algorithm (see 3.2)2. randomly pik a point within the polygon and draw it3. 	 reursively hek all neighbouring pixels for being inside and draw them- deep reursion (stak over�ow), ine�ient, no shading2D San ConversionUse the edges to partition the sreen into outode areas and apply α-lipping(see 3.5), painting every pixel inside.- a lot of useless omputation, highly ine�ient+ slightly better when using small sreen bounding boxes, instead of the entiresreenSanlineThe idea is to proeed sanline per sanline from bottom to top, to �nd interse-tions with the polygon and draw between the intersetion points. The x-valueto start the line at an be determined by storing the lowest x-oordinate of theedges and keep this one up to date by adding the reiproal slope 1
m

= ∆x
∆y

eahtime we limb a line higher. 25

Edge Table a list of all edges of the form
ylower xlower yupper 1

m
= ∆x

∆y
next edgethese nodes are sorted by ylower. 1

m
is the inrement required to step a linehigher.Ative Edge Table a list of edges that are interseting with the urrent san-line

xinterset yupper 1
m

= ∆x
∆y

next edgesorted by xinterset. The urrent intersetion point is (xinterset, ysan)Algorithm 3 Sanline1. initialize Edge Table (ET)2. set Ative Edge Table (AET) to ∅: AET = NULL3. draw all horizontal lines4. ysan = ylower of the �rst ET entry5. do
• move all edges with ysan == ylower from ET to AET
• sort AET
• draw lines:� AET[0℄.x, ysan to AET[1℄.x, ysan� AET[2℄.x, ysan to AET[3℄.x, ysan� · · ·
• ysan + +

• remove all edges with yupper ≤ ysan from the AET
• x = x+ 1

m

	 while AET 6= ∅+ fast, e�ient, allows a good ombination with shading3.5 Line ClippingThe task of lipping is, to only draw what is inside the visible area (e.g. theretangle of the monitor). Now we haven given start and end points of lines, ifthey're both inside the lipping retangle, we draw the line. Yet even if theyare both outside, it is not given, that the line between does not ross the visibleretangle. 26

Cohen SutherlandWe partition the image into nine areas by lengthening the retangles edges.Then we assign eah area with an outode (see �gure).
Figure 4: outodes for the lipping retangleThe four Boolean orrespond to: |x < xmin| |x > xmax| |y < ymin| |y > ymax|where

xmin, ymin, xmax, ymax refer to the lower left and the upper right orner of thelipping retangle.Algorithm 4 Cohen Sutherland1. determine the outodes for the start and end points P1 and P22. hek Trivial Aept: both points are inside
outcode (P1) ∨ outcode (P2) = 0

→ draw the entire line3. hek Trivial Rejet: both points are outside in respet to one edge
outcode (P1) ∧ outcode (P2) 6= 0

→ draw nothing4. �nd intersetion points S1, S2 where the line intersets with edges. Replae
Pi by the nearest intersetion point.
	 restart at 1.

α-lipping
α-lipping adds an Improvement to the Cohen Sutherland algorithm by intro-duing Window Edge Coordinates (WEC) For both points of the line wedetermine four WECs: WECleft (P) = px − xminWECright (P) = xmax − px27

WECbottom (P) = py − yminWECtop (P) = ymax − pyIf WECE (P) < 0 then P is outside in respet to edge E. This an be used foran e�ient outode generation.For α-lipping we hoose the parameter form of a line: P1P2 = {p = p1 + α (p2 − p1) , α ∈ [0, 1]}.The value of this parameter α for getting an intersetion point S with an edge
E an be determined by

αS =
WECE (P1)WECE (P1) −WECE (P2)Algorithm 5 α-lipping1. ompute the eight WEC for P1 and P22. ompute the outodes (take the sign of the WECs)3. hek Trivial Aept and Trivial Rejet4. αmin = 0, αmax = 15. 	 for every E where an outode is set

• αS = WECE(P1)WECE(P1)−WECE(P2)

• if outcodeE (P1) → αmin = max {αmin, αS}
• else if outcodeE (P2)→ αmax = min {αmax, αS}6. if αmin > αmax → return empty lineelse → return (p1 + αmin · (p2 − p1) , p1 + αmax · (p2 − p1))If we are dealing not with an retangle, but with a Convex Clipping Domainwe simply apply α-lipping with one WEC per edge. If however, we have aConave Clipping Domain we have to partition it into onvex ones andmerge the results.

Figure 5: reversed lipping in a x-window system28

In X-window systems we often have multiple windows overlapping. In this asewe may also apply α-lipping, yet we have to reverse the results (do not drawwhat's inside).3.6 Polygon ClippingSimilar to line lipping, but now we have a omplete polygon to lip against alipping retangle.Sutherland HodgemanThe idea is to lip against all edges onseutively and when appropriate addintersetion points or polygon verties to the �nal set of verties. Doing this wehave to di�erentiate four di�erent lasses:
Figure 6: Sutherland Hodgeman Classesinside/inside add Pi+1 to the set of vertiesinside/outside ompute and add intersetion point Soutside/inside ompute intersetion point S and add S and Pi+1outside/outside do nothingDoing this hek onseutively for all verties (P1P2 → P2P3 → · · · → PnP1)for all four edges, we an return a set of verties de�ning the visible polygon.3.7 CullingWhen an entire triangle lies outside the view volume, it an be ulled. Cullingmeans elimination of a triangle or a whole objet from the pipeline. See theChapter about Olusion & Visibility 7.7.3.8 AntialiasingIn general aliasing ours when Nyquist's sampling theorem was hurt (see 11.5.1),therefore the best way, if possible, is to use a higher sampling frequeny.

29

3.8.1 LineLine's often appear often jagged having aliasing artifats. Methods to ounterthis are:
• treat them as a one pixel wide quadrilateral blended with the bakground
• onsider an in�nitely thin objet with a halo
• use a anti aliased texture3.8.2 Sreen BasedA tehnique often used for sreen based antialiasing is weighted interpolation ofneighbouring pixels:

p (x, y) =

n
∑

i=1

ωic (i, x, y)where ωi are weights desribing the ontribution of a neighbouring pixel and
c (i, x, y) returns the olor of neighbouring pixel i. Note that the weights haveto sum up to 1: ∑n

i=1 ωi = 1.Other methods inludeFull Sene Antialiasing (FSAA) Render the image at a higher resolutionand average neighbouring pixels. This is usually ombines with Mip-Mapping (see 11.5.2), but instead of hoosing the Mip-Map level by thelonger side of the parallelogram, we take the smaller side and thus hoosea Map in higher resolution than usual, but also render the objet in higherresolution than the �nal image on the sreen has. Now for every pixel inthe sreen we hek the n losest fragments in the higher resolution imageand average them to determine the pixel's value at the urrent position.The more parallel fragment pipelines we have, the more e�ient this nper 1 look-up an be realized.Anisotropi Filtering see FSAA aboveAumulation Bu�er Use the aumulation bu�er (see 0.1) to use multiplepasses blending over eah otherMultisampling ompute a polygon's grid overageStohasti Sampling (Jittering) instead of sampling uniformly, sample ran-domly. This results in uniform noise added to the resulting image, but thehuman vision system is very forgiving to uniform (or white) noiseGamma Corretion see next hapter 4.8
30

4 ColorColor as pereived by human being is always a three dimensional problem, sinethe human eye di�erentiates three kinds of ones for olor pereption and rods,sensors deteting brightness and darkness (Tristimulus Theory). Ours areespeially sensitive to red, green and blue.8 Bit Byte entries in a pseudo olor framebu�er point to a look-up table witholor values24/32 Bit 1 Byte per olor (True Color)Using multipass rendering tehniques the olor depth beomes espeially impor-tant. If the preision (depth) used for one pixel's olor is to low, nasty visiblequantization artifats will our.4.1 LightSeeing works with light entering the eye hitting the retina. We desribe thislight signal and its wavelength as the radiane.radiane L (λ) radiane is the intensity of light with a ertain diretion andwavelengthwavelength λ = c
f
with c as the speed of light and f as frequeny.light has a huge spetrum of wavelengths, of whih a small part are visibleas olor. Other spetra are UV, infrared, mirowaves, radio waves, x-rays,gamma-rayshue the seen olor, i.e. the dominant wavelength. E.g. the hue of pink is red.saturation olor intensity (how far is it from grey of equal intensity)brightness the light energy, the emitted light. It is also alled luminane.E.g. darkblue and lightblue.ResponseThe human eye pereives light not linearly, but is more sensitive to ertainspetra; whih also is true for ameras. Therefore we an de�ne a response tolight: response = k

∫

w (λ)L (λ) dλwhere w (λ) is the response funtion and k a hardware dependent (organi de-pendent) onstant.ColorThe phenomena of olor is based on di�erent wavelengths of light. E.g. red isaround 4.3 · 1014 outcode 31

4.2 RGB
Using red, green and blue (RGB) as basis olors, we have an additive olorsystem. This is suited for monitors, whih work with additive light.4.3 CMY
Having atual paint, like with printers, we fall bak to the well known subtrativeolor system. For this is is ommon to use yan, magenta and yellow (CMY) asthe three basis olors.CMYKOften the CMY model is extended by the olor blak. This model is mainlyused for printing devies, sine it would be more ostly to mix blak out of yan,magenta and yellow.4.4 YIQThe YIQ olor model is traditionally used in NTSC-television. The variable Ysolely ontains the luminane neessary for blak & white television and I, Qhold additional olor information.

32

4.5 HSV
The Hue, Saturation, Value (Brightness) olor model is a more intuitive olormodel derived form the RGB model. In the HSV model olor is more de�ned byit's properties (hue, saturation and brightness) than parted into three di�erentolors.hue given as angle between [0◦, 360◦]saturation the distane from grey [0, 1]value from white to blak [0, 1]4.6 XYZ

The XYZ olor model is based on the Tristimulus Theory and attempts tostandardize olor values. In ontrast to physial reality the CIE1 developed amodel in whih any linear ombination between olors is possible, even if it isontraditing reality. In addition there is one grey light without hue information(olor saturation) and two with zero luminane and only hue information. Wehave
X/Y/Z = 683

∫ 800

380

x̄/ȳ/z̄ (λ)L (λ) dλwhere 683 is a onstant to onform luminane standards and [380, 800] is therange of visible light. Y returns the luminane (brightness). The big advantage1Commssion Internationale de L'Elairage33

of this approah is that in ontrast to the previously disussed models, thismodel is hardware independent.

Figure 7: Comparison with the RGB olor modelIn ontrast to other models the XYZ is therefore able to model every visi-ble olor, however monitors are not, sine they are limited to the olors theyan produe by adding three light beams. The triangle represents the monitorgamut.There is an addition alled isotopi luminane. This is what you see at night,when you look at a world lit by moonlight. Although it is not possible to deduethe isotopi V diretly from X,Y, Z there is a good approximation
V = Y

[

1.33

(

1 +
Y + Z

X

)

− 1.68

]Alternatively you an add V as fourth value.4.7 Alpha BlendingThe α refers to the degree of visibility of a pixel. If a pixel is only half visible(α = 0.5), we want to see half of the pixel behind it (e.g. glass, water). Having
cf referring to the foreground pixel's olor and cb to the olor of the bakgroundpixel, we get a kind of interpolation:

c = αcf + (1 − α) cb4.8 GammaMonitors are non-linear in respet to the input intensity a (0.5 input intensityan be displayed as 0.25). This degree of freedom is referred to as gamma value
γ. displayed intensity = M · aγ34

where M is the monitors maximum intensity.
a = 0.5γ → γ =

ln 0.5

lnαTo �nd a you an for example let your monitor display two images: a blak &white hekerboard pattern and a grey value image at intensity 0.5. Fiddling onthe intensity you an �nd the grey value that orresponds to the hekerboard,whih will also look like grey. Having this you an dedue a.Having γ we an orret this non-linearity by the transform a = a
1

γWithout Gamma Corretion we will enounter the following phenomena:
• olor interpolation is not linear (without Gamma Corretion mid toneswill appear too dark)
• olor �delity: olors will di�er from their true hue
• distane-squared fall-o�: olors fade out to darkness way too fast
• dithering: blending of olors (see Sreen Door Transpareny 7.6), appearsonly with olor depths below 24bit
• aliasing (Attention: gamma anti-aliased images for CRTs look jagged onLCDs)
• problems with the use of anti-aliased textures (MipMapping has to takegamma orretion into aount)4.9 FogThere are four arguments for using fog:1. inreasing realism2. helps viewer to determine distanes3. helps ulling (far objets are hidden in fog), avoids far-plane pop ups4. implemented in hardwareAdding fog to a sene the user sets two variablesfog olor cffog fator f ∈ [0; 1] dereasing with the distane from the viewerIf cs denotes the olor resulting from shading, the olor added fog cp omputesas

cp = f · cs + (1 − f) cf35

f omputes by the distane given in z-values
f =

zend − zp

zend − zstartwhere start and end denote the fogged area or exponentially falling fog
f = e−df zpwhere df ontrols the fog's density.4.10 Color ConversionRGB → CMY

C
M
Y

 =

1
1
1

−

R
B
G

CMY → CMYK

K
C
M
Y

=

min {C,M, Y }
C −K
M −K
Y −KRGB → YIQ

Y
I
Q

 =

0.299 0.587 0.114
0.596 −0.275 −0.321
0.212 −0.523 0.311

R
B
G

RGP→HSV
V = max {R,G,B}
S = max{R,G,B}−min{R,G,B}

max{R,G,B}

H =

60 · G−B
max{R,G,B}−min{R,G,B} if max {R,G,B} = R

60 · B−R
max{R,G,B}−min{R,G,B} + 120 if max {R,G,B} = G

60 · R−G
max{R,G,B}−min{R,G,B} + 120 if max {R,G,B} = BRGB → XYZSine the XYZ olor model is the only disussed model, that is hardware inde-pendent, it is hard to onvert from the other models, beause hardware infor-mation is required.

X
Y
Z

 =

Xr Xg Xb

Yr Yg Yb

Zr Zg Zb

R
B
G

36

where XrYrZr refers to and desription of the monitor's red hannel in the XYZolor model. By linear algebra this onversion an be redued, so that only
Yr, Yg, Yb must be known. Additionally those three values an be approximatednumerially, when now hardware information is given. However the XYZ salean be diretly onverted to grey sale RGB olor

Y = 0.2125R+ 0.7154G+ 0.0721B5 Transformation MatriesIn general we want to use matries to hange a set of vetors representing anobjet.
[

a11 a12

a21 a22

] [

x
y

]

=

[

a11 + x a12 + y
a21 + x a22 + y

]We an partition these hanges into ategories:Types
• Rigid Transformations: preserving distanes and angles� identity, rotation, translation
• Similitudes: preserving angles, preserving width/height ratio� isotropi saling
• Linear Transformations� saling, re�etion, shearing
• A�ne Transformations: parallel lines remain parallel, line ratios arepreserved� translation
• Projetive Transformations: parallel lines interset at points at in�n-ity, preserves ross ratio)� projetive transformation5.1 SalingSaling hanges length and diretion.

37

Figure 10: horizontal shearingisotropi saling
Figure 8: Isotropi Saling

scale (s) =

[

s 0
0 s

]saling
Figure 9: saling

scale (sx, sy) =

[

sx 0
0 sy

]5.2 ShearingShearing pushes objets sideways.horizontal shear (s) =

[

1 s
0 1

]vertial shear (s) =

[

1 0
s 1

] 38

5.3 Rotation
Figure 11: RotationRotation rotates a vetor around a ertain angle. We rotate around the origin.

rotate (φ) =

[

cosφ − sinφ
sinφ cosφ

]5.3.1 Arbitrary Rotations In 3DOrthogonal Matries3D rotation matries are orthogonal and preserve the orientation.
OT ·O = I

det (O) = 1The rows are three arbitrary orthogonal unit vetors (i.e. orthonormal) and theolumns are three di�erent orthogonal unit vetors (i.e. orthonormal):
Ruvw =

ux uy uz

vx vy vz

wx wy wz

with
~u · ~u = ~v · ~v = ~w · ~w = 1

~u · ~v = ~u · ~w = ~v · ~w = 0Therefore
Ruvw · ~u =

~u · ~u
~v · ~u
~w · ~u

 =

1
0
0

 = xand Ruvw · ~v = y, Ruvw · ~w = zNote The inverse of an orthogonal matrix is its transpose: R−1
uvw = RT

uvw

39

Rotation About An Arbitrary Axis/VetorSo we have found out that we an reate arbitrary rotation matries from a or-thonormal basis. If we want for example to rotate about an arbitrary axis/vetor
~a, we1. build an orthonormal basis with this vetor ~w = ~a2. rotate the uvw basis to the anonial basis3. rotate around the z-axis4. rotate bak to the uvw basisThree Euler Rotations

Figure 12: Euler RotationsEuler found out that any rotation in 3D an be desribed using three angles
(φ, θ, ψ) (the Euler Angles). If we put these into rotation matries, we anmake one matrix out of them: A = BCDUsually the �rst rotation φ is about the z-axis, the seond θ about the x-axisand the third ψ about the z-axis again. This draws

B =

cosφ sinφ 0
− sinφ cosφ 0

0 0 1

C =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

D =

cosψ sinψ 0
− sinψ cosψ 0

0 0 1

The theory behind is that we are using a loal oordinate e′x, e′y, e′z systemde�ned by the three Euler angles
φ = 〈(ez, e

′
z)〉

θ = 〈(ex, L)〉40

ψ = 〈(L, e′x)〉where L is the interseting line between exey and e′xe
′
y. So instead of a realrotation, we are just translating another oordinate system and the Euler anglesstore the relationship between both oordinate systems.- There is a problem with Euler angles alled gimbal lok: We want to rotatearound the z-axis. First we rotate by 90◦ around the x-axis (pithing),make no y rotation, �nally any rotation around the z-axis. At this pointthis z-axis rotation atually orresponds to a rotation around the y-axis2.This problem does not appear when using Quaternions (see below).Rotation Axis And AngleIn this method we desribe an arbitrary rotation be giving an axis n and anangle ω.1. partition a vetor ~x into a parallel part x‖ = 〈x | n0〉n0 and an orthogonalpart x⊥ = x− x‖2. rotate the orthogonal omponent: ~x = x⊥ cos (ω) + (n0 × x⊥) sin (ω)3. add the parallel part: ~x = ~x+ x‖This an of ourse be represented by a matrix by mapping unit vetors.If we are given an orthogonal matrix O we an �nd the axis of rotation n bylooking for the eigenvetor to the eigenvalue of 1. The angle ω an be determinedby:

ω = arccos

(

trace (O) − 1

2

)beause
trace (O) = 1 + 2 · cos (ω)Complex Numbers and QuaternionsAny 2D rotation an be desribed by a omplex number z0

z = n · z0And any 3D rotation of point ~v about axis ~n and angle ω an be desribed bya quaternion q (see 2.10)
rotate (~n, ω) = cos

ω

2
+ sin

ω

2
· ~n

‖~n‖2Try it with your head. Pithing / x-axis rotation means moving your head towards yourshoulder. If you now try to rotate it in z-diretion (forward), you atually rotate around youry-axis (imagine an extension of your spline through your head.41

the result is of the form
q−1 · (0, ~v) · qMatrix representation an be aquired mapping the three unit vetorsAxis n and angle ω an also be aquired easily.

~n = ~q

cos
(ω

2

)

=
q0
|q|Two Planar Re�etionsA rotation has the form

rotate (φ) =

[

cosφ − sinφ
sinφ cosφ

]a re�etion an also be written in terms of trigonometry
reflect (φ) =

[

cos 2φ sin 2φ
sin 2φ − cos 2φ

]Therefore we get the equation
reflect (θ) reflect (φ) = rotate (2 (θ − φ))allowing us to express any rotation by two planar re�etions.Note that rotation matries have a determinant of 1 while re�etion matrieshave determinant −1.5.4 Re�etion

Figure 13: Re�etionRe�eting an objet on an axis.x-axis reflect (s) =

[

1 0
0 −1

] 42

y-axis reflect (s) =

[

−1 0
0 1

]Later we will introdue an ordering of verties of a triangle (see 10.1.8). A re-�etion might distort this ordering resulting in wrong illumination and lighting.To determine whether a matrix is re�etive, ompute it's determinant and hekthe sign: −1 means re�etive.5.5 TranslationThe problem with translation is that talking about the other transformations wehave seen every vetor as o�set from the origin, what makes them unmovable.Therefore we arti�ially move a dimension up using homogeneous oordinates:Translation usually is performed by adding a translation vetor ~t:

a11 a12 t1
a21 a22 t2
0 0 1

x
y
1

 =

x+ t1
y + t2

1

after dehomogenization, we have what we wanted.5.6 Composition of TransformationsA omposition of matrix transformations orresponds to a matrix multipliationof the transformation matries involved. However matrix multipliation is notommutative meaning it does matter whether you do a rotation before salingor a saling before rotating.Beause it is assoiative we an ombine all transformations into a singlematrix and use this matrix to transform all involved vetors only one.Note matries are multiplied from right to left
M = RSmeans �rst a shearing is applied and then a rotation.DeompositionThe opposite is of ourse possible as well. Using for example SVD (see 2.2.2)we an deompose the matrix into a diagonal part (re�etion and saling) andorthonormal/orthogonal parts (rotation). Interesting is that any transformationan be deomposed into two rotations and one saling:

A = R2

[

σ1 0
0 σ2

]

R1A rotation on the other side an be deomposed into three onseutive shearings:
[

cosφ − sinφ
sinφ cosφ

]

=

[

1 cos φ−1
sin φ

0 1

] [

1 0
sinφ 1

] [

1 cos φ−1
sin φ

0 1

]This is important sine shearing is a very e�etive raster operation.43

5.7 Transforming Normal VetorsOne problem is that we annot apply the same transformation matrix both tothe objet and to the objet's normal vetors. Consider a shearing, the diretionof the y-vetors are not hanged, yet the form hanges and the y-normal vetor'sdiretion is no longer perpendiular to the surfae.
Figure 14: Transforming NormalsThe normal vetors are dealt wrongly with the transformation matrix appliedto the objetTherefore we need to dedue separate transformation matries for the normalvetors. We start with the fat, that the normal vetor ~n and a tangent vetor

~t are perpendiular:
~nT · ~t = 0We add an identity matrix

~nT · ~t = ~nT · I · ~t = ~nTM−1M · ~t = 0and hange the order
(

~nTM−1
)

(Mt) =
(

~nTM−1
)

~tM = 0

~nT
M = ~nTM−1

~nM =
(

~nTM−1
)T

=
(

M−1
)T
~n

N =
(

M−1
)TIf however we know our matrix to be orthogonal (e.g. it has been formed by ro-tations), we an take the matrix itself for transforming the normals, beause theinverse of an orthogonal matrix is its transpose and two transpositions aneleah other out. Finally sine rotations and translations are rigid body trans-forms (the shape is not hanged) the matrix will return a unit normal vetor.In ase of uniform saling, the matrix an be used to transform the normals,yet the resulting normals have to be normalized (they are no unit vetors).5.8 Windowing TransformsOften we will need to sale a window in a X-window system. The most easy wayto reate a orret matrix for this task is to see it as three di�erent transforms.1. move the lower left point of the window to the origin2. sale the window retangle3. move the lower left point to the target position44

5.9 Inverse TransformationsSine ordinary matrix inversion is a ostly operation, we an use bakgroundknowledge to quiken the inversion:translation ~t→ −~trotation R → RTsaling scale (sx, sy, sz) → scale
(

1
sx
, 1

sy
, 1

sz

)Curiously enough we an make use of the SVD, beause of the fat that we anpartition any transformation into
M = R1 scale (sx, sy, sz)R2the inverse is simply

M−1 = RT
1 scale

(

1

sx

,
1

sy

,
1

sz

)

RT
25.10 Projetive TransformationsProjetive Transformations have 1,2 or 3 vanishing points. These are pointswhere virtually parallel lines interset in the perspetive spae. These 3 vanish-ing points vi an be found at the bottom row of or homogeneous 3D transfor-mation matrix.

1 0 0 t1
0 1 0 t2
0 0 1 t3
v1 v2 v3 1

ti desribe a translation of the objet.5.11 Big MAll together we now have a matrix of the form

a11 a12 a13 t1
a21 a22 a23 t2
a31 a32 a33 t3
v1 v2 v3 1

where aij denote the linear part for all linear transformations, ti the a�ne partfor translations and vi the part for projetive transformations.
45

6 ViewingIn this hapter orthographi and perspetive projetion as well as dealing witholusion and hidden lines is disussed.orthographi three dimensional objets are displayed on the two dimensionalsreen, but without perspetive viewing. That means parallel lines arestill parallel in the orthographi 3D modelperspetive perspetive also refers to the displaying of 3D objets, yet as seenby a amera/eye. That means parallel lines will interset at some pointon the horizon.olusion When modeling 3D senes some objets will be in front of others,some will be partially oluded. We got to �nd out whih are in front.hidden lines both in orthographi and perspetive transformations we willhave to deal with hidden lines (e.g. of wire frames). Sine this easilyleads to artifats and a wrong perspetive/orthographi impression wewill disuss methods to deal with these phenomena6.1 Canonial View Volume
Figure 15: Canonial View VolumeThe anonial view volume refers to a ube with the dimensions (x, y, z) ∈

[−1, 1]
3. It serves as a intermediary between any viewing transformation andthe sreen (Clipping is muh easier inside this volume). Let nx, ny be the pixelson the sreen, then x = −1 will be mapped to the left half, x = 1 to the righthalf, y = −1 to the bottom half and y = 1 to the top of the sreen.

xpixel
ypixel

1

 =

nx

2 0 nx−1
2

0
ny

2
ny−1

2
0 0 1

xanonial
yanonial

1

maps the pixels of the anonial view volume to real pixel enters ([−0.5, nx − 0.5]×
[−0.5, ny − 0.5]) of sreen pixels.Coordinates inside this volume are alled normalized devie oordinates.Advantages of using this intermediary step are

• the transformation an be expressed as a 4 × 4 matrix46

• projetion to the 2D sreen beomes easier (throw away z)
• lipping against the unit ube is more e�ient than against the frustum
• maintains relative depths (important for the Z-Bu�er)6.2 Orthographi Projetion

Figure 16: Orthographi View VolumeHaving a general orthographi view volume we di�erentiate the six planesof it by:left plane l = xright plane r = xbottom plane b = ytop plane t = ynear plane n = zfar plane f = zNote that n > f !Usually the amera's or user's head is pointing to the y-diretion and looking into
−z-diretion. Furthermore the y-diretion in upwards, x-diretion is sidewardsand z-diretion in/outwards.Mapping to the Canonial View VolumeFor that we �rst move the orthographi view volume to the origin and then doa saling:

xanonial
yanonial
zanonial

1

=

2
r−l

0 0 0

0 2
t−b

0 0

0 0 2
n−f

0

0 0 0 1

1 0 0 − l+r
2

0 1 0 − b+t
2

0 0 1 −n+f
2

0 0 0 1

x
y
z
1

47

If the matrix that maps the anonial view volume to sreen oordinates is addedat the left, we an diretly map to sreen oordinates. The resulting matrix isalled Mo and we get:

xpixel
ypixel

zanonial
1

= Mo

x
y
z
1

6.3 Viewing DiretionWe often want to hange the viewing diretion, if e.g. the user or amera movesit's head. For speifying the view diretion we de�ne three variables:eye position e, the position the eye sees fromgaze diretion g, the diretion the viewer is lookingview-up vetor t, any vetor biseting the viewer's head, where �up� is for theviewerFurthermore we de�ne a speial oordinate system for viewing with axes u, v, wand the origin at e. Then we get:
w = − g

‖g‖

u =
t× w

‖t× w‖

v = w × uMapping the viewing oordinates to the orthographi view volumeAgain we �rst move the viewing oordinate system to the origin of the ortho-graphi view volume and then align uvw to xyz.
Mv =

xu yu zu 0
xv yv zv 0
xw yw zw 0
0 0 0 1

1 0 0 −xe

0 1 0 −ye

0 0 1 −ze

0 0 0 1

And again we an ombine the latter two matries to diretly transform tosreen oordinates:
M = MoMv

48

6.4 Perspetive Projetion
Figure 17: Image PlaneThe mathematial idea is to think of an image plane between the viewer andthe objet. Now for every point in the viewing plane, think of a line pointingdiretly to the viewer's eye. This line intersets with some point of the objet.Draw this point on the pixel the line started from.

Figure 18: Image Plane with variables
ys =

d

z
yThe key of dealing with perspetive projetions are the homogeneous oordinates(see 2.3.4). They allow to use linear funtions i.e. matries even for thosetransformations. If we are done with our objet transformations we an use aprojetive matrix Mp for mapping to the orthographi view frustum:

Mp =

1 0 0 0
0 1 0 0

0 0 n+f
n

−f
0 0 1

n
0

beause of the dehomogenization (division by w), we an salar multiply Mp by49

to make it more pretty (no divisions):
Mp =

n 0 0 0
0 n 0 0
0 0 n+ f −fn
0 0 1 0

The third entry in the last olumn has a speial meaning. Sine applying per-spetive projetion depth information would get lost, we use this position tomap the original z-value to the homogeneous slot w. If we later dehomogenize,we e�etively divide by the z−oordinate and get the perspetive view e�et.Mapping the perspetive model to the orthographi view frustum
Figure 19: Perspetive ProjetionThanks to the homogeneous oordinates we still found a matrix to map bakto the orthographi view frustum. Therefore one again we an ombine ourmatries to diretly map to the anonial view volume. Note that in generalthis annot be done, beause the perspetive matrix destroys angles and ratios,whih we would need for lighting alulations. So in general we will perform thelighting stage after model and view and then apply the perspetive matrix.

M = MoMpMv

M =

2n
r−l

0 r+l
r−l

0

0 2n
t−b

t+b
t−b

0

0 0 n+f
n−f

2n·f
n−f

0 0 −1 0

ItemsDiagonal transforming the view frustum range [−∞,∞] to the anonial viewvolume [−1, 1]. 1
∆x

gives [0, 1] and the 2 in the enumerator gives [−1, 1].The n and n+ f is beause of the perspetive.50

r+l
r−l

, t+b
t−b

shearing fators. The frustums side planes needs to be sheared to aube. n, f are already sheared orretly.
−1 very important. By this fator the z−oordinates are written to the w−oordinate.That means dehomogenizing means division by z and therefore getting theperspetive into 2D oordinates.
2n·f
n−f

As mentioned above we will divide by z when dehomogenizing. Thatwould mean to loose our z-values. Therefore this term allows us to havethe original z-values (depth values) in the z−oordinate after dividing itby z. This is important, beause we will later need these depth values,when we want to determine whih objet to draw (i.e. �lling the Z-Bu�er).Properties
• maps lines to lines, triangles to triangles and planes to planes
• point/vetor ordering may hange (beause∞ is mapped to a �nite point)
• line segments an be split (beause ∞ is mapped to a �nite point)
• maps parallel lines to lines interseting at in�nity
• points at in�nity (vanishing points)6.5 Field Of View (Camera Transformations)

Figure 20: Field Of ViewA amera is de�ned by intrinsi and extrinsi parameters:extrinsi position and rotationintrinsi foal length (Brennweite) and aperture (opening)Extrinsi TransformationsCamera position is at the origin, view diretion is −z and up is y. Extrinsitransformations hange these three values.OpenGL gluLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, upz)51

Figure 22: Mapping Of Z illustrated with olorsThe vertial line represents the position of the eye. The orange part behindthe eye is mapped beyond the blue part representing everything beyond the farplane+∞. The green part is the view frustum and below the anonial viewvolume. The yellow part between the eye and the near plane remains.Intrinsi Transformation
Figure 21: View FrustumDesribes the projetion frustum. The image plane is loated at n = −z. Theviewing frustum is important, beause it orresponds to the visible world. Ev-erything outside will be lipped to this frustum.OpenGL gluPerspetive(fovy, aspet, near, far) or glFrustum(left, right,top, bottom, near, far) for asymmetri frustumfovy opening angle of frustum along y-axis (typial 45◦ − 60◦)aspet widthheight , e.g. 800

600 = 1.3̄near/far distane between origin and near/far plane, e.g. n = 10cm, f = 100mNote a tighter view frustum makes the olusion test (Z-Bu�er) easier6.6 Mapping Of ZDue to homogeneous oordinates and the speial normalization matrix storingvalues of z in w, we have to know what happens with out z-values. What will52

Figure 23: Mapping Of Z illustrated with arrowsThe arrows indiate where the orresponding points are mapped to.happen is that every z-value behind the eye will be mapped to beyond +∞. Butsine we have +∞ as a vanishing point (last row, third olumn of the projetionmatrix), we get �nite points for these values again. Instead the eye point ismapped to −∞ when dehomogenizing the oordinates.Consequenes
• ordering of points on a line hanges
• lipping draws wrong results (see below)6.7 Clipping In Homogeneous CoordinatesAs mentioned above the ordering of points may hange with perspetive proje-tion. If we would do a standard lipping we miss parts of line segments, that hadbeen split during perspetive projetion. For example imagine a line startingfrom a point behind the eye and ending inside the frustum. After dehomoge-nization the point behind the eye will be mapped to some positive point behindthe far plane, the point in the frustum will remain. Displaying the line betweenboth points we get a line that wrongly leave through the far plane instead ofthe near plane. This line will be wrongly lipped by the far plane.The solution is to perform lipping in homogeneous oordinates.That means we perform standard α-lipping to the six faes of the unit uberesulting in six WEC per point: WECr (x, y, z, w) = w− x, WECl (x, y, z, w) =

w+x, WECt (x, y, z, w) = w−y, WECb (x, y, z, w) = w+y, WECf (x, y, z, w) =
w − z, WECn (x, y, z, w) = w − z

53

Figure 24: Mapping Of Z illustrated with asymptotes
z: before the projetion
z̃: after the projetionThe asymptotes indiate how the values behave after the projetion. The leftmost point of the graph is onneted with the right most point, mapping in�nityto a �nite point. On the other hands �nite points between the near plane andthe eye (z̃-axis) are mapped to in�nity.6.8 Viewing Pipeline1. Geometri Transformation, Lighting, Clipping → model oordinates2. Model Transformation → world oordinates3. Viewing: Camera Transformations → amera/eye oordinates

4. Perspetive Transformations
54

(a) Normalization Transformation → normalized homogeneous oordi-nates(b) Clipping In Homogeneous Coordinates() Dehomogenization → sreen oordinates5. Viewport Transformation → window oordinates6. Rasterization → devie oordinates7 Olusion & VisibilityIn senes we will always be faed with the problem of multiple objets oludingeah other. So we need a way to determine whih objet is at front and shallbe painted.7.1 Painter's Algorithm1. sort objets from bak to front2. render them in this orderIn this way front objets will simply be painted over the bak ones.
Figure 25: penetration and yli olusion- painting the bak objets is unneessary- the sorting of several million triangles is highly ine�ient- annot handle penetration and yli olusion7.2 Binary Spae Partitioning (BSP)Binary Spae Partitioning is a kind of painter's algorithm, but muh more ef-fetive, sine it laks the disadvantages of sorting, unneessary painting and anhandle penetration and yli olusion.The idea is to use the impliit representation of a plane (see 2.4) to makeadvantage of the easy way to aess distanes to this plane. Now we pik atriangle that best subdivides the sene in half3 and build a plane, so that the3usually the triangle that's plane has the lowest number of intersetions, this strategy isalled the least rossed riterion 55

triangle ompletely lies on this plane. We assume for now that no other trianglepenetrates this plane. Now depending on the eye position e we an deide thesafest drawing order (�rst draw triangles on the side where the eye is loated).Thinking of this proess reursively like a tree (the BSP-Tree) we an give anoverall ordering for all triangles.PenetrationWe assumed that no triangle penetrates our plane, still we an handle this aseby utting the penetrating triangle into two and handle them as three separatetriangles, whih we add to the BSP-Tree.SliversMore often than assumed it will ome to a ase where a triangle only penetratesa plane tightly with a vertex. In this ase the triangle will be ut into threetriangles. One of whih is a sliver and one of almost zero size. We do better indeteting this speial ase and leave the triangle untouhed.Axis Aligned Binary Spae Partitioning
Figure 26: Axis Aligned Binary Spae PartitioningAlternatively we an use planes that ut the omplete sene in half and testagainst them (see �gure). Always the line is hosen that subdivides the senebest into halves (horizontal or vertial (axis aligned)).7.3 Ray TraingCast a ray through eah sreen pixel to �nd the �rst intersetion (for Ray Traingsee 9)7.4 Z-Bu�erThe idea is to reate a bu�er equal to the size of the image, where there isdepth information stored for every pixel. The depth value orresponds to the

z-oordinate after normalization. Olusion heks an than be performed bysimple depth omparison. The bu�er is initialized by the far plane.56

Creation The Z-Bu�er is �lled during rendering/rasterization. The �rst ob-jet's depth values drawn on the sreen are stored in the Z-Bu�er. After-wards in ase of an suessful test (the new objet's depth value is loserto the viewer), they are overwritten.Usage It is used when it is �lled, during rendering/rasterization. Chek apixel's depth value, if it is loser to the sreen draw it and update theZ-Bu�er value for this pixel, otherwise disard it.Deletion After rendering the bu�er's alloated memory an be freed.Issues & Strengths- requires fast memory- non-uniform depth values. The loser we are to the far-plane the smaller thedi�erene in the depth values beome. Therefore preision is of fundamen-tal importane for Z-Bu�ering- the preision is hardware dependent (the more far away near and far planeare, the more preision omes into play) → depth di�erene beomes verysmall for distant objets (try to move the near plane as lose as possibleto the far plane! moving the far plane on the other hand does not help)- Z-Bu�er �ghting+ an handle yli olusion and penetrationOpenGLglEnable(GL_DEPTH_TEST)glClear(GL_DEPTH_BUFFER_BIT)StrategiesZ-Bu�er Fighting This phenomena means the situation when the value inthe Z-Bu�er so muh resembles the urrent one, that a jumping for andbak with eah sreen update an be seen.Polygon O�set Polygon O�set means to push ertain values inside the depthbu�er a little towards the near plane. Sine they are not touhed on thereal framebu�er, this hange annot be seen. Still one the next depthhek ours, this o�set will ome in handy and avoid Z-Bu�er �ghting.[A℄ Hidden Line Rendering (Wire frame Rendering)1. render polygon as a wireframe (render to the Z-Bu�er only, not to thesreen)2. render the polygon a seond time as a solid, using a polygon o�set (pushingeah depth value in the Z-Bu�er towards the near plane by this o�set)57

[B℄ Haloing Make use of gaps between hidden lines to emphasize depthpereption and avoid Z-Bu�er �ghting1. render the polygon as wireframe using thik lines (render only to depthbu�er, not to sreen)2. render the lines again with normal thikness and polygon o�setThis an also be done with two di�erent kind of olors instead of di�erentthikness.7.5 W-Bu�erThe W-Bu�er is an alternative to the Z-Bu�er. Instead of depth values thehomogeneous w oordinate is stored. The advantage of this method is havinguniform �depth� values. Thus we do not need to pay attention to the distanebetween near and far plane. However a disadvantage is that we annot linearlyinterpolate between those values of w (logarithmi sale, beause of perspetiveprojetion).7.6 TransparenyInstead of olusion objets from behind might shine through objets in front,if these are transparent (e.g. a tree behind a window).Sreen Door Transpareny
Figure 27: Sreen Door TransparenyInstead of a solid objets, the transparent objet is drawn as a hekerboardpattern, where the number of gaps depends on the α-value. By this tehniqueobjets behind may shine through these gaps.- worsens if more than one objets an be seen through the transparent objets.- if two overlapping transparent objets share the same α-value, they have thesame number of gaps on the same position and the rear one annot beseen

58

Blended TransparenyDraw the objets in the order given by the depth test.- The depth bu�er draws the foremost objet �rst. That means, given thesenario, the transparent objet is drawn before the opaque one oludingit, no transparent e�ets will be seen.Delayed Blended Transpareny
Figure 28: Problems with Delayed Blended TransparenyDraw opaque objets �rst, then ontinue with depth bu�er test for transparentobjets.- still wrong results when transparent objets in front are rendered before trans-parent objets in the rear, beause blending is not ommutativeSorted Blended TransparenyDraw opaque objets �rst, then sort the transparent ones from bak to front.- still problems our when objets interset and no preise ordering an begiven7.7 CullingWhen an entire triangle lies outside the view volume, it an be ulled. Cullingmeans elimination of a triangle or a whole objet from the pipeline. However inpratie perfet ulling (i.e. of every single triangle, primitive) is more expensivethan letting the Clipping module take are of them. Yet if we use boundingvolumes around groups of triangles ulling an beome very useful. We onlyhek whether a whole bounding volume lies outside our volume, eliminate if itdoes or pass it on to Clipping if it doesn't.Culling in hardware is very di�ult, beause it is not supported pretty welland the entire sene has to be known. So often it is performed in the appliationstage, where the entire sene is known or solved by preomputation. Howeverit an and is performed at any stage of the pipeline as well.59

7.7.1 Bak Fae CullingThe idea of bak fae ulling is that only those faes an be seen, that are faingtowards the user. Other will fae the bakside of objets and this be invisible tothe viewer. The orientation of a fae an be heked by examining the outwardsfaing normal of it in respet to the view vetor. The fae is visible if
~v · ~n > 0Dealing with polygons the orientation is impliitly oded in the ordering of theverties (see 10.1.8). The orientation an be tested using the vetor produt(thumb, indexing �nger and middle �nger). A polygon △abc with p = a− b and

q = c− a is ordered ounter lokwise if
(p× q)z > 0The question remaining is when to perform bak fae ulling.world spae before the sene is transformed to sreen spae+ fast (faes are sorted out quikly)- real normal is neededsreen spae (after sreen spae transformation)+ no normal needed, more general+ supported by OpenGL- more expensiveClustered Bak Fae CullingA small extension to standard bak fae ulling where polygon groups sharinga similar normal are either rendered together or disarded altogether (If partof the groups is front faing, the other not, all are rendered). These �normalsharing� mathematially e�ets in a normal one, a trunated one ontainingall the normals and points of a set. Now the viewing diretion is omparedto the normals of the one, and all points assoiated to normals whih di�ersigni�antly are disarded. The normals ~n of a one are front faing the viewer

~v if
~n ·

~v − ~f
∥

∥

∥~v − ~f
∥

∥

∥

 ≥ sin (α)where α is the opening angle of the one. This works beause even if only partof the polygons are faing towards the viewer, the uninidentally rendered arelater disarded during lipping. 60

7.7.2 View Frustum Culling

Figure 29: View Frustum Cullingall objets outside of the frustum are ulledThe idea of view frustum ulling is to hek objets against the view frustum,i.e. against what the view is atually seeing. Doing this by polygons would betedious and in fat the e�ieny gain is worse than skipping ulling altogetherand let the lipping module lip the frustum. However if we see the objets asomplete single entities, we gain a e�ieny bonus.Bounding VolumesFor that we must enlose them into geometri bounding volumes (e.g. ube,sphere). Now we hek the bounding volume by simple impliit geometry andull the objet if frustum and volume share no ommon points and render it ifthey share all or only some points. In the latter ase we again leave the preisionwork to the lipping module.Bounding Sphere Finding sphere exatly �tting the objet is omplex andsine we look for speed, we go with sphere that will be bigger than theobjet but easily omputed: We take the enter of mass as the enterof the sphere and hoose the radius to over all objet verties. A greatadvantage of bounding spheres is that they are invariant to rotations.Axis Aligned Bounding Box Creation is easy. A box is desribed by six val-ues: xmin, xmax, ymin, ymax, zmin, zmax. These values are simply the max-imum/minimum of all verties, e.g. xmin = min {x-value of all verties}.A disadvantage is that axis aligned bounding boxes are not invariant torotations and must be adapted for rotation. Like the sphere approah,this approah results in muh bigger boxes than objets inside.61

Oriented Bounding Box A bounding box tightly �t to the objet whih on-siders rotation. However the omputation and intersetion tests are moredi�ult. Computation inlude: �nding the enter, ompute the ovarianematrix (think of the enter as mean), Eigenvalue analysis, use Eigenve-tors as diretions (basis) and use them a box that inludes all verties ofthe objet.Bounding Hierarhies

Figure 30: View Frustum Cullingall objets outside of the frustum are ulledEven more an be gained if we build a hierarhy of bounding volumes, i.e.a bounding volume around several bounding volumes. If a big volume liesompletely in the volume, we render all its hildren objets; if it shares pointswith the frustum, we hek eah volume inside it separately, if not all objetsinside are ulled.Other hierarhies an also be applied. They are disussed later on in thehapters about Ray Traing, see 9.3 and the hapter on Olusion for BinarySpae Partitioning , see 7.2. However they usually perform worse under dynamihanging senes. On the other hand the deliver better results and should beused for stati senery.

62

Intersetion Test

Figure 31: View Frustum IntersetionIntersetion tests with the frustum are not trivial, even if all verties of an objetare outside, parts of the objet might be in.The intersetion test is not as easy as it might appear (see �gure). Therefor weapply a strategy similar to those from lipping:We model the frustum as six interseting planes (half-spaes) and use impliitplane representation. Then a point x lies in the half-spae partitioned by theplane spanned by plane point p and normal ~n, if
(x− p) · ~n > 0We repeat this test for all six planes and ombine the results to know whetherthe point lies inside in respet to all planes or not.A modi�ation is to test only the most ritial point (i.e. the point losest)of the objet against the urrent plane. To �gure this ritial point out, weomparing the objet's verties minimal and maximal in respet to a oordinatediretion to the plane, to the half-spae's normal. Then the objet is inside ifthe ritial point is inside, outside if the ritial point as well as it's oppositeorner lies outside and partly inside otherwise. Taking errors into aount weinrease the test e�ieny by using the following rule of deision:box within all half-spaes → renderbox outside one half-spaes → ullotherwise → renderIn fat the outside test an deide an objet as outside, whih has parts inside.This is alled a ritial error.7.7.3 Olusion CullingFinally olusion ulling intends to ull objets that are oluded, i.e. hid byother objets. This is important sine only using the Z-Bu�er several pixels will63

be drawn multiple times, in fat whole objets later invisible will be drawn �rst.While Olusion ulling intends to remove these objets, there are other methodsthat try to sort the objets to only render the ones in front (see Chapter aboutOlusion & Visibility 7). In general aspets that have proven to be maxims forgood olusion ulling are:
• Oluder Combination: ombine several oluders to one big oluderwhenever possible
• Oluder Choie: try to use the best oluders for heking olusion;best oluders are: big objets and objets lose to the viewer
• Preomputation: preompute as muh as possible, but keep interativ-ity in mind
• Validity Over Time: try to keep the urrent olusion omputationsvalid for as long as possible (e.g. as long as the user is within one roomor ell) and don't ompute everything from srath eah frame
• Level Of Detail: use objet models in higher resolution for objets loseto the eye, and lower resolution ones for distant objets (see 10.7)
• Hierarhy & Bounding Box: hierarhies and bounding volumes overthe sene are very useful, but it is usually hard to update them for quiklyhanging dynami senesPotentially Visible Sets (PVS)

Figure 32: Potentially Visible Sets separate the sene into arbitrary ellsThis �rst approah separates the sene into ells and omputes whih ells anbe seen from a partiular ell. This is done with preomputation. Then dur-ing rendering we hek the ell, the amera is positioned in and only render64

the ells/sets that are potentially visible from here. Sine it heavily uses pre-omputation, rendering time is e�ient while we have a high memory load.Furthermore the omputations for a ell an usually be kept for a ouple offrames, as long as the viewer remains in that same ell.The visibility of other ells an be preomputed using visibility rays (seeChapter about Ray Traing 9).Portal Visibility

Figure 33: Portal VisibilityIn the Portal Visibility approah subdivide the sene into ells that are on-neted by portals (e.g. doors, windows, holes). It is a very exellent method forrendering the inside of buildings. Now the algorithm goes:
• �nd the ell, the amera is loated in
• render this ell
• for all portals in the ell: if portal is visible, render neighbouring ellreursivelyTo hek whether a portal is visible, we an hek its bounding box against theview frustum (see previous point �View Frustum Culling� above). Further morethis allows for a speial integration of mirrors, by seeing mirrors simple as aspeial kind of portal (sigh is reversed).OpenGL Olusion TestOpenGL implements its own olusion ulling strategy by o�ering a speialrender mode alled OCull-mode. In this mode atually nothing is rendered,instead the number of potentially rendered pixels is ounted. Now this an beused for ulling like this: 65

• set the ounter to zero
• render the objet's bounding box in OCull-mode
• render the objet if the ounter is above a threshold4The disadvantage of this very simple test is, that it stalls the pipeline and thateven ounting an be expensive for thousands of triangles. This behaviour anbe improved by installing several ounters and parallelize the ounting rendermode. Then the stalling of the pipeline does only our one time instead of oneper objet. This method is espeially useful for very distant or omplex objets(leafs on a tree).7.7.4 Hierarhial Z-Bu�erA hierarhial z-bu�er has several levels. At bottom level 0, the atual z-valuesare stored. One level above the highest value among a group of hildren z-valuesis stored and so on.Now if we want to test an objet for ulling we projet the bounding box ofthe objet and searh for the node in the Z-Tree that ompletely overs it andompare depth values. This leads to many fast rejets. If the objet is nothidden, we proeed to its hildren. Passing level 0 we eventually render it.For this to work the Z-Bu�er hierarhy must be kept onsistent. Using a tree-like struture this is easy: One a value hanges, this hange simply propagatesupwards.This method works best when the sene is rendered from front to bak. Chekthe hapter about Olusion & Visibility on page 7 for methods to ahieve suhrender orderings.7.7.5 Olusion HorizonsOlusion Horizon is a speialized ulling tehnique for urban senes. We sep-arate the sene's objets into: plain ground, opaque buildings, buildings onground. Apart from that we geometrially subdivide the sene into equallyspaed quads. And we redue the dimension a little bit to 2 1

2 by using height�elds for the height of buildings. For eah building we ompute a set of prismsthat are ompletely inside (inner hull) and a set of prisms desribing the bound-ing hull (outer hull).Now we traverse the quadtree while moving away from the amera and pro-ess the buildings with inreasing distane to the amera. We keep trak of a soalled olusion horizon (e.g. for x, the urrent maximum value of x). Nowfor every building being proessed, we hek whether the building is behind thehorizon (→ invisible) or in front of it (→ render building, adapt horizon).4Objets only having a few pixels visible an usually be ulled without great loss. Alter-natively the objet an be rendered in a highly simpli�ed way.66

Figure 34: Olusion HorizonThis olusion horizon is implemented as a onstant pieewise funtion aessedby x, stored as binary tree with values of y (see �gure). Tests against the horizonare performed with the buildings outer hulls and updated of the horizon aremade with the inner hulls.Caveat

Figure 35: Olusion Horizon: Di�ult OlusionHowever it's not always that easy, as the �gure above shows. Although buildingsA is lose to the amera, B oludes A. To avoid suh senarios we introduea priority queue with new buildings (entered at the urrent horizon) sorted bymaximum distane. Buildings from the queue are only then added to the horizonone their minimum distane is smaller than the maximum distane from thequeue. With the queue, in the above senario A would still be in this queue,when B is tested: 67

• test A - visible! - render A, put A into queue
• test B - visible! - render B, put B into queue
• A and B de�nitely in front of C - insert A and B into horizon
• test C. . .Last but not least the idea of the horizons an be onneted with Mip Mapping(see 11.5.2). Depending on the distane of the urrent horizon from the eye,buildings and other objets an be rendered using a lower resolution. Objetsat horizons lose to the eye should be rendered with an extra high resolutionfor details.7.7.6 Dual Ray Spae Olusion Culling

Figure 36: LondonWith Dual Ray Spae Olusion Culling the PVS for a single ell of size 100x100
m2 an be rendered in 2.5 sImagine the map of London (see image) with an area of 160km2, this ouldbe rendered by about 1, 7 · 106 polygons. The goal Dual Ray Spae OlusionCulling is aiming at, is that a user an virtually walk through the streets, whilethe data is downloaded via the internet. Only what user an see is rendered,and while he walks data for buildings that soon ome into vision is downloaded.The strategy sounds familiar, we separate London into ells and determinethe PVS (see above) for eah ell. The urrently valid PVS is kept on the lientas well as the PVS of all neighbouring ells. As in olusion horizons we restritthe dimension to pseudo 3D (2 1

2D). In addition we also take olusion horizons'quadtree idea to reursively determine the nodes of the quadtree that are visible.But how do we deide whether a quadtree node is visible from another or not?We solve this by a new idea: 68

Figure 37: Dual Ray Spae Olusion CullingFirst we �nd the two faes of Z and Q faing eah other.Then we model them as parametrized line segments: Q0+s (Q1 −Q0) , s ∈ [0; 1],
Z0 + t (Z1 − Z0) , t ∈ [0; 1]And now we transform this model to a Dual Spae, where every Ray in oururrent spae is represented by a point.

Figure 38: A line in the Dual Ray SpaeFor example all rays between Q and Z that hit a random point v will build aline in this Dual Spae.
Figure 39: A double triangle in the Dual Ray SpaeNow onsider a whole line segment between Q and Z, all rays interseting thissegment build a double triangle in the dual spae.Slowly the idea beomes lear, we represent the spae of all rays in the dual rayspae as image [0; 1]2. Then we render this image blak and ompute for eahsegment between Q and Z the orresponding double triangle. After all segments69

have been proessed, we hek whether there are any blak pixels left, if thereare not, we assume total olusion.8 Lighting8.1 LightTo understand algorithms of lighting it is important to understand light, re-spetively the measuring of suh alled radiometry or the human pereptionof light referred to as photometry.8.1.1 RadiometryRadiometry is the physial measurement of light. Sine light is a form of energy,we measure it in joule [J].PhotonsLight an also be seen as a large amount of photons. A photon is a light quantumhaving a position, a diretion and awavelength λ given in nanometer 1nm =
10−9m. Furthermore light has speed c (depended on the material it passesthrough) and a frequeny f = c

λ
. Finally the amount of energy q arried isgiven by
q = hf =

hc

λwhere h = 6.63 · 10−34 is Plank's Constant.EnergyThe energy of light in general (radiant energy, Strahlungsenergie) Q is thensimply the sum of the single photon's energy qi.
Q =

n
∑

i−l

hc

λi

[J]Furthermore we an give Q relative to the wavelength λ by integrating over aninterval on the wavelength:
Q =

∆q

∆λThen we an give Q relative to time (radiant �ux, Strahlungsleistung)
Φ =

dQ

dt

[

W =
J

s

]

70

ExampleA light bulb with 100 Watt emitting about 5% as light, then the radiant �ux Φwould be: Φ = 5WThe radiant energy Q, relative to a surfae (�ux density, Fluÿdihte) is givenby
dΦ

dA

[

W

m2

]IrradianeIrradiane is the amount of ingoing light that hit a ertain point, the inidentlight or inident �ux density (Strahlungsenergie).
E =

dΦin
dA

[

W

m2

]RadiosityRadiosity is the light emitting from a surfae. It is alled exitant light orexitant �ux density (spezi�she Ausstrahlung) and measured the same way:
B =

dΦout
dA

[

W

m2

]Example
• A big area light with Φ = 5W and A = 1m2 has a radiosity of 5 W

m2

• A small area light with Φ = 5W and A = 100cm2 has a radiosity of 500 W
m2Radiant IntensityRadiant Intensity (Strahlungsintensität) is used for point light soures and givesthe emitted light per solid angle (see 2.11)

I =
dΦ

dω

[

W

sr

]This means, if by tilting the area is getting smaller, the same light is gettingbrighter (the light beomes more ompat).Approximation Usually the dome is negleted, just the area is taken intoaountNote By /r2 dimension and size leaves the formula. Thus dimension and sizeof the sphere does not in�uene the outome.71

Radiane

Figure 40: RadianeFinally radiane ombines �ux density with radiant intensity (Strahldihte)adding a diretional dependeny to radiosity/irradiane.
L (x, ω) =

d2Φ

dω · dA · cos θ

[

W

sr ·m2

]where d2Φ is the �ux5, dω is the di�erential solid angle and dA the di�erential ofthe Area (cos θ is explained below). This results in the brightness. This is thevalue measured by ameras. Radiane is also the most important radiometriunit for omputer graphis, sine it is exatly what we want to store in a pixel.IntuitionWe want to measure how many photons originate from a ertain point x into adiretion ω. We use a light sensitive sensor as ameras use and plae it abovethe surfae. Now to get sure only the rays originating from our point we needto enlose the sensor by a blak one whih has a broad opening towards xand a small towards the sensor, so that rays oming from another diretion areabsorbed by its blak walls when bouning.Still some rays will get through, therefore we need to make the one in�nites-imal small (dω).Still some rays will reah the sensor, ause it has a ertain area size, thereforewe need to make this area in�nitesimal small (dA).Still our sensor will be oriented in some kind, therefore we need to take thisorientation into aount (cos θ)(e.g. vertial, horizontal or in between).Now we get only the desired photons. If on the other hand we want to measureirradiane we plae the sensor on the surfae.5d2beause we di�erentiate two times 72

Invariant Radiane is onstant along a ray

Figure 41: Relationship between inident and re�eted lightAn important relationship is between inident light Li and the light re�eted
Lr and transmitted by the surfae A

Ei = Li

(

~n ·~l
)

dωi

Ei = Li cos θidωiOverview Table 1: Physial Light OverviewMeasure Meaning ModelingFlux general light �ow without di�erentiationIntensity light per angle (e.g. the intensity of a light bulb) powerRadiosity light per area (all diretions) di�useRadiane light per area into a diretion speularIrradiane inoming light per area from any diretion Lin8.1.2 PhotometryWhere radiometry overs the physial measurement of light, photometry oversthe human measurement of light. The human system is only apable of pereiv-ing a limited range of radiation. Furthermore the human response system is notlinear: Some wavelengths appear brighter than others (e.g. red).The average human vision apabilities (daytime) are overed in lumen V (λ)
[

lm
W

].
Lv overs how bright a ertain wavelength is pereived.

Lv = km

∫

L (λ) V (λ) dλ

Bv, Qv,Φv are expressed orrespondingly.73

8.2 LightingLighting is the simulation of physial light to make a 3D sene look real. Howevera real approximation takes far too long, so that we make a lot of approximations,simpli�ations and haks. Our task is to ompute the luminous intensity at apoint in the sene.8.2.1 Simpli�ationsSine we are far from able to model light physially orret, we often are foredto make some of these ommon simpli�ations:
• no interations between wavelengths (e.g. �uoresene)

Figure 42: �uoresene
• time invariane (distribution remains onstant over time, e.g. phospho-resene)

Figure 43: phosphoresene74

• light transport in vauum (no intermediary medium, emission and absorp-tion just on objets, e.g. smoke, mist)
• isotropi objets (idential material)
• diret illumination (no or limited re�eted illumination)Light Hitting A Surfae an be
• absorbed
• sattered
• re�eted
• refrated
• transmitted8.3 IlluminationTransport of energy (in partiular, the luminous �ux of visible light) from lightsoures to surfaes & surfae to eye. There are two major omponents of illu-mination:
• light sourea light soure has a ertain spetrum (olor), a diretion and a shape(e.g. point light soure, parallel light, area light soure).
• surfae propertiesa surfae has a re�etane spetrum (olor), a position, an orienta-tion (given by a surfae normal at every point) and amiro struture(important for sattering and re�etion)Loal IlluminationIllumination by one or several light soures (point, parallel). This results inhaving no shadows. An example is Phong Lighting.Global IlluminationGlobal light exhange (area light soures). Slower but with shadows and higherquality. An example is Ray Traing

75

8.3.1 Light SouresPoint Light Soure

Figure 44: Point Light SoureLight is equally emitted in all diretion originating from a single point. Thusthe light diretion towards a surfae varies for every surfae point. Thus wehave to ompute a normalized light diretion vetor for every point:
l =

p− x

‖p− x‖

Figure 45: diretion of light for point light soure

76

Diretional / Parallel Light

Figure 46: Parallel LightLight is modeled by parallel rays originating from a quasi in�nite distant lightsoure (e.g. the sun). The diretion of the surfae relative to the light diretionbeomes important.SpotlightA point light soure with parallel light. Outside the spotlight, the light remainsparallel but fades away in intensity, limiting the light to a ertain area. Amixture of the two above.Area Light SoureDe�ned by a 2D emissive surfae (e.g. a �ashlight). Area light soures areapable of reating soft shadows.8.3.2 Phong Lighting ModelProperties
• loal illumination
• heuristi, no physial simulation
• fastVariablesRe�eted LightIn Phong Lighting, re�eted light does not exist per se and is therefore approx-imated by three omponents:Ambient Light Indiret light modeled by a onstant (omnipresent light)77

Variable meaning
~l diretion of light
I light Intensity
~v vetor towards the eye
~n surfae normal
k surfae onstant (olor)

nshiny empirial onstant (spread of the highlight)
~r ideal re�etane vetor
~h halfway vetorTable 2: Phong Lighting VariablesDi�use Light re�etion from rough surfaes (uniform into all diretion)Speular Light re�etion from glossy (no perfet mirrors) surfaes

Ltotal = Lambiebt + Ldi�use + LspeularAmbient Light

Figure 47: Ambient LightCovers objets that are not diretly light, but that would be still visible byindiret illumination.
Lamb = kambIambSome properties of ambient light:

• no physial base (neessary beause indiret/global illumination is skipped)78

• better results by giving ambient light per light soure, so that if one lightsoure is turned o�, it's ambient light is removed from the objets
• if a surfae is not overed by any light soure, only ambient light is appliedgiving the surfae an uniform look and no 3D features (there often anadditional light soure alled head light is used above the viewer to makesure everything visible is at least lit by some diret light soure.Di�use LightIn priniple the sattering/re�etion of light depends on the surfae's mirostruture. In Phong Lighting we assume rough surfaes to be equally roughsattering light equally in all diretions.

Figure 48: Re�etion from equally rough surfaesFor this ase we may apply Lambert's Cosine Law:
Figure 49: Lambert's Cosine LawRe�eted radiant intensity in any diretion varies as the osine of the anglebetween light diretion and surfae normal.Therefore we require the angle between the light diretion ~l and the surfae79

normal ~n to ompute di�use light:
Ldi� = kdi�IIn cos θ

Ldi� = kdi�IIn (~n ·~l
)

Figure 50: Di�use LightAs you an see the view diretion does not appear in the formula. This meansthe di�use light is view independent and thus looks the same from any diretion.The angle θ gives us more information. If
•
(

~n ·~l
)

< 0: light is below the surfae
• (~n · ~v) > 0 : eye is below the surfaeIn both ases we lamp I to zero.Some properties of di�use light:
• di�use light is view independent
• di�use light is based on Lambert's osine law and with that based on realworld physis

80

Speular Light

Figure 51: Speular LightRe�etion for glossy materials, e.g. polished metal. Light auses a bright spot onthis surfae (speular highlight). This highlight depends on the diretion theviewer looks at the surfae, thus it is view dependent. Speular light approahesmirror like re�etane (see Figure).
Lspe = kspeIIn cos (φ)nshiny
Lspe = kspeIIn (~v · ~r)nshiny

Figure 52: Speular Light is view dependentwhere nshiny determines the spread of the highlight. A large nshiny makes for arather glossy (narrow) highlight, and a small nshiny a rather di�use one. The81

vetor ~r of ideal re�etane an be omputed as
~r =

(

2
(

~n ·~l
))

~n−~lSome properties of speular light:
• view dependent (the highlight moves with the viewer)
• halfway vetor redues omputation time
• no physial base or validity
• looks unrealisti with per-pixel shading (Phong Shading, see below 8.4.3)Complete Re�eted Light
Lre�eted = kambIamb +

#lights
∑

i

Iini

(

kdi� (~n ·~li
)

+ kspe (~v · ~ri)nshiny)Halfway Vetor Approah

Figure 53: Halfway Vetor ApproahComputing the ideal re�etane vetor ~r is ostly. The Halfway Vetor Approahomes lose to the results of using ~r but is far more e�ient. The idea is thatthis halfway vetor ~h is exatly equal to ~n if the view diretion ~v is parallelto the re�etion diretion ~r. When it deviates from ~n, the angle of deviationis φ′ = φ
2 . Therefore the inner produt (~n · ~h

) equals cos
(

φ
2

). The halfwayvetor speular formula is:
~h =

~l+ ~v
∥

∥

∥

~l+ ~v
∥

∥

∥82

Using ~h draws
Lspe = kspeIIn cos (φ′)

nshiny
Lspe = kspeIIn (~n · ~h

)nshinyIf the light is diretional and the view parallel (orthographi), both ~l and ~vbeome onstant, resulting in a onstant ~h.AttenuationFor parallel light there is no attenuation, sine we have parallel light rays every-where, therefore we onsider a point lightsoure at position p, whih is d awayfrom the surfae point x it is lighting (d = ‖p− x‖2).
IIn =

I

‖p− x‖2But this approah is problemati for lose and distant light soures. Thereforewe add some onstants and build a polynomial:
IIn =

I

c0 + c1d+ c2d2where ci model for example atmospheri attenuation, smoke or vauum.Note that a physially orret attenuation proeeds quadrati in respet tothe distane to the light soure. However we usually do not model this beause a)the sun is too far away (hardware �oat preision), b) it results in very unrealistilooking light and) we an model additional atmospheri attenuation like smoke.Material ColorsThe material onstants ki may onsist of two parts:a brightness value k ∈ [0, 1]a olor frequeny Oλ, λ ∈ RGBαThis allows the mixing of lightsoure and material olor frequeny8.3.3 Torrane-Sparrow Light ModelThe Torrane-Sparrow Light Model tries to model physis. Here we do notassume equally rough surfaes, but onsider isotropi olletions of planar mi-rosopi faets.
L = IIn · F (~l · ~h)G(~n · ~v, ~n ·~l

)

D
(

~n · ~h
)

π (~n · ~v)
(

~n ·~l
)

83

Variable Meaning
~n standard surfae normal
~h normal for rough surfaes (urrent normal wandering aross the hill)
~v view vetor
~l light vetor
π aounts for surfae roughness

D
(

~n · ~h
) distribution of miro faets / normals (Gaussian)

G
(

~n · ~v, ~n ·~l
) attenuation, masking and self shadowing

F
(

~l · ~h
) Fresnel Term

(~n · ~v)
(

~n ·~l
) ~maybe~ for the speular highlight?The Fresnel Term desribes the relation between inoming and re�etedlight and takes surfae properties (glass, water) into aount.Self shadowing means that re�eted light bounes against a faet:

Figure 54: Self-ShadowingShlik gives an fast and e�ient approximation of the omplex Fresnel Term:
F = fλ + (1 − fλ)

(

1 − ~v · ~h
)where fλ is the Fresnel re�etane of the material at normal inidene.8.4 ShadingShading is a kind of parent to lighting, it deides for whih pixels lighting isomputed and how these values are interpolated aross a fae.

84

8.4.1 Flat Shading

Figure 55: Flat ShadingThe polygon is partitioned into faes. Eah fae has a uniform surfae normal.Therefore we ompute lighting for a single point on the fae, and take it for therest.- inaurate for faeted objetsOpenGL glShadeModel(GL_FLAT)8.4.2 Gouraud Shading

Figure 56: Gouraud ShadingInstead of applying Phong Lighting with surfae normals for omplete faes, weapply it with vertex normals. Eah vertex of a polygon is assigned a normal,85

whih is an average by the surfae normals of surfaes ontributing to this vertex(wireframe).
~nv =

∑#faes
i ~ni

∣

∣

∣

∑#faes
i ~ni

∣

∣

∣

Figure 57: vertex normalsThe next step is then to interpolate the vertex values aross the faes.OpenGL glShadeModel(GL_SMOOTH)

86

Algorithm 6 Gouraud Shading

1. apply Phong Lighting Model to verties I1, I2, I32. interpolate these values along the edges → Ia, Ib

Ia =
ys − y2
y1 − y2

I1 +
y1 − ys

y1 − y2
I2

Ib =
ys − y3
y1 − y3

I1 +
y1 − ys

y1 − y3
I23. use sanline algorithm to interpolate between the edges → Ip

Ip =
xb − xp

xb − xa

Ia +
xp − xa

xb − xa

IbAs with the sanline algorithm a inremental update an be found to makesthings faster/numerially more stable- fails to apture spotlight e�ets- Through the interpolations highlights are smeared and light dereases slower
Figure 58: Gouraud Shading smears highlights87

Gouraud Shading an be arti�ially modi�ed to perform Phong Shading.This is done by making the surfaes (triangles) smaller than pixels, so thate�etively shading per pixel is performed.This is done beause many graphis hardware support Gouraud Shading, butnot Phong Shading.8.4.3 Phong Shading

Figure 59: Phong Shading1. ompute vertex normals at eah polygon vertex2. interpolate these normals aross the fae3. reompute lighting for eah pixel with the interpolated normalThe interpolation of the normals works just as the interpolation of light inGouraud Shading.+ looks really good+ good highlights → implement a highlight test ((~n · ~h
)

≥ τ , Threshold τ)and use Phong Shading only for faes with highlights+ orret size- high osts- three vetor omponents- onstant renormalization neessary (square root) → interpolate salar prod-uts instead, saves renormalization- huge amount of lighting alulations88

Figure 60: Deferred ShadingWe store all parameters important for shading in RGBα Render Targets (tex-tures)
Figure 61: Storing shading parameters in the RGBα hannels of three RenderTargetsNote that 16bit are overkill for di�use re�etane.8.4.4 Deferred ShadingThe idea of deferred shading is postpone shading as far behind as possible. Wedo this by saving all we need for shading during the modeling stages: pixel posi-tion, normals, light/olor: di�use and speular albedo, material. To e�etivelystore all these values, we an use Multiple Render Targets or Multiple Texturing(see 11.15) and make use of the individual RGBα hannels (see �gure). Thispath of memory is then ommonly referred to as G-Bu�er.Having all parameters, that we need, we an redue the omplexity signi�antlyand result in the following proedure:+ worst ase: O (objets+ light soures) (other shading tehniques have: O (objets · light soures))+ works best for depth omplex senes with multiple light souresAlgorithm 7 Deferred ShadingFor eah objet:
→render lighting properties to the G-Bu�er.For eah light:
→ framebuffer + BRDF(G-Buffer, light)89

+ models many small light soures just as fast as one big one+ allows for the integration of all popular shadow methods8.5 ShadowsComputing shadows is not very easy, sine the entire sene has to be knownto deide whether a point lies in shadow (does the light hit the point, is thepoint oluded by another objet, is it self-oluding). However the pipeline isa sequential proess where one triangle is rendered after the other, but eah newtriangle ould ast shadows to the previous ones.8.5.1 Planar ShadowsAnother idea is to generate a 2D projetion of an objet onto a plane:1. render ground2. render objet3. set matries to the desired projetion4. render the shadow in blakProblems

Figure 62: Problems ourring with planar shadows- shadow outside of polygon ground- Z-Bu�er �ghting (beause the shadow is so �ne)These an be solved by using the stenil bu�er:1. render the objet 90

2. render the ground and set stenil bu�er to 1 for ground pixels3. turn o� Z-Test4. render shadow where stenil bu�er is equal to 1Properties+ fast+ simple- only for shadows on planar objet- no self shadowing8.5.2 Light MapsOne idea arising from this problem is to preompute shadows by light maps.Light maps are textures that store the light onditions of a stati sene in animage. Often light maps are alled stati shadow maps.8.5.3 Shadow MapsShadow Maps are more general than planar shadow projetion and allow for theasting of urved shadows on urved surfaes, however this tehnique requirestwo rendering passes: One from the �view� of the light soure and one from theamera.Light View everything that is visible from here, must be lit. All hidden partsare in shadow. Sine we are only interested in how deep the objets areloated, we only save the depth values (Z-Bu�er).

91

Figure 63: The sene as seen from the light. Only the depth values are stored.Render Pass now we transform our (x, y, z) oordinates to aess the shadowmap (x′, y′, z′) (see texture mapping 11 for details). Then we hekwhether:
z′ = shadow (x′, y′) → pixel is lit
z′ > shadow (x′, y′)→ pixel is in shadow (render it blak)

Figure 64: In the seond pass, the shadow map is aessed to determine whethera pixel is lit or in shadow.Dimmed ShadowsEven nier results an be obtained, when the shadow map returns grey valuesinstead of white and blak. Then the shadows are dimmed and not entirely92

blak.Colored ShadowsBut still the shadows will not ontain any of the materials property olor. If wewant the shadows to return even a full spetrum of olor, taking into aountmaterial olors we just have to render the sene before the �rst pass with onlyambient light turned on. However this results in having three rendering passes.Curvature Shadows
Figure 65: The blue arrow shows where the urvature an be seen in the shadowWe an even make urvatures visible in shadows by omputing di�use re�etion,although we are in shadow. We simply darken the (�not� inoming) light by somefator and apply Lambert's osine law. To make the urvature look good wean use a so alled fragment shader.Spotlight Shadows

Figure 66: Spotlight shadows an be reated by using the amera's frustum asa shadow frustumIf we are dealing with spotlights the shadows will be limited to the light spreadof the spotlight. We an obtain this e�et by using the amera's view frustum93

as a shadow frustum when reating the shadow map. The amera's frustumparameters are adjusted to �t the spotlight (view diretion is spot diretion,spot angle is fovy).Direted Light ShadowsIn ase of a parallel/direted light soure, we use the planar shadow methodfrom above if possible (surfae for the shadow required). If not we have to usean orthographi projetion rather than a perspetive one to render the lightview.Omnidiretional LightIn ase the point light is outside of the sene (what we have assumed), we anuse the standard methods presented. If however the point light is within thesene we speak of an omnidiretional light and need a variation of the method.A solution is to use a ube environment map for reating six shadow maps (ora paraboli for two) and use the referene tehniques of environment texturemapping (see 11.10).Propertiesstati one render pass, only one shadow mapdynami two/three render passes, shadow map generated per frame- mahine preision allows only for the test z′ ≈ shadow (x′, y′), but not z′ =shadow (x′, y′) (render with a small depth o�set, glPolygonOffset)alternatively to real depth values polygons or even whole objets an beassigned an ID. During rendering this ID is ompared, and if it mathesthe polygon/objet is lit.- aliasing: the resolution of the saved shadow map easily beomes visible (worstfor light from opposite diretion: the shadow will be projeted right to thenear plane and be huge, best for a miner's lamp above the objet: straightprojetion without perspetive distortion.)- the light is assumed to be outside the sene. If it isn't the �light view� trikwon't work.for this ase environment maps ould be used (e.g. a resp. six ube maps)Aliasing an be met with antialiasing tehniques suh as linear interpolating theshadow map (see 3.8). However beause depth values may have hard jumps,perentage losest �ltering is suggested: We ompare the urrent pixel'sdepth value with the surrounding ones and only take those for bilinear interpo-lation that's depth value equals at least X perent of the pixel's depth value.
94

Figure 67: Adaptive shadow maps are ordered and aessed in a tree strutureAnother idea areAdaptive Shadow Maps where similar to Mip-Mapping (see11.5.2) shadow maps are stored in di�erent sizes (here the resolution remainsthe same, instead the size varies depending on the position on the sreen, see�gure). Then depending on the sreen setion the appropriate is hosen. Theshadow maps are ordered and aessed in a quadtree struture (see �gure). Tohoose whih shadow map is appropriate, Mip-Mapping hardware supportedtehnique an be exploited.+ very good shadows- many passes until the quadtree has been ut- di�ult if the amera turns around- not yet appliable in dynami senesA third method to meet shadow map aliasing espeially for large senes areLight Spae Perspetive Shadow Maps. The idea is to use a projetivemapping to shift resolution to regions lose to the amera. A suggestion forwhere to plae the eye for this projetive projetion popt (this is the degree offreedom) is
popt = n+ (n · f)

1

2

Figure 68: The shadow map resolution hanges with a projetive mapping95

+ only one shadow map8.5.4 Soft ShadowsMaybe the biggest problem dealing with shadows is the reation of soft shadows.Soft shadows mean shadows respeting attenuation (by distane to the oluder)and a blurred border line. Alas simple blurring of the border line by low-pass�ltering does not in the results we want. If omputation time is unimportantwe an simulate an area light soure by several point light soures (at least 64neessary to avoid artifats) and blend between them.

Figure 69: Partitioning of the sene into umbra, penumbra and lit areas.Modeling real area light soures we ome up with a model the separates thesene into three regions: umbra, penumbra and lit (see �gure).Penumbra Maps
Figure 70: Shadow mapping ombined with a penumbra map to soften theshadow outlinesPenumbra Maps are an extension to Shadow Maps respeting soft shadows. Wesimplify the model by modeling an arbitrary area light soure with a �dis/sphere�light soure modeled again by a point light soure and a radius. Then we add96

a seond shadow map, whih we all penumbra map. This image ontainspenumbra values between [0; 1]. This value is used to modulate the alreadyomputed hard shadow turning it soft (see image). The question remains howto ompute this penumbra map:

97

Algorithm 8 Creating Penumbra Maps

1. ompute oluder's silhouettes (see shadow volumes 8.5.4)2. generate penumbra ones (silhouette verties) and sheets (silhouetteedges)3. render penumbra ones and sheet in light view4. take the blue hulls/outlines for penumbra regions (use the Z-Bu�er toobtain blue region)

ompute penumbra value for eah pixel

pen =
(zF − zvi)

(zP − zvi)where zvi is the distane of the oluder to the enter of the light soure,
zF the distane of the fragment and zP the distane of the reeiver(taken from shadow map) . zF lies on the intersetion of the penumbraedge with the line from the pixel zpto the light soure's enter anddetermines the penumbra value. Now if:

zF = zvi the penumbra value results in pen = 0
zp−zvi

= 0, meaning blak a totalshadow the penumbra value results in , meaning white, atotal lak of shadowEverything in between results in a soft shadow.

98

+ an be done by a fragment shader- beause of modeling any area lightsoure as dis, we get retangular lightsoures, whih prefer one diretion, wrong (shadow is harder for one di-retion as for the other)- having a dis or sphere the proportions of the penumbra value determinationmethods get wrong, beause e.g. 40% of the diameter does not orrespondto 40% of the sphere's volume (dis's area), beause it gets broader in themiddle. We an aount for this by using this transformation:
pen′ = 3pen2 − 2pen3- overlapping: how to deal with overlapping penumbras (many di�erent senar-ios, see �gure)

Figure 71: Overlapping PenumbrasAs you an see there are several di�erent ases, that would need to be di�eren-tiated, when penumbras overlapShadow Volumes
Figure 72: Highlighted Shadow Volume99

Shadow Volumes desribe the boundary surfaes between lit and shadowed re-gions. Their appliation is restrited to watertight, onvex surfaes6. Imagineonneting all verties of a triangle with the light soure (point) and extendingthese lines into in�nity. Above the triangle we will have a pyramid and below atrunated pyramid. Everything that lies within this trunated pyramid is withinthe shadow of the triangle. This trunated pyramid is what we all a shadowvolume.Algorithm 9 Shadow Volume Algorithm1. render the sene without shadows2. generate shadow volume3. determine for every pixel, whether it is within the volume4. dim pixels within the shadow volumeConstrution: Triangletake the triangle and shadow surfaes of the edges onneted to the light soure'senter.Constrution: Triangle Meshtake the triangles faing the light soure, and shadow the surfaes of the objet'ssilhouette. Use the salar produt between surfae normal and light diretionto determine the light faing triangles:triangles where (~n ·~l
)

> 0 are faing the light souretriangles where (~n ·~l
)

< 0 aren'tIf with two triangles A and B, A is faing the light soure and B ain't, then weadd the edge between A and B to the silhouette of the objet.6We an break these restritions by elongating the surfae bottom wards or opying it andstiking it to the bakside. Beause the problem arises with surfaes having no thikness andnormals only for one side. Also take speial are with the borderline.

100

Algorithm 10 Construting The Shadow Volume1. determine (~n ·~l
) for all triangles and store it as signum +/−2. for eah neighbouring triangle (use fae list for topology information, see10.1.5):if the signi of both triangles di�er(a) extrude the ommon edge [p, q] away from the light soure towards

∞(b) add the resulting surfae to the shadow volumeMultiple Oluders

Figure 73: Dealing with multiple oludersHaving multiple oluders we build shadow volumes for eah of them. Butthen the problem arises that we an enter and leave shadow volumes. Onepossibility is to set up a ounter, following the eye inrementing when enteringand derementing when leaving a shadow volume. When the ounter is greaterthan zero, we are within shadow. However this is not very e�ient (e.g. beauseof intersetion omputations).Another idea is to make use of the stenil bu�er:
101

Algorithm 12 Shadow Volumes with Vertex ShadersTwo passes, for front and bak faing triangles.1. send all edges to the vertex shader as degenerated quad literals2. hek the edges for being silhouette edges (see above)(a) if they are: two of their edges are projeted away from the lightsoure(b) if they aren't: render them as degenerate polygons overing no pixels3. all the transformed quad literals now de�ne the shadow volume sidesAlgorithm 11 Z-Pass Algorithm1. render the sene with Z-Bu�er turned on2. lok writing to Z-Bu�er and framebu�er (but leave the Z-Test enabled)3. render shadow volumes faing the viewer: for every rendered pixel, inre-ment the stenil bu�er on this position4. render shadow volumes bak faing the viewer: for every rendered pixel,derement the stenil bu�er on this positionNow every pixel where the stenil bu�er is greater then zero is in shadow.Step 3 and 4 an be rendered in one pass, if the shadow olumns do not overlap.Propertiesin�nite shadow volumes use in�nity point with w = 0+ only one pass for rendering shadow volumes (front/bak faing is supportedby OpenGL)+ optimal quality+ less silhouette edges than verties+ no sampling problems (does not use texture maps)- restrited to watertight onvex surfaes- limited depth of the stenil bu�er (8 bits, max ounter 255)simply use another bu�er, e.g. olor or α-bu�er- determining the silhouette in software is very expensive- rendered shadow volumes are very large (high �ll rate neessary), espeiallylose to the light soure, rasterizer beomes a bottlenek102

- viewer in shadow: ounter values are wrong (determine alternate global ounterstart value, plae the viewer far away from the near plane)- too lose near plane: the near plane might be beyond the entry point of the�rst shadow volume and remove it (di�erent ounter starting values)There is an alternative algorithm alled z-fail, whih reverses the orderof the z-pass algorithm, but z-fail enounters the same problem with thefar-plane (we start at the far plane and inrease/derease the stenil, onea depth test fails). However if we move the far-plane to ∞ the problem issolved. Note that beause of matrix alulations the other way round, i.e.setting the near-plane to 0 is not possible (hoosing even −∞ objets willbe perspetively strethed to in�nity).Disadvantages of this method is hardware dependeny and that in generalthe z-pass method will �ll less pixel overall and thus be faster.- disadvantage of the z-fail method is, that a lot more pixels have to be renderedthan using z-pass. Beause usually the sene goes on quite a lot after theview frustum far-plane.In general it is important to �nd out where the bottlenek is loated. For ex-ample using simpler models for the oluders won't help when using the shadowvolume approah, sine its bottlenek is usually the �ll-rate. One the bottle-nek is spotted a ommon approah is to use several simpli�ations (e.g. simplermodel, lower refresh rate for shadow information) and take wrong, inaurateshadows into aount to get a aeptable frame rate (the idea is that it is hardto determine the orretness of a shadow by the eye alone anyway)8.6 Motion BlurMotion Blur is a feature added to moving objets to support the illusion ofmovement. A simple idea is, taking for example a sword sliing through the air,to add opies of polygon at previous positions setting their α-value for blendingwith the bakground. For this e�et we need to gather a series of images. Forthis purpose a speial extra big bu�er, alled aumulation bu�er has beenset up (see also 0.1).To make this proess �t for real time, we do not gather n images beforedisplaying them, but use image operations. If we rendered the n + 1th image,we subtrat the image n− x from the bu�er and add the new image n+ 1. Bythis we only need two renderings per frame.An alternative is to use vertex shaders (see 15) for the seond pass. In the�rst pass we render the objet normally, in the seond a vertex shader appliesthe previous frame's and the urrent frame's transformation to eah vertex. Thedi�erene between both gives a motion vetor: Chek the dot produt betweenmotion vetor and surfae normal, whether the vertex is faing away from themotion:if it is faing away: take the vertex's previous position as output103

if it is faing motion: take the vertex's urrent positionThe length of the motion vetor an be used to determine the α-values forblending.8.7 Re�etionA ommon way to render re�etions without Ray Traing (see 9) is to renderthe real sene again mirrored on the re�eting surfae (e.g. written to a texturemap). Then these mirrored rendered objets are made semitransparent. Toavoid rendering over opaque areas the stenil bu�er an be used to hide themfrom rendering. Also remember to hange from bak-fae ulling to front-faeulling or turn it o� (slower rendering), sine everything will be reversed.9 Ray TraingThe idea of ray traing is to ast a ray for every pixel on the sreen to the eyeand follow it through all objets it intersets with. By that interations betweenobjets beome feasible. Espeially shadows and re�etions beome easy prey.We di�erentiate four kinds of rays:
• primary rays: ray from the eye through the sreen pixel
• shadow rays: one a primary ray hits an objet, a seondary/shadowray is sent towards the light soure
• re�eted rays: one a shadow ray hits a light soure, it is re�etedaording to surfae properties
• transmitted rays: if the objet is transluent, in addition to re�etanetransmission rays are reated and the result is arried bak to the �rstintersetion point9.1 ViewingThe priniple is very similar to what we got to know in perspetive transforma-tions, we simply draw the �rst objet the ray, a 3D direted line with origin eand uwv oordinates, intersets with.

~e+ t · ~dwhere ~b is the vetors diretion. We an replae ~d with (~s− ~e), where ~s isthe pixel on the sreen we are proessing. ~s's oordinates an be found betransforming the sreen oordinates into the uvw-oordinate system.
ws = ~n

us = l + (r − l)
i+ 0.5

nx104

vs = b+ (t− b)
j + 0.5

nywhere (i, j) are the pixel's indies. Thus
s = ~e+ us~u+ vs~v + ws ~wNote If t < 0 the objet is behind the eye, and we don't have to render it.Of ourse this method is highly view dependent, meaning, one the viewinghanges, we have to realulate everything.9.2 LightingLighting an also be done by asting rays. One our eye-ray intersets with anobjet we send a ray from this intersetion point towards the light soure andompute lighting. If it doesn't hit the light soure, we are inside a shadow. If itdoes we ast re�etion and transmission rays aording to the surfae propertiesand then shade the pixel with the following omponent:

• diret illumination� material properties (olor)� surfae normal� light from the light soure
• indiret illumination� inoming light from re�eted rays� inoming light from transmitted rays

105

Figure 74: Reursive Ray TraingWe see that Ray Traing is a highly reursive proedure. This sounds muh likea physial simulation of sun rays, yet it isn't. If we'd to simulate reality, weought to start from the sun and ast rays on any point on any objet and theninto all diretions. If one of there rays hits the eye, we an see it and render it.But the probability for a ray hitting the eye is really low.ShadowsIf a shadow ray does interset with an objet on it's way to the light soure, weare in a shadow. We an basially use the same algorithm as for viewing rays,but we an simplify it: Sine we are not interested in the losest intersetingobjet, we an stop the algorithm, when we �nd the �rst intersetion with anobjet.Soft ShadowsSoft shadows an be obtained by modeling an area light soure by a numberof point lightsoures. However sine asting rays for every of these point lightsoures would be tedious and the resulting shadows would still show hard visibleboundaries of values of grey, an idea is to randomly selet one or more of thesepoint light soures for every ray.Re�etionIn ase the shadow ray did not interset with an objet and we are dealing witha re�eting surfae, we ast a re�etion ray. The diretion of the ideal re�etion106

~r an be omputed by
~r = ~v + 2 (~v · ~n)~nIn reality olor is re�eted di�erently depending on the olor of the re�etingmaterial. E.g. gold re�ets yellow better than blue. We an respet this byadding a funtion to determine the re�etion ray's olorolorc = c+ csrayolor (~p+ s~r, s ∈ [ε,∞[)Transpareny / RefrationAs with re�etion we send transmission rays, if the surfae material is translu-ent. Refration is a bit di�erent from re�etion. The transmission ray will bebent, like e.g. a sun ray entering water. Thus the next objet it hits, will appeartransloated on the transmissive surfae. We an make use of Snell-DesartesLaw to ompute the refration angle:

Figure 75: Snell-Desartes Law
sin θi

sin θt

=
ηi

ηt

= ηr

cos2 θt = 1 − ~n2
(

1 − cos2 θi

)

~n2
twhere η desribes the refration property of the material and ~n is the surfaenormal, whereas ~nt is the bend surfae normal.107

Epsilon ε

Figure 76: Add a small onstant ε to ounter numerial instabilityBeause of numerial instability, we always should add a small onstant ε to therays mentioned above, else the �rst intersetion might be with the surfae itselfand result in unwanted self-shadowing.Adaptive Depth ControlThis reursive reating of re�etion and transmission might never end. Thereforewe should add thresholds:Number Of Re�etions ρ: The number of re�etions threshold obviouslystops if the ray has been re�eted more than ρ timesIntensity τ : The intensity thresholds stops re�etion when the re�etion ray'sintensity drops beneath τ . To reah a drop down of intensity we onsidereah materials individual attenuation properties.9.3 IntersetionWe an determine intersetions by using impliit representations of our ray andof our objets.SphereAn impliit sphere is given by
(x− xc)

2
+ (y − yc)

2
+ (z − zc)

2 − r2 = 0or with vetors
(~p− ~c) · (~p− ~c) − r2 = 0108

Now we simply plug-in our impliit ray as a �point� on this sphere and hekwhether we still get 0:
(

~e+ t~d− ~c
)

·
(

~e+ t~d− ~c
)

− r2 = 0rearranging for t we an get a simple quadrati equation:
(

~d · ~d
)

t2 + 2~d · (~e− ~c) t+ (~e− ~c) · (~e− ~c) − r2 = 0TriangleFor triangles we an use the handy baryentri oordinates (see 2.3.3). Ourimpliit triangle was given by
~a+ β

(

~b− ~a
)

+ γ (~c− ~a)Now for intersetion we set them equal
~e+ t~d = ~a+ β

(

~b− ~a
)

+ γ (~c− ~a)And we remember, that if β, γ > 0 and β + γ < 1 the point lies within thetriangle.PolygonOur given polygon has m verties ~p1 . . . ~pm and the surfae normal ~n. We startwith heking whether the ray hits the plane the polygon is lying in
(~p− ~p1) · ~n = 0by plugging the impliit ray in as a point

(

~e+ t~d− ~p1

)

· ~n = 0solving for t
t =

(~p1 − ~e)~n

~d− ~nBy that we �nd the point ~p where the ray hits the plane.Now seondly we hek whether ~p is inside the polygon or not. We do thisby projeting polygon and point unto the most parallel oordinate-plane (e.g.by throwing away the biggest omponent in the normal vetor) and reate yetanother ray, starting from ~p having diretion (~pi − ~p). We only allow for positive
t and hek whether this ray intersets one or two time with the polygon edges(by heking onseutively against all edges).One ~p is inside the polygon 109

Two ~p enters and leaves the polygon and must be outsideAttention: handle intersetions at verties and along edges with speial are.Further more onave polygons an also lead to wrong deisions and morethen 2 intersetions.Beause of suh an amount of speial ases, most ommonly testing per triangleand tessellation is preferred whenever possible.Aeleration TehniquesWe now have a stable method to ompute intersetions between rays and ob-jets, however if we do these intersetion test for eah ray and eah objets, wetake 9x% of the omputation time & power. But there are some strategies foraelerating the proedure of �nding the �rst intersetion:
• bounding volumes
• spae partitioning
• ray ohereneBounding VolumesFor eah objet we add a simply geometri objet that ompletely surrounds it.E.g. a retangle or a sphere. Then we interset with those bounding volumes.In ase the ray hits one of the we do an intersetion test with the objet inside.Another advantage is, that at the �rsts step we do not even need to know wherethe ray hit our bounding volume, whih makes the intersetion test muh easier.Hierarhial Bounding VolumesAt a next step we might ombine several objets, whih are lose to eah other,to one big bounding volume (e.g. table + hairs + fruit bowl). If the big volumeis hit, we interset with the smaller ones inside and eventually with the objetsthemselves.Uniform Spae PartitioningWe partition the spae into any number of uniform quadrants and only hekobjets whih are (partly) inside the quadrants, the rays hits. Furthermore wean make use of the tehniques developed for the Bresenham Algorithm (see3.2). With that we do not need to hek every spae part but like with the line,only the next of the upper next one.Otree Spae PartitioningAgain we an move one level higher and repartition every quadrant. If the raypasses a quadrant we reursively sale down the partitioning for this quadrantand then hek for objets within the passed by smaller quadrants.110

Ray CohereneThe idea is to ombine several rays into a bundle of rays.9.4 Di�erent UsageInstead of doing only ray traing, ray traing an be used as an auxiliary teh-nique for standard rendering:
• to generate high lass textures (see 11 for all kinds of di�erent textures)
• for vertex shaders: only ast rays from verties (disadvantage: GouraudShading Artifats)9.5 LimitsCaustis

Figure 77: CaustisAppear with simple re�etion at ertain angle at the interior side of a shinyylinder and result in ompliated urves (see �gure).Caustis an be modeled using photon maps (forward ray traing):1. Shoot a huge amount of photons from the light soure.2. Store their hitpoints in some 3D bu�er3. Get photon density: Use lustering algorithms to �nd hot spots (e.g. forevery hit point, get the 50 losest hit points and alulate the max distaneto the hosen hitpoint) 111

Figure 79: Color Bleeding4. The denser the region, the more austis we renderColor Transmission

Figure 78: Color TransmissionColor Transmission means that to the shadow of an objet olor is added dueto the transluent property of the objet (see �gure).Color BleedingThe transfer of olor between nearby objets, aused by the olored re�etionof indiret light.9.6 Properties+ enormously parallel: eah ray ould be ast in parallel, if we'd had enoughparallel omputational power ray traing would exeed all other methods112

is speed and quality+ global illumination+ very exellent results+ ombines various di�erent illumination aspets in one ray (re�etion, refra-tion, transpareny, shadows, soft shadows, global illumination, ...)- very slow with urrent un�t hardware10 ModelingModeling is all about hoosing the right representation for the objets in a sene.Postulations
• good representation of the objet
• easy to render
• memory/runtime requirements
• interation properties/possibilities
• reation proess10.1 Polygon MeshesPolygons are the basis for most 3D appliations, they an be rendered easily andexpress almost every objet given due onversion time. Usually either triangleor quadrilateral meshes are used.Polygon An ordered set of verties: P0, P1, . . . , PnPolygon Mesh A olletion of polygons, suh that any intersetion betweenpolygons of the mesh is either at a vertex or aross an edge.OpenGL glBegin(GL_POLYGON): glVertex3fv(P0); . . . glVertex3fv(Pn); glEnd();It is important to di�erentiate between topology and geometry of a mesh:Topology neighbourhood relationsGeometry the position of the verties xyz-oordinatesIn general whole objet's an not be represented by a single polygon mesh. Soour goal is to �nd the ideal deomposition into smaller polygon meshes. Howeverthe omplexity of the stated problem is NP-omplete.113

10.1.1 Indexed Fae Set (Shared Vertex Set)The idea of indexed fae sets is to use two separate lists:vertex list apturing geometry (oordinates)fae list apturing topology (whih verties form faes)10.1.2 Triangle Strips
Figure 80: Triangle StripWe try to model both geometry and topology in one list, by using a sequene ofverties, where every three verties form a fae. Of ourse this means we haveto do a through ordering.ExampleGiven is the list: P0P1P2P3, P4, . . . , PnThis orresponds to the faes: P0P1P2;P1P2P3;P2P3P4;...OpenGL glBegin(GL_TRIANGLE_STRIP): glVertex3fv(P0); . . . glVertex3fv(Pn);glEnd();General Triangle Strips The generalization means that both edges of an endtriangle an be used to ontinue the triangle strip. If this method is notavailable (e.g. it isn't in OpenGL), you an insert dummy triangles tohoose the edge you want to ontinue with. The advantage of generaltriangle strips is, that they an beome muh longer (see Stripi�ationbelow 10.1.9)

114

10.1.3 Triangle Fans

Figure 81: Triangle FanTriangle fans are very similar to triangle strips, exept that every fae starts atthe same point P0.ExampleGiven is the list: P0P1P2P3, P4, . . . , PnThis orresponds to the faes: P0P1P2;P0P2P3;P0P3P4;...OpenGL glBegin(GL_TRIANGLE_FAN): glVertex3fv(P0); . . . glVertex3fv(Pn);glEnd();10.1.4 Quad Strips
Figure 82: Quad StripsSimilar to triangle strips, but every four verties form a fae, and the interpre-tation of the ordering is di�erent aording to quadrangles.ExampleGiven is the list: P0P1P2P3, P4, P5, P6, P7, . . . , Pn115

This orresponds to the faes: P0P1P3P2;P2P3P5P4;P4P5P7P6;...OpenGL glBegin(GL_QUAD_STRIP): glVertex3fv(P0); . . . glVertex3fv(Pn);glEnd();10.1.5 Enhaned Indexed Fae ListApart from modeling we often will want to aess and hange the renderedmodel. For that we need an e�ient way to answer alls like: what are adjaenttriangles, whih triangles share an edge, whih faes share a vertex or whihedges share a vertex, therefore we might want a data struture allowing forfaster aess to those relations: the Enhaned Fae List.We enhane the fae list by three referene pointer to the three neighbouringtriangles by e.g. a pointer to the third vertex reating the neighbouring triangles.

Figure 83: Enhaned Fae List Examplevertex list Triangle0 = x0, y0, z0, Triangle1 = x1, y1, z1, Triangle2 = x2, y2, z2,Triangle3 = x3, y3, z3fae list Fae0 = 0, 1, 2, Fae1 = 3, 2, 5, Fae2 = 1, 4, 3, Fae3 = 3, 5, 2enhaned fae list Fae0 = 3,−1,−1, Fae1 = 5, 0, 4, Fae2 = 6, 2,−1, Fae3 =
−1, 1, 610.1.6 Direted EdgesThis problem is ommonly solved by giving edges a diretion. This is by repla-ing the fae list with a list of direted edges, with two entries

• start vertex of edge
• pointer to the opposite edge indexindexed by an edge index. 116

Figure 84: Direted Edgesedge list Edge0 = 0,−1, Edge1 = 1, 5, Edge2 = 2,−1, Edge3 = 1, 8, Edge4 =
3, x, Edge5 = 2, 110.1.7 Normal VetorsThe normal vetors of surfaes an be obtained either in the design proess (e.g.when using NURBS or impliit surfaes) or taken as average of the involvededges' normals:

~n0 =
n
∑

i=1

Pi · Pi+1, Pn+1 = P110.1.8 Fae Orientation (Bak Fae Culling)This is rather important, sine usually only one side of the objet is visible (un-less the viewer is inside the objet, or there are holes in it). Thus we want onlyto render the faes faing front (towards the eye) and leave the rest unrendered,this e�ets in about 50% less polygons to render. The idea is to impliitly storethe orientation in the ordering of the verties:lokwise fae is seen from the bakounter-lokwise fae is seen from the frontProperties- approximation to smooth geometry (no silhouettes)- very large number of polygons- very bad interativity- di�ulty to inrease/derease the resolution of the objet- di�ult to extrat geometrial information (e.g. urvature)117

10.1.9 Stripi�ationA simple approah to �nd a deomposition into triangle strips:Algorithm 13 Simple Stripi�ation1. randomly selet an unused triangle2. start a triangle strip along one edge
�2: until an used edge has been reahed3. ontinue triangle strip into opposite diretion
�3: until an used edge has been reahed4. �1: until the polygon is ompletely deomposed

The SGI approah adds a little improvement: The starting triangle (orange)is not seleted randomly, but by the number of least unused neighbours (ifambivalent, hek the neighbours as well)Even better results an be obtained by using general triangle strips, sine thenthe strips an beome muh longer. Furthermore better usage of the vertexahe (see below) an be made:
118

Algorithm 14 TunnelingEah triangle is seen as a node in a graph.Then we use graph algorithms to �nd paths between the nodes, without usinga node twie.Eventually we seek for �edges� onneting two end points of suh paths (dottedlines). These are alled tunnels.The so disovered �best� path is then the general triangle strip.1. generate a trivial path set of triangles (e.g. empty set, all isolated)2. � for eah path endpoint oi:
→ for eah other path endpoint oj : searh for a tunnel oioj3. was a tunnel found?(a) TRUE: swap all dashed and solid edges →2(b) FALSE: Return path as general triangle stripWith every swap the number of triangle strips gets e�etively redued by one.

Note that even tunneling does not return the global minimum of strips, yetthe results are pretty good. For example a bunny objet onsisting of 70.000triangles results in about 700 strips when using SGI Stripi�ation and in 158when using tunneling.Note Be areful about the triangle's orientation (vertex ordering)! Whentrying to ontinue a strip at one of its endpoints, the strip might suddenlyend in a triangle that's order is di�erent to the original starting triangle.However this new triangle will be hosen as starting triangle for the strip,so the order of the omplete strip is reversed resulting in wrong rendering.119

10.1.10 Vertex CaheThe vertex ahe is a ahe for proessed verties, normals, texture oordinatesor olor arrays. The idea is that for example in a triangle strip the same vertex'sattributes will be used multiple times in short notie (up to 6 times). Thereforea little ahe for the last n proessed verties an give us an enormous speed im-provement. However for the look-up statement to work, we require indexed faesets (without we don't know whether vertexi equals vertexj). In the optimumase (see �gure below), whih is not as rare as you think (e.g. tessellation ofBézier Surfaes), half of the verties are already in the ahe or in other words,fething one single vertex an lead up to two new triangles.Example
Figure 85: Triangle Strips, where the vertex ahe an be optimally used (avertex may be alled up to 6 times)If we use a vertex ahe of size 7 for this strip, we reuse half of the verties:Cahe: 7 4 1 5 2 6 3 , the verties 4,5,6 and 7 are used again.If however we limit the size to 6:Ch ahe: 3 7 1 5 2 6 , the verties 4,5,6 and 7 are overwritten, beforewe an reuse them, and we end in no reuses.A typial size for vertex ahes is n = 16, 32, 64. The optimal ratio betweenproessed verties and triangles is 2.A ombination between Stripi�ation using the Vertex Cahe is to stop the strip,one the ahe overruns. In this ase the next strip started will make reuse ofat least half of the ahed verties.Triangle Strip LengthNote that we need to distinguish two ases to determine the optimal trianglestrip length. This di�erentiation is made on the used data-type. If we useindexed fae sets, only then will we be able to make use of the vertex ahe,and the optimal length of an indexed fae set should be limited by the vertex120

ahe apaity. If we however have simple triangle-strips without topology in-formation, the rule: the longer the better, ounts and we might use tunnelingto greedily get longer ones.Indexed Fae Sets limit size to vertex ahe apaityTriangle Strips the longer the better10.2 Parametri SurfaesWe an deide between using polynomial or rational urves and between usingglobal or pieewise models.42 global pieewisepolynomial Bézier B-Splinesrational rat. Bézier NURBSInstead of simple monomials (xn) we will use more suitable basis funtions:Bézier Bernstein Polynomials (see 2.7)B-Splines B-Spline basis funtions (see 2.7)A urve is then represented by a polynomial linear ombination of one thesebasis funtions and so alled ontrol points cn
F (x) =

n
∑

i=0

ciBi (x)This is only one possible kind of representation, we ould also use impliit urves(see 2.4):
f (x, y, z) = 0where the impliit funtion f returns 0 if the point (x, y, z) lies on the urve.Impliit representations are espeially useful for geometri primitives like spheresor planes, where �xed formulas exist. In the other ases Computer GraphiDesigner usually prefer parametri urves, sine beause of the free parameter,they are easier to sample and to draw.InterpolationHaving these ontrol points cn we have to estimate the values in between, ap-proximating them by a polynomial. One problem is, that whilst a polynomialinterpolating points cn is unique for every degree, a urve has in�nite manyrepresentations. The proess of transforming one representation of a urve intoanother of the same urve is alled reparametrization. We an make use ofthis to �nd a representation that is most onvenient for our appliation.Apart from that polynomials are funtions, that means for every x there is121

one and only one y. Yet for a urve, there an be more than one y (e.g. airle). Seondly polynomials of a high degree tend to osillate (over�tting, seePattern Reognition). Therefore instead of a global model often a pieewisemodel appears to be more �tting.Linear Interpolation Linear Interpolation means to �nd the simplesturve between any number of points and distributing the values of these pointsin between linearly. E.g. for two points we have
p (t) = t · p0 + (1 − t) p1, t ∈ [0; 1]Bilinear Interpolation Bilinear Interpolation means linear interpolationin two diretions (aross a path).

p (s, t) = (1 − s) (1 − t) p00 + s (1 − t) p10 + (1 − s) t · p01 + s · t · p11where s, t ∈ [0; 1] are the free parameters de�ning the path.Trilinear Interpolation Trilinear Interpolation means linear interpola-tion in three diretions (through a room).Approximation

Figure 86: Di�erene between interpolation and approximationWe di�erentiate the terms interpolation and approximation in so far, that withinterpolation the urve/polynomials must pass every ontrol point, while withapproximation they only in�uene the urve's graph.122

10.2.1 Bézier Curves

Figure 87: A Bézier Curve with four ontrol points: b0, b1, b2, b3Bézier urves hose the later idea and approximate ontrol points rather thaninterpolate them. Exeptions are the end points of the urve, whih are inter-polated. As you an see in the �gure above, the diret lines between the pointsare tangents of the atual urve. The degree of the Bézier urve is the numberof ontrol point minus one.An intuitive way to understand how we an draw suh a non disrete fun-tion, i.e. a perfet urve, to the sreen is illustrated by orner uttingCorner Cutting
Figure 88: Corner CuttingCorner Cutting means to suessively ut the orners o�, to make the ornerpoints more smooth. We ut them of by spanning lines between a orner pointand ut/lip o� the outside. The limes of in�nite many subdivisions is indeeda smooth urve.

123

Algorithm 15 Corner Cutting
subdivide(p0, p1, p2) {

p01 = p0+p1

2

p12 = p1+p2

2

pm = p01+p12

2subdivide(p0, p01, pm)subdivide(pm, p12, p2)}

Figure 89: The midpoints (blak points) resulting from orner utting, makeup the urve approximating the ontrol point p1 and are thus those, whih wedraw on the sreen. Some threshold an determine the number of subdivisions.We use orner utting to approximate the ontrol points and draw our �smooth�urve on the sreen. We only use the midpoints pm resulting from orner uttingto de�ne the shape of our urve (see �gure above).
124

Figure 91: Ordering of Bézier ontrol pointsNote that the order of the ontrol points is very important, as illustrated in this�gure.Algorithm Of Casteljau

Figure 90: Algorithm of CasteljauAn generalization to orner utting is a number of suessive linear interpola-tions alled the algorithm of Casteljau.
125

OrderContinuityOf ourse we also will have to onnet Bézier Curves. In this ase we want toassure that we have at least C0 and C1 ontinuity7:We have
C0 if the graph has no gaps
C1 if the tangent vetors math (no sharp orners)With these assuranes we have a urve without gaps and sharp orners. How-ever for some appliations ontinuity up to C5 is useful, so we bid speial aredepending on the appliation. For example C2 ontinuity is needed, when theobjet is in motion and we want the motion to be smooth.Quadrati Bézier CurvesQuadrati Bézier Curves have only one approximation (ontrol) point p1. For
t ∈ [0; 1] we get

p (t) = (1 − t) ((1 − t) p0 + t · p1) + t (t · p0 + (1 − t) p1) + t · p2

p (t) =
(

1 − t2
)

p0 + 2 (1 − t) p1 + t2p2thus we result in having the weights w0 =
(

1 − t2
)

, w1 = 2 (1 − t) , w2 = t2.These weights or ontrol points are often referred to as blending funtions.So the urve is the weighted average of the ontrol points:
p (t) =

n
∑

i=0

wi (t) piThe weights must always sum up to 1 and we allow no negative weights.Cubi Bézier CurvesCubi Bézier Curves are also based on the subdivision proedure and haveone additional point to approximate. This results in 4 ontrol points w0 =
(1 − t)

3
, w1 = 3 (1 − t)

2
t, w2 = 3 (1 − t) t2, w4 = t3Bézier Curves Of Higher OrderDealing with Bézier Curves of any order, we an �nd a generalization of theblending funtions using Bernstein binomial oe�ients:

wn
i (t) =

(n− 1)!

i! (n− i)!
· (1 − n)

n−i−1
ti7Cnontinuity means the funtion is ontinuous and all of it's derivatives up to the nthalso are. 126

Bézier SurfaesBézier Surfaes are a generalization of Bézier Curves in 3D. A Bézier Surfae isalso given by the average of all ontrol points:
p (s, t) =

m
∑

j=0

n
∑

i=0

wij (s, t) · pijwhere the blending funtions wij must be ontinuous.There is a great property of Bézier Surfaes (ontinuous blending funtions),that allows us to separate the 2D blending funtions into two 1D ones.
p (s, t) =

m
∑

j=0

n
∑

i=0

wj (s) · wi (t) · pijwhere wj (s) · wi (t) is a tensor produt (see 2.1.2), sine one goes in x and theother in y diretion. This also means we an give two 1D urves to make asurfae. We simply have to �nd a matrix representation of our funtion (whihwe an, beause we are dealing with linear funtions) and handle these matriesas they would be vetors and apply the tensor produt.Properties+ the most striking advantage is that an objet desribed by suh urves isompletely resolution independent and will show no signs of aliasing.+ easy adjustment: the urve's shape is manipulated by manipulating ontrolpoints (de�ne tangents on the urve)+ the urve always remains in the onvex hull of ontrol points+ a�ne transformations on the urve , a�ne transformations of the ontrolpoints (a�ne invariant)- the urve depends on all ontrol points, so hanging a single one reshapes thewhole urve (this an sometimes be an advantage as well)- many ontrol points lead to a high-degree polynomial (degree = number ofontrol points minus one)A small simple applet to play with Bézier urves an be found here Bézier CurveApplet http://www2.mat.dtu.dk/people/J.Gravesen/agd/deast.html. Lookhow moving a single ontrol point in�uenes the whole urve. If you still wantto see more, here's an applet illustrating Bézier Surfaes Bézier Surfae Applethttp://www.nbb.ornell.edu/neurobio/land/OldStudentProjets/s490-96to97/anson/BezierPathApplet/index.html127

10.2.2 Uniform B-Splines8A way to avoid both negative properties mentioned above is to use splines.Splines are polynomials of a lower degree that are ombined to approximate apolynomial of a higher degree. Basis funtions for B-Splines an be looked uphere: 2.7. With these basis funtions a B-Spline is de�ned as:
S (t) =

n−1
∑

i=0

pibi (t)Now geometrially speaking we ombine these splines by shifting the basis fun-tions to given so alled knot points ki, whih serve as onnetion points be-tween the splines. In our ase we hoose them uniform.
ki = ki−1 + 1

Figure 92: Shifting the splines basis funtion to the ontrol pointsThis hoie for knot points in uniform distane results in having the same splineover and over again, only translated to the knot point. This also means we don'thave to store the knot points, sine they an be reated automatially and needonly to store the ontrol points.Subdivision ProessThe subdivision proess is similar to the Bézier ase, yet we do not take themidpoints. Instead we use the midpoints between midpoints:8From Basis-Splines, ause they are all reated from the same set of basis funtions
128

Algorithm 16 Subdivision Proess for B-Splines
1. Choose midpoints in eah segment of the ontrol polygon2. Connet midpoints of these and the original ontrol points3. Also use midpoints of the orner segmentsCubi B-Splines

Figure 93: Cubi B-SplineLike with ubi Bézier Curves we have four points, but now, even the end pointsare not neessarily on the urve. All the properties of Bézier Curves do alsoount here, but only loally: loal onvex hull, loally ontinuous, loal ontrolby ontrol points.Properties+ every spline has C2-ontinuity+ onstant degree of basis funtions: more e�ient and more numerially stable+ loal ontrol of ontrol points: e�ets are only loal+ bound by the onvex hull of the points+ a�ne invariant- only an approximation like polygons, no aurate modeling129

- no ontrol points on the urve (the urve will be de�ned by parameter values)- removing of ontrol points an lead to a omplete restruturing of the wholeurve, sine the number of ontrol points between two knot points is on-stantA series of applets illustrating uniform B-Splines an be found here: B-SplineApplet http://www.ibiblio.org/e-notes/Splines/Basis.htm. Look howthe B-Spline funtions all look equal, expet for being translated to the knotpoints. Try to move the ontrol points to in�uene the urve. Moving oneontrol point will only in�uene the part of the urve, that is dependent on it.You an also try to destroy the uniform spaing of the knot points on theright side of the applets and see how the representation hanges.10.2.3 NURBSNon Uniform Rational B-Splines (NURBS) are a generalization of B-Splinesrational ratio of two polynomials instead of one ubi one (results in an exatrepresentation of onis (e.g. ylinders, irles)non-uniform di�erent spaing between knot points (results in an easier addingand deleting of ontrol points, simply add the point 2.5 between 2, 3 →
2, 2.5, 3 or simply remove the point 3 between 2, 3, 4 → 2, 4)These hanges mean that we have to de�ne and store two knot sequenes for

x and y diretion; wi (x) , wj (y). We an ombine them for a knot matrixde�ning a surfae, like we did with Bézier Curves, by ombining them with atensor produt.
N (x, y) =

m
∑

j=0

n
∑

i=0

wi (x) · wj (y)Pijor written with the ratio
N (~u) =

∑n
i=0 hipiwi,k,~t (~u)
∑n

i=0 hiwi,k,~t (~u)where ~t is the knot vetor and k the B-Spline degree parameter. Where Pij isan array (a matrix) ontaining all the ontrol points.
130

10.3 Construtive Solid Geometry (CSG)

Figure 94: Basi Operations of Construtive Solid GeometryThe idea of Construtive Solid Geometry is to use a set of operations to ombinesolid shapes. These operations an be seen as operations on sets (∪,∩,−).+ an e�iently be ombined with ray traing10.4 Subdivision Surfaes10.5 Proedural ModelsProedural models provide proedures that an generate points on a urve(model), that are neither impliit nor parametri. A good example for pro-edural models are fratals.10.6 Hierarhial Modeling10.6.1 Sene Tree / Sene GraphThe idea of hierarhial modeling is to gather objets as hunks. The root isthe sene itself, partitioned by objet groups that share a ertain geometry (e.g.tables), partitioned by single objets, partitioned by objet parts, partitionedby primitives. This hierarhy is alled sene tree. When fousing on sharedgeometri properties, we speak of sene graphs rather than trees.131

10.6.2 Sene DesriptionA sene onsists out of: Camera, Light, Bakground, Materials and Objets.We desribe eah of them separately.10.6.3 Class HierarhyA kind of objet oriented approah. For example a possible super lass isObjet3D. This super lass is inherited by Sphere, Cylinder, Plane, Triangleor Group.

Figure 95: Organization tree using a lass hierarhyUsing suh a lass hierarhy, we an desribe the sene as a tree of groups.In this approah we an de�ne materials inside of group lasses for eah groupmember.

132

Sene Transformations

Figure 96: Sene TransformationsAdding a transformation lass as Objet3D, we an also desribe transforma-tions within the sene.Add a lass Transformation as an Objet3D. By making TransformationObjet 3D we an logially plae them in the organization tree and order alla�eted real objet groups below it.10.6.4 Senegraph APIOpenGL is powerful, but we have to reate objets from the bottom by linesof ode, and have little assistane in piking and transforming objets duringthe reation. Furthermore OpenGL is more hardware than user oriented and theproess of reation is imperative rather than desriptive (whih would be moreintuitive). Now senegraph APIs are usually based on OpenGL and thereforeshare it's advantages (e.g. hardware independent), yet they o�er the abovementioned features making the proess of reating easier and more intuitive.A typial senegraph API overs
• sene desription: geometry and attributes (hierarhial modeling)
• reutilization: leads to DAGs
• validity and propagation attributes
• a GUI for easy modeling and arranging of objets
• typial basi elements/nodes: amera, light soures, bakground, shape,group, geometry, transformation, root133

Some popular APIs are:
• OpenInventor (SGI)
• Java 3D
• OpenSenegraph10.7 Level Of Detail (LOD)Representing a model in detail may not always be good, espeially if we lookfor speed. For example imagine a ar lose to the far plane, very distant tothe viewer. To model this ar taking up so few pixels, a really simple modelis su�ient. However if the ar is right before the user, we need it with everydetail, we an get. Now the idea of LOD is to provide objets and texturesin a di�erent level of detail resp. resolution, deide whih LOD is best for theobjets in the sene and provide a way to swith between di�erent LODs forinterativity.Also note the LOD rendering is ompletely solved by urves, NURBS et.(see previous setions), sine they provide di�erent LODs in their geometridesription.10.7.1 LOD CreationFirst of all to selet and swith between LODs, we need di�erent LODs per se.Handmade the most straightforward method is to provide them yourself. Ad-vantage is that they will be asjusted to the appliation and an be tested tolook good. On the other hand this takes time and makes them appliationdependent.Edge Collapse move two verties forming an edge to one point making anedge ollapse. One ollapse removed two triangles, three edges and onevertex. Supplying a history of ollapses, we an lostless reprodue thehigher LOD and don't have to save di�erent LODs per se.Contration a generalization of edge ollapse allowing edges and triangles toollapse as well. Also very important is to avoid ritial ontrations atany ost (ritial in the sense of hugely deforming the objet), howeverthose an be easily deteted by the diretion hange of a�eted surfaenormals.Bump Maps a urious idea is to turn atual geometry information into a bumpmap and render the objet �at (just take the normals and put them intoa normal map).Atually �maintaining surfae properties�, like avoiding diretion hangesof surfae normals, has proven to be a good ost funtion. Another good ost134

funtion is based on the �least pereptible hange� in the resulting image.It is measured by a simple distane omparison between the images resultingfrom both LODs, however simple it is expensive to ompute.10.7.2 LOD SwithingLOD Swithing is quite important, beause without a proper strategy a signif-iant blopping between LODs will be visible. In the worst ase the levels willrapidly swith for and bak resulting in blopping and �ikering.Blending doing a blend over two LODs over a short period of time. For exam-ple by rendering the old LOD opaque and the new with inreasing α-value(- blending is very expensive).Alpha α-LODs atually use only a single model, but this model's αvalue in-reases with distane to the viewer disappearing at some point all together.After this disappearing a signi�ant speed up will happen, but in ontrastto the speed idea of LOD this method will result in no e�ieny gain,while the objet is still visible.CLOD standing for Continuous Level Of Detail. The idea is to provide oneomplex model and suessively derive less omplex models from it (e.g. 2pixels less omplex per stage). The idea is to suessively shrink all edgesuntil both endpoints meet and the edge will entirely disappear. Eah�model� must thus ontain a pointer to the next LOD (some LODS willlook ugly, the objet always appear to be hanging).10.7.3 LOD SeletionRange The most forward way is to plae the deision on the distane to theviewer.Projeted Area In this method the bounding volume of the objet is projetedonto the sreen and the number of pixels is ounted to determine the LOD(requires approximation of solid angles).Projeted Pixel Another possibility is to projet a pixel onto a assoiatedtexture map (if given) and measure the number of textures in�uening it.This is espeially useful for �nding the right Mip Mapping (see 11.5.2)LOD resp. resolution. E.g. by using the longer edge of the parallelogramformed by the pixel's ell as a measure.Objet Type E.g. a lok on the wall is less important than a wall.Fous The viewer's fous determines the LOD. E.g. during a soer game thearea around the ball needs a high LOD, whereas the other playground anbe rendered at a low LOD. 135

Sine almost the only value of using LODs is a gain in speed, in general anobjetive funtion an be approahed and used as a metri for seletion:# objets
∑ Bene�t (O,L)Cost (O,L)where O is the objet rendered and L the assoiated level of detail. This anbe espeially useful when we want to guarantee a minimum frame rate.11 Texture Mapping

Figure 97: A sene with and without texture mappingThe problem of the tehniques we introdued so far, is that if we really wanta detailed surfae on an objet, the means various di�erent materials, heightdi�erenes, olors and other features, the modeling proess would beome re-ally omplex and ine�ient. Therefore Ed Catmun and Jim Blinn thought ofsomething else that works muh like wallpapers on walls. Instead of really mod-eling the outward appearane we de�ne a 2D image and wrap it around theobjet (1D and 3D �images� are also possible). This is alled texture mapping.E�etively we have to �nd a oordinate mapping from the image oordinatesto our objet oordinates. We di�erentiate stati textures (raster images) or136

proedural textures that are omputed on the �y:
T : R

2 → RBG (A)texel a pixel in the texture (from texture element)Properties+ adds visual omplexity to objets in a simple way+ great performane ompared to �real� modeling+ an even be used for re�etane properties (see environment maps)- dependent on the rasterization method (ray traing, sanline deliver di�erentresults). Solution: Do Perspetive Interpolation 11.211.1 Noise TexturesNoise Textures are an example for proedural textures. We randomly assignolor values of a ertain range to get something like a TV stati. This is alsoalled white noise, beause it's following an uniform distribution. For a moresmooth noise we an use a tehnique alled Perlin Noise. Key features ofPerlin Noise is to use a lattie and olor vetors rather than olor values andinterpolate between them using weighting funtion ω.
n (x, y, z) =

⌊x⌋+1
∑

i=⌊x⌋

⌊y⌋+1
∑

j=⌊y⌋

⌊z⌋+1
∑

k=⌊z⌋
Ωijk (x− i, y − j, z − k)

Ωijk (u, v, w) = ω (u)ω (v)ω (w) (Γijk · (u, v, w))

ω (t) =

{

2 |t|3 + 3 |t|2 + 1 if |t| < 1

0 otherwisewhere Γ ontains a hash funtion φ for aessing preomputed unit vetors inan array G:
Γijk = G (φ (i+ φ (j + φ (k))))11.2 2D Texture MappingWe are given a texture image of size (nx, ny) and have texture oordinates u, vto aess texels on the texture. Often 2D texture mapping is done by �rstmapping texels to every vertex and then interpolating between them.1. Normalization: First we see that we limit the texture range to [0; 1], valuesoutside of this range an for example be omputed by a periodi extensionof the texture or by lamping (both disussed later on 11.7).137

2. Interpolation: A pixel value usually does not diretly orrespond to onesingle texture value, but lies e.g. lose to the enter of four neighbouredpixel. In suh a ase we an apply a interpolation tehnique like: NearestNeighbour, Bilinear or Trilinear Interpolation.(a) Nearest Neighbour: Take the texture value losest to the pixel
Figure 98: Nearest Neighbour Interpolation(b) Bilinear Interpolation: Interpolate between neighbouring textureslose to the pixel

Figure 99: Bilinear Interpolation() Trilinear Interpolation: The same as bilinear interpolation for tex-tures lose to the pixel in three diretions (3D)Texture CoordinatesThe texture oordinates u, v an be gotten by:
• delivered by model dataThe u, v oordinates are generated during the modeling phase (e.g. para-metri surfaes) and stored in a seond list next to the vertex list. Thismeans every vertex in the list has both x, y, z oordinates as well as u, voordinates. This also means that we an easily add additional featuresto verties. 138

• run time omputation (parametrization)This is trivial for geometri primitives like spheres or ubes. For otherobjets, we an enlose them into a geometri primitive and projet fromthis enlosing primitive onto the objet. Of ourse the results vary foreah method, therefore it is appliation dependent whih to hoose. Theeasiest way is to use planar projetion (see �gure).Possible are: parallel (planar) projetion, ubial, ylindrial or spherialprojetion

Figure 100: Planar Projetion
• automati generation from vertex oordinatesThis is what OpenGL does (glTexGen()). Think of it as a dia/beamerprojetion (see �gure). We do this by giving a �xed rule how to mapoordinates for all objets by de�ning a linear funtion, i.e. a matrix. Nowby this matrix we an de�ne an arbitrary projetion, e.g. an orthographione, using only the linear 3×3 part or a perspetive making use of the lastrow of the whole 4 × 4 matrix. With the latter one we an e.g. performa dia projetion from the light soure. Using vertex shader, we an geteven more sophistiated projetions by de�ning rules how to transformverties.One advantage of this method is that we an manipulate the texture oor-dinates by this 4×4 texture matrix (whih has its own texture stak). Notthat we don't have diret aess to world oordinates, therefore we needto apply the objet's oordinates �rst to the ModelView matrix before wean throw them into the texture matrix.

ptexture = MtextureMModelViewpobjet
139

Figure 101: Dia ProjetionUsage With this method you an for example go out into the RealWorld ©take a piture with a digiam and use it as dia-texture. However themost used appliation are shadow maps.Example: Sphere / Runtime Computation1. Get polar oordinates for the vertex (x, y, z) on a sphere with enter
(xc, yc, zc) and radius r:

x = xc + r · cosφ sin θ

y = yc + r · sinφ sin θ

z = zc + r · cos θ

φ = arctan 2 (y − yc, x− xc)

θ = arccos

(

z − zc

r

)2. Now we an easily get 2D surfae oordinated for this polar oordinatesby dividing by the spherial omponent π:
u =

φ+ π

2π

v =
π − θ

πCurrent graphis ard allow for loading the omputation ode for rather thanthe texture oordinates itself to the ard. These are alled vertex programs.
140

Rasterization: Perspetive InterpolationA problem is that the texturing method is urrently rasterization dependent andsanline interpolation will even distort our textures, sine the used baryentrioordinates do not respet the distortion of the perspetive transformation ofthe texture. The solution is pretty straightforward and the idea is alreadyknow from lipping in homogeneous oordinates: We do the interpolation in theperspetive spae.
Figure 102: Perspetive InterpolationOn the �gure you an see above, the proess is illustrated. s is the textureoordinate in world spae, and t in sreen spae. As you an guess, the inter-polation in both spaes is not the same, therefore we look for a mapping t→ sthat allows for a orret interpolation.
(

x
z

)

=

(

x0

z0

)

+ s

(

x1 − x0

z1 − z0

)

Figure 103: So instead of the standard rasterization we now interpolate withthe values returned by the mapping to the perspetive spae.11.3 1D Texture Mapping1D texture maps are often used for visualization. E.g. for salar �elds (oloroding). 141

11.4 3D Texture Mapping
Figure 104: A 3D map to model the inside of a human headEspeially for visualization. For example medial modeling of organs or systemsof the human body or for tehnial modeling of mahines.With 3D maps volumee�ets an be obtained.11.5 Texture AntialiasingOften the objet we want to wrap out texture around is larger or smaller thanthe texture. In this ase we need a larger or smaller form of or texture gottenby expanding or shrinking it's resolution. However this easily leads to visualartifats (alled Aliasing). beause the sampling theorem is hurt:11.5.1 Sampling TheoremNyquist one stated an important theorem about the sampling of a signal. Thesampling frequeny fs must be at least twie as high than the highest frequenyourring in the signal fo, else the signal's representation will not be aurate:

fs ≥ 2 · foIn our ase that means the funtion's frequeny sampling the texture must betwie as high as the texture's frequeny.Antialiasing methods and algorithms have been thought of to ounter this e�etor keep the sampling theorem valid.

142

11.5.2 Mip Mapping9
Figure 105: Mip-MappingThe idea of Mip Mapping is to provide the same texture in several di�erent res-olutions (orrespond to di�erent frequenies). Than when it omes to samplingwe hoose the texture, whose frequeny is most �tting the sampling frequeny(e.g. by taking the highest absolute value of the following di�erentials mea-suring how muh texels ontribute to one pixel projeted to the texture map:

{

∂u
∂x
, ∂v

∂y
, ∂u

∂y
, ∂v

∂x

} as a measure, for more seletion methods, refer to the setionon Level Of Detail Seletion 10.7.3).
Figure 106: Trilinear Interpolation with Mip-MappingMip Mapping also provides an interesting possibility for doing trilinear interpo-lation using 2D textures. In a �rst step we do bilinear interpolation betweentwo sueeding textures of the Mip Mapping hierarhy and then linear interpo-late between the two resulting values. The result is a three dimensional lookingimage.+ takes a onstant amount of time no matter the resolution- only squared areas an be retrieved, this leads to overblurring of retangularsenes, if they minimized/maximized too muh9MIP = multum in parvo (Latin: many things in a small plae)143

11.5.3 RipmappingThe ripmapping tehnique tries to avoid the overblurring appearing with mipmapping. The idea is simple, we extend mip mapping as to inlude down sam-pled retangular areas as subtextures that an be aessed. Two more param-eters are used to aess this rip map, but they an be omputed on the �y byusing the pixel ell's u and v extents on the texture.+ no overblurring- very memory intensive11.5.4 Summed-Area TableThe �Table� is referring to an underlying array, having the size of the texturebut more bits. Now on every position in the array all pixels inluded by theretangle having lower left point [0, 0] and the position as upper right point aresummed, divided by their number and stored in this position. By that we anompute the average of any arbitrary retangle within the texture (by simplesubtrations).+ less overblurring than mip mapping (only at the diagonals)- memory intensive11.6 Blending FuntionsWhen we found the texture oordinates we want to have at a ertain point onour objet, we have several possibilities how to proeed further. These inludereplae simply replae the underlying objet point with the texture valuedeal like replae, but apply α-blendingmodulate multiply the surfae olor with the texture value (also alled mul-tipliative blending)In the �rst ase already omputed lighting will be overwritten and the objetwill appear to glow on its own aount (glow texture).11.7 Corresponder FuntionsCorresponder funtions desribe what is to be done with pixels outside of thenormalized texture range [0; 1[:wrap repeat tile The texture image is repeated aross its borders. For ex-ample the value at 1.2 equals the value at 0.2.144

mirrorThe texture image is repeated, but mirrored. For example the value at 1.2equals the value at 0.8.lampValues outside the range are �lamped� to the losest edge. There is an alter-native alled lamp to border, where a speial border olor is de�ned, where toast outside values to.11.8 Bump Maps

Figure 107: Bump Maps adding height featuresAs disussed at the beginning of the hapter there are additional features wemight want to add to mere olor wallpapers, to make them look more realisti.One approah to do this are bump maps. A bump map is an �image� whihontains height information for a texture map. So at eah point of the texturewe know the depth/height of it.

145

Figure 108: Bump Maps ontain height informationWe an make use of this knowledge by developing a way to alter the surfaenormal at this position aording to the texel's height value. This does not resultinto an atual hange of shape, yet due to shading being di�erently applied atthis point, it looks like it was. This hange in normals an be obtained bysampling the bump map and using partial derivatives (gradient) to express thehanges in height and perturb the normals with them.Emboss Bump Maps
Figure 109: Emboss Bump MapEmboss Bump Maps is an approximation to standard bump mapping, that isfar more e�ient, sine it skips lighting alulation at eah pixel. The idea isto render the bump map as an image, translate the texture towards the lightsoure, render it again as a subtrative texture (see below for multi texturing11.15):

L · T (s) − T (s+ ∆s)

146

Gouraud Bump Maps

Figure 110: Gouraud Bump MapIn ontrast to Emboss Bump Maps, Gouraud Bump Maps are a ompli�ation.Instead of hanging the surfae normals, the bump map hanges lighting normalper vertex. It requires a high geometri resolution and is hardly useful.Per-Pixel Bump Maps / Dot Produt Bump Maps

Figure 111: Normal Map used for bump mappingInstead of height, the bump texture ontains normals (x, y, z oded in RGB). Sowe read the normal from the texture ~n, interpolate ~v and ~l and normalize themand �nally ompute lighting with ~n,~l, ~v. However in a �rst step we still need pervertex operations to map world spae oordinates to the texture oordinates.
147

Parallax Bump Maps
Figure 112: Left: standard bump map, Right: parallax bump mapParallax is the apparent shift of an objet against a bakground aused by ahange in observer position. Standard bump mapping does not over this visuale�et, but they an be elegantly extended to provide this e�et. We estimatethe parallax due to the bump texture and apply the e�et by adding a o�set totexture oordinates.

Figure 113: Computation of the parallax o�set
T 0 the atual point the eye would see without bump mapping
A the point T0 o�seted aording to the bump map
T n orreted point
B what the eye would see, if the bump was real (by o�setting the orreted Tn)

Tn = T0 +H · exey

ezwhere H is the height aording to the bump map.Limit the o�set for grazing angles
Tn = T0 +H · exey

Tn orresponds to the gradient and an be found by for example using NewtonIteration. 148

Properties+ e�ient: simple geometry stage,+ visually omplex- no hange in geometry: shadows are not a�eted by the bumps, silhouettesare una�eted- looks still �at, when viewed from the side11.9 Displaement Maps

Figure 114: Displaement MapsIn ontrast to bump maps, displaement maps really do hange the geometryof objets. Surfae points are displaed aording to a displaement map om-monly towards the surfae normal.11.10 Environment MapsEnvironment Maps are textures that allow for a mirroring of the bakground.They an be implemented as ube maps (6 textures), sphere maps (1 texture)or paraboloid maps (2 textures).

149

Cube Maps

Figure 115: Environment Map with a ubeWe think of a ube surrounding the whole sene having one texture on eah side.We aess the ube's textures by asting a ray from the enter of the sene.1. ompute re�etion ray ~r for the surfae point (where the eye vetor wouldbe re�eted to)
~r = 2 (~e · ~n)~n− ~e2. �nd the orresponding ube sub-texture: Choose the highest absolute10value among the three oordinates and determine the sub-texture by it'ssignE.g. ~r = (−8, 2, 1) has highest absolute oordinate |−8|, the sign is −resulting in the left sub-texture3. get the texture oordinates (u, v) by the intersetion of ray and sub-texture. This an easily be obtained by dividing the other two oordinatesby the absolute value of the one hosen in 2. and saling the unit uberange [−1; 1] to the texture range [0; 1] by adding 1 and dividing by 2.E.g. ~r = (−8, 2, 1) results in 2

|−8| and 1
|−8| and after saling the range:

u =
2

|−8|
+1

2 and v =
1

|−8|
+1

2+ uniform sampling harateristis (no exessive number of pixels at a pole,like spherial ones)+ the six faes are easy to ompute+ view independent10If two oordinates have equal absolute values, we are on a border between two ube mapsand an hoose any of them. This however will seldom happen, beause of hardware preisionfailures. However we an aount for it, by putting these border lines into both neighbouringtextures. 150

Spherial Maps
Figure 116: Environment Map on a sphereWe make some assumptions to make this proess more e�ient:

• parallel amera rays (uniform diretion e0)
• environment map is in�nitely far away (olor depends only on the diretionof re�etion ~r)

~r = 2 (~e · ~n)~n− ~eWith these assumptions made, our environment map odes only need to storeone olor value for every diretion of re�etion. After ~r has been normalized,texture oordinates an be gotten by
u =

rx + 1

2

v =
ry + 1

2The sphere texture image is reated/reorded by plaing a perfetly mirroringsphere in the middle of the sene and save the re�etion (also alled �probe�, seeimage above).OpenGL glTexGenfv(GL_S,GL_SPHERE_MAP,0)+ no seam at the border of the texture- irregular sampling at the boundary, beause many pixels are mapped loselyon the sphere's poles (use other environment maps, e.g. ube maps orparaboli maps)- moving between two points is not linear (no linear interpolation possible)- only valid for one viewing diretion (no environment rotation)151

Paraboli Maps

Figure 117: Paraboli Environment MapParaboli Maps are very similar to spherial environment maps, yet they use twotextures and mirror the environment at two paraboloids rather than a perfetsphere. All re�etion rays share the same origin and viewing rays are parallelto the z-axis. The paraboloid is given by:
f (x, y) =

1

2
− 1

2

(

x2 + y2
)The we get the texture oordinates from the re�etion vetor:

u =
rx

1 + rz

v =
ry

1 + rzThis works espeially well if the hardware allows to re�etion vetor to textureoordinates.+ view independent+ uniform sampling (linear interpolation) even better as with ube maps- very hard to reateProperties of Environment Maps+ supported by hardware- for planar objets (�at objets) the olor beomes unrealistially onstant(worst for orthographi projetion)- the olor of a point on the re�eting surfae does not only depend on there�etion vetor ~r but rather on the area of a one having it's peak in thepoint (use pre�ltered environment maps aounting for this).152

11.11 Environment Bump Maps

Figure 118: Environment Bump Map with normal texture, environment map(+light soure) and a bump mapThere exists an interesting ombination of bump and environment maps, thatwill be presented here. The �rst aspet is that we will perform lighting via atexture:lighting via texturea 2D texture that maps surfae normals ~n to olor L~nThus we result in having three texture maps: standard texture, environmentmap + light soure, bump map (see piture). The bump map returns an o�setfor aessing the environment map (hanging the normal):
L = L~n · Brightness (environment) + bump o�set11.12 Interative Horizon MapsThe disadvantage of bump maps is that although the bumps look good, theyprovide no real geometrial bumps and therefore those bumps do not ast shad-ows. Horizon Maps try to ounter this by storing the horizon around a pointin texture maps, enabling to deide whether a point lies in shadow or not. Theheight of the horizon simply depends on the diretion (i.e. the angle), so thediretion will give us aess to the map. If the light soure lies below the horizonwe are in shadow.Following this idea we preompute horizon heights for eah pixel in at leasteight diretions (N, NE, E, SE, S, SW, W, NW). Then during lighting alulationwe ompute the height angle of the light soure and hek whether the heightof the horizon surpasses the light soure's height.

153

Figure 119: Does the light ray lie above the horizon?By this eight diretions we sample the horizon enlosing our point in 8 points.Now having a point we ould simply interpolate the two involved samples, how-ever the results are very bad. Therefore we rather use the samples as oe�ientsof basis funtions (stored in textures, one for eah diretion) and use them toevaluate the height in between two diretions with weighted interpolation (o-e�ients = weights).Sine the horizon height samples are 1D �oat values, we will be able to storethem in merely two textures, storing four samples in one texture's RGBα-hannels.
Figure 120: North basis funtion texture and the resulting horizon map usingonly this basis textureIn the �gure on the left we see the basis funtion for the diretion north. If wehave a point and aess a diretion in�uened by the north basis funtion, wewill result in a horizon map like the �gure on the right. The bright irles aretotally lit and not oluded by horizons in the north. The loser we go northfrom suh a irle the loser we will get to a northern horizon and the more wewill be in shadow.For example we assume the position to be the blue point on the left �gure.Then the horizon height will depend on something about 20% on the northernhorizon sample point and about 80% on the north western one. All other samplesontribute 0% to the interpolated height.11.13 Shadow MapsThe idea of shadow maps is to store a map, whih we an aess, if we want toknow whether a point is lit or not. This an be done by rendering the sene with154

the eye at the light soure, then naturally every position not lit, lies in shadow,sine the light annot reah it. We then store this result in a piture we an useas a shadow map. These kind of texture maps are exessively disussed in thehapter about shadows on page 8.5.3.11.14 Illumination In TexturesAnother di�erent way of making use of textures is to use them for lightingalulation. This of ourse is limited to senes where the light remains the samefrom any angle, (e.g. a hamber with one light soure on the eiling). Usingtextures we an e�iently realize the Torrane-Sparrow Light Model (see 8.3.3).Remember the olor was given by
L = IIn · F (~l · ~h)G(~n · ~v, ~n ·~l

)

D
(

~n · ~h
)

Π(~n · ~v)
(

~n ·~l
)we reorder the formulated

L = F
(

~l · ~h
)

D
(

~n · ~h
) G

(

~n · ~v, ~n ·~l
)

Π(~n · ~v)
(

~n ·~l
) · IInand then store the funtions F (~l · ~h)D (~n · ~h

) in a �rst texture with u = ~l · ~hand v = ~n · ~h as texture oordinates and G(~n·~v,~n·~l)
Π(~n·~v)(~n·~l)

in a seond one (for olor),where we use s = ~n · ~v and t = ~n ·~l as texture oordinates.Algorithm 17 Illumination In Textures1. set vertex olor to IIn2. turn on texture #13. use u, v as texture oordinates4. render the sene5. set vertex olor to 1 (white)6. turn on texture #27. use s, t as texture oordinates8. render the sene with multipliative blending (multi texturing, see above11.6)Due to the resulting gain in e�ieny Phong Shading an be used.155

OptimizationIf we simplify the physial model again by assuming parallel light, ~l beomesonstant. If we further assume a parallel viewer ~v beomes onstant. Assumingboth even ~h beomes onstant. If light and viewer are indeed far from the objetthis assumption is justi�ed.In this ase we use simply the normal ~n as texture oordinates and generate
u, v, s, t automatially by having stored ~l, ~v in a texture matrix. This furtherallows us to use OpenGL display lists (see 14).If we are still not ontent we an even store the di�use re�etion (1 − ~f

)in the texture. The α-hannels of both textures are not used yet, so we anstore the di�use re�etion in the α-hannel of the �rst texture. In this asehowever, we must add a third render pass at the end of the algorithm for di�useillumination and blending:
L = α (destination) · L (soure) + 1 · destination (soure)where α (destination) orresponds to 1 − ~f , L (soure) + 1 orresponds to thedi�use fration and destination (soure)to the speular fration.+ if hanges in ~l, ~v are required from time to time, the optimization an stillbe used, simply the texture matrix has to be reomputed- two/three passes required11.15 Multi TexturingMulti Texturing desribes a method to apply multiple textures in a single ren-dering pass for one objet. Today's graphis hardware supports this. It de�nesoperations to add, subtrat, multiply, et. textures with/from eah other. Theadvantage against simply applying multipliative blending (see 11.6) is thatinstead of rendering multiple texture one after another, we get the texturesrendered in one single pass.Note To avoid visual quantization artifats, hoose an appropriate olor model(24bit, 32bit)+ supported by modern boards+ only one rendering required11.16 Texture CaheA sene might ontain a high number of textures, whih are onsequently a-essed. Therefore most graphis hardware o�ers a ahe for textures. Usuallythe textures should be kept small. An exeption is to ombine small textures ina mosai like pattern on a larger textures. In this ase we have impliit smallertextures, but save the overhead for swithing textures.156

Last Reently Used (LRU)Now to make good use of the texture ahe, eah texture is assigned a timestamp. Every time a texture is alled, it gets a new time stamp assigned. If theahe is full the texture with the oldest time stamp will be dropped. In ase ofa draw OpenGL and DiretX o�er additional priority assignments.Most Reently Used (MRU)MRU heks the texture urrently being swapped out of the texture ahe,whether it has been used in the urrent frame. If it was, it is kept. While beingin one frame MRU should be preferred to LRU, sine otherwise every singletexture of the frame would �rst be swapped in. Leaving a frame, we swithbak to LRU.PrefethingAs the name suggests prefething loads the textures into the texture ahe,before they are needed or required. By that a lot of lateny an be hidden.Of ourse this tehnique requires a good preomputation of whih textures arerequired at a future time.11.17 Texture CompressionTextures are images and images an be ompressed by e.g. JPEG or PNGompression. Now this would allow a faster loading and a better usage of thetexture ahe, however the deoding algorithms for JPEG and PNG are toomplex to put them in hardware. Therefore SGI has reated a speial textureimage ompression format that is espeially easy to deompose: S3TC (S3Texture Compression). The main disadvantage is that this format is lossy,i.e. it annot be rereated without information loss. If a texture image showsespeial olor depth at a ertain region, this will be lost. Furthermore S3TCshould never be used when dealing with normal maps used for bump maps.

157

12 BRDF (Bidiretional Re�etion DistributionFuntion)

Figure 121: From physial radiane to BRDFs and other lighting/shading meth-ods12.1 Maxims
• plausible (obey energy onservation, reiproity)
• anisotropy
• intuitive parameters (like in Phong Lighting)
• Fresnel behaviour (for peuliarity)
• non-Lambertian di�use term (for a di�use term with energy onservationfor the Fresnel term)
• Monte Carlo support (to support Ray Traing)A BRDF whih manages to �t all these maxims is alled: Fresnel-weightedPhong-style anisotropi osine lobe model.158

12.2 TheoryBidiretional Re�etion Distribution Funtions desribe how light is re�etedfrom a surfae. To desribe this a BRDF overs:
• material properties
• inoming/outgoing azimuth and elevation angles
• inoming light's wavelength
• surfae areaYou an see BRDFs as giving the probability that an inoming photon will leavein a partiular diretion. So they relate inoming and outgoing radiane, butthey do not desribe physial material light interations. It makes another sim-pli�ation by negleting sattering of light within a surfae, and only takes intoaount light oming from above and being re�eted at one spei� point (Afuntion type modeling surfae sattering are Bidiretional Surfae Sat-tering Re�etane Distribution Funtion (BSSRDF) whih will not bedisussed).The outgoing radiane for a given point x and light Lin inoming at angle

ωin is
L (x, ωout) =

∫

Ω

f (x, ωin, ωout)Lin (x, ωin) (ωin · ~nx) dωinwhere f is the BRDF. It returns for some inoming light diretion ωin whatperentage of light leaves at some exitant diretion ωout. The seond termdenotes the radiane arriving at point x from diretion ωin. The last term isjust the appliation of Lambert's osine law for di�use surfaes: cos (ωin) =
(ωin · ~nx). Sine we are interested only in the light that will turn out on point
x we integrate over all inoming and outgoing light angles ∫

Ω
.If the surfae is di�use, the BRDF f beomes onstant (f (x, ωin, ωout) =

ρ (x), with ρ (x) ∈]0; 1[where 0 means perfet re�etane and 1 no re�etane)
L (x, ωout) = ρ (x)

∫

Ω

Lin (x, ωin) cos (ωin) dωinIf we are dealing with a single point lightsoure the equation further simpli�esto
L (x, ωout) = ρ (x)Lin (x, ωin) cos (ωin)where cos (ωin) an be omputed by the surfae normal at the orrespondingpoint:cos (ωin) = (ωin · ~nx)Having more than one light soure we disretize the integral to a sum and sumup over all light soures.If we for example take the Phong Light Model, (see 8.3.2) the BRDF f beomes
fphong (x, ωin, ωout) =

ks

(

~n · ~h
)nshiney

~n · ωinin this way other models like the Torrane-Sparrow Light Model an be used.159

Mirofaets
Figure 122: Surfae mirofaets.a) The surfae is assumed to be made of millions of tiny faets. The faets areused to �nd a probability distribution of faet normal diretions.b) The surfae is rendered as a geometrially �at surfae with the normal dis-tribution used to reprodue the shading e�ets of the faets.Surfaes will seldom be nie and �at, in fat even those whih look �at havea mirosopi rough struture. We introdue the onept of mirofaets whihmodel this miro struture and thus desribe how surfaes behave. Mirofaetsare tiny mirrors on the surfae with random size and angle (see �gure). Insteadof random (uniform), a Gaussian distribution of sizes and angles is assumed,beause they are better to work with.Mirofaets over:

• speular re�etion (by diret re�etion)
• di�use re�etion (inter re�etion or sattering)
• self shadowing (faets shadow eah other)
• refration (use Fresnel Re�etane for dieletris F 11)Properties- BRDF do not over anisotropy12They ould if we would add a seond type of angle (φin, φout) to the BRDF.However this an hardly be overed with graphis hardware and methods.12.3 Praxis (Implementation)A �rst idea is to evaluate BRDF on every vertex in the sene. However asusual this leads to Gouraud artifats, when hanges are either smeared away oroveremphasized. As disussed earlier this an be ountered by �ne struturing,however then we have a bottlenek and lak performane (using vertex shaders,the performane goes slightly up).11F desribes the re�etane of a surfae at various angles12the property of being diretionally dependent160

A seond ommon idea is to preompute as muh as possible and store it ina texture map. For isotropi surfaes the BRDF needs three variables, so wewould be able to store everything in a three dimensional texture map. Againthe usual laks of this method are sampling problems, noise, gaps and memory-intensiveness.12.3.1 FatorizationA more sophistiated implementation uses fatorizations of the BRDF basisfuntions into a sum of two term produts. The idea is to fatorize the fourdimensional (four variables) BRDF into two texture maps. Then we multiplythe two values from both maps and sum them up:
f (x, ωin, ωout) ≈

n
∑

j=1

pj (ωin) · qj (ωout)where p and q denote aess funtions to the two texture maps. Looking atthe term losely, we see that fatorizations tries to separate the BRDF into afuntion overing the inoming light and one overing the exitant light. The tex-ture maps itself are aessed like environment maps (ube, paraboli or sphere(best)), whih over a similar task (re�etion).Properties- rendering artifats from using texture maps and interpolation (minor)- two texture aesses for every light soure- limited to point and diretional light soures12.3.2 Environment Map FilteringEnvironment Map Filtering extends the environment map onept (see 11.10)from mirror like re�etion to glossy and di�use re�etion. The idea is to �lter theresult of the environment map aess. For example by blurring it the speularre�etion will appear rougher.Now either we hope for the forgivingness of the eye and blur the whole mapuniformly/linearly or we use a equation alled Phong Speular Equation to�lter it non-linearly. This equation determines a weight for eah light diretiondepending how muh every texel ontributes relative to the diretion. So thelight olor is given by the ambient light and the di�use light resulting from anenvironment map overing the radiane of an environment (light + re�etedlights with ontributions falling o� aording to Lambert's Cosine Law, 8.3.2).This kind of environment map is also alled Irradiane Map.
161

Figure 123: The three major omponents of PRTThe �rst sphere is the environment map overing lighting Lin (p, s)The seond sphere overs visibility (shadows) V (p, s)The third sphere overs Lambert's osine law for re�etion cos (s) = (s · ~n)Properties- wrongly assumes the same speular lobe for all viewing/surfae diretionsyielding the same re�etion diretion (this is only valid for perfet mirrors)This assumption is neessary to be able to restrit to one single environ-ment map. Aordingly this problem an be overed by using multipleEnvironment Maps. In fat interpolation and blending between 20 spheremaps already draw high quality results.- view dependeny: by storing every information in a single sphere map, wealso have view dependent speular re�etion storeduse two sphere maps instead and use one for view-dependent and one forview-independent radiane information- environment maps assume light soures and objets to be distant- the dynami range of light is limited to 8 bits per olor hannel, yet diretlighting from a light soure is hundreds of times brighter than indiretillumination. So 8 bits do not su�e to over the full range of inidentillumination (as it is needed in the environment map).12.4 Preomputed Radiane Transfer (PRT)Preomputed Radiane Transfer is a global illumination tehnique overingBRDFs (with preomputed environment maps), soft shadows and inter re�e-tion. The key feature of PRT are spherial harmonis that make up the environ-ment map. Advantages in omparison with previous BRDF tehniques overedso far are:
• PRT is fast and simple (an be done in a vertex shader)162

• interative: the environment an be hanged dynamiallyFurthermore PRT allows for arbitrary illumination (diret, indiret, austis)and for any kind of light transportation. Beause of the environment mapovering lighting, illumination an ome from any diretion. However objetsneed to be stati (environment map) and interations between objets is verylimited (e.g. olor bleeding).Spherial Harmonis

Figure 124: Spherial Harmonis
l is alled band and m is bound by −l ≤ m ≤ lSpherial Harmonis are a set of basis funtions with a spherial domain. Theyan be used to represent spherial funtions with a set of oe�ients:

f (θ, φ) =
n
∑

i=1

fiYi (θ, φ)where f is a spherial funtion, angles (θ, φ) parametrize the spherial domainand Yi are omplex basis funtions with oe�ients fi.
Y m

l (θ, φ) = Km
l e

ℑ(φ)P
|m|
l cos (θ)

Pm
l are Legendre Polynomials (see 2.7) and normalization oe�ients Km

l are
Km

l =

√

(2l+ 1) (l − |m|)!
4π · (l − |m|)!The higher the number of basis funtions n, the more preise the outome(typial are about 25). 163

Now we want a real values basis funtion and thus di�erentiate:
ym

l =

√
2ℜ
(

Y l
l

)

m > 0√
2ℑ
(

Y l
l

)

m < 0

Y 0
l m = 0Sine ym

l build an orthonormal basis, we an easily �nd the oe�ients fi byusing the funtion salar produt
f ◦ g =

∫ 1

0

f (x) g (x) dx

fi = fm
l ◦ ym

lComputation: Inident/Exitant LightSo what we do is to approximate the lighting funtion with a polynomial usingSpherial Harmonis as basis funtions and the environment map as oe�ients.We ompute the inident light Lin as
Lin =

1

n

n
∑

j=1

Lj
in (θ) yj (φ)where (θ, φ) are used as indies for aessing the environment map. The envi-ronment is split up like in environment map �ltering. Where Lj

inis a BRDF.Often Lin is onstant for a whole objet. If it isn't we an take some samplesof the objet and interpolate them.Next we hek the exitant light Lout for every vertex p and texture mapaess s = (θ, φ) :
Lout (p) = ρ (p)

1

n

n
∑

j=1

Lj
in (p, s)Hj (p, s)whereH (p, s) = s·~np transformed to the spherial domain: H (p, s) =

∑n
i=1Hiyi (p, s)ShadowsHaving this formula we an easily inlude shadow by an additional term V (p, s)

Lout (p) = ρ (p)

∫

Ω

Lin (p, s)V (p, s) (s · ~np) dswhere V (p, s) = 1 if the point p sees the environment in diretion s, and 0 ifnot.
164

Inter Re�etions

Figure 125: PRT with inter re�etionsFrom the point p diretion s does not return environment map texels, thereforwe use the exitant light of qIn ase p does not see the environment in diretion s (V (p, s) = 0), it mightsee it's own surfae point q (see �gure). In this ase we use the exitant light of
q to model the interre�etion between those two points. We an ompute thisvalue by assuming Linto be the same at p and q. Then we just apply a globalillumination methods like ray traing and ompute the di�use olor for p.Shadows ombined with inter re�etions result in having soft shadows!Properties+ extension: transluent objets+ extension: all-frequeny lighting (wavelet basis instead of spherial harmon-is)- glossy re�etion: exitant radiane depends on viewing diretion- the more speular the surfae, the more basis funtions are needed- very bad for high frequeny light: High frequeny light is an euphemismand has nothing to do with wavelength. Every real lightsoure lites thearea perpendiular and losest to it more than the surrounding one build-ing a light dis of intensity on it. This dis is brightest in the enter.Transforming this dis into a frequeny diagram we will enounter a peakat the enter. If this peak if very high, we talk about high frequeny light,if it's low and broad about low frequeny light. For example a point lightsoure will have a Dira peak/impulse. Now to model suh a peak we'dneed spherial harmonis or wavelets of a very high degree. Apart fromthat that �a very high degree� per se is a problem, spherial harmonis ofa high degree are very similar and show almost no di�erenes.165

Alternative ComputationAn alternative algorithm that is faster, beause the BRDF is omputed with
Lin in SH basis1. transform inident light Lin to transferred light L′

in ignoring the objetat pthis gives the loal inident light for p, as well as self shadowing and interre�etion (Lin, L
′
in in SH basis)2. now apply BRDF for every vertex using L′

in13 Rendering PipelineA sene is desribed by geometry, material properties, viewing and lighting. Butthe question is in what order should or rather an we perform these steps andonvert the 3D sene desription to a 2D raster image.Pipeline 1 (Single Stages)Step Ations Variables CoordinatesAppliation interativity, ollision detetion pixel/olor sreen oordinatesModel Transforms translation, rotation, . . . verties/normals model oordinates: (u, v, w)World Transforms translation, rotation, . . . verties/normals world oordinates: (x, y, z)Viewing Transforms perspetive projetion verties/normals viewing oordinates: (e, g, t)Illumination lighting verties/olor world oordinatesProjetion normalizing transforms verties/olor normalized oordinatesWindow Mapping ? ? ?Clipping Z-Buffer fragments, depth/olor normalized devie oordinatesRasterization shading pixel/olor sreen oordinatesTexturing texture mapping texel texture oordinatesFramebuffer window to view port pixel/olor sreen oordinatesPipeline 2 (Culling/Clipping)bakfae ulling → modeling transforms→ lipping → homogeneous divide →shading, lighting → rasterizationPipeline 3 (Vertex, Primitives, Fragments)1. Appliation: Custom Operations(a) ollision Detetion(b) Interativity (e.g. drag & drop)166

Figure 126: From verties to fragments2. Geometry: Vertex Operations(a) A�ne Transformations (transformation matries)(b) Illumination (loal Illumination at the verties)() Primitive Assembly (lines, triangles)(d) Projetion (Normalizing Transform, Unit Cube, Z-Values)3. Rasterization: Operations on Primitives(a) Polygon Rasterization (deompose primitives to pixel fragments)(b) Shading (with the fragments)() Texture Generation (Interpolation of texture oordinates / texturevalues)(d) Texture Mapping (Projetion unto the objet)4. Fragment Operations: Operations of Fragments and Pixels(a) α Test (rejet fragments above a ertain α-value)(b) Stenil Test (rejet fragments with stenil bu�er enabled)() Depth Test (rejet fragments where the depth test fails)(d) α Blending (ombine values of olor fragments)(e) Fog (a fragment is blended with a fog olor)Runtime ConsiderationsThe speed of a single data paket is determined by the sum of all stages onthe Pipeline, but the overall throughput is determined by the slowest stage,referred to as bottle nek (e.g. if there are two stages under 2 minutes andone requiring 3 minutes for assembling a ar, one ar an be ompleted every 3minutes). The event if the whole proess is stand to wait for a ertain stage, isalled stalling. Optimizations inlude167

Sequentiation Partition the the bottle nek into two sequential stagesParallelization Insert parallel pipelines at vertex and pixel operations stepSorting Sort polygons by material (render 1 . . .X with the same texture, muhfaster than per triangle)Potential bottle neks inludeAppliation data generation, data transfer
→ this stage is done in software, so optimize the ode. a good ode herean also fasten the next two stages. furthermore you might be able tomake use of parallel proessors.Geometry lighting omputation, number of light soures, number of triangles,omplex per vertex omputationsRasterization degree of olusion (e.g. leaves on a tree), mutlitexturing, om-plex per pixel omputation14 OpenGLOpenGL is a hardware independent version of GL (Graphis Library) fromSilion Graphis. A review board out of onsortium of graphis ompanies ismaintaining the language. OpenGL is speialized but not limited to 3D senery.Properties

• hardware abstration: API (appliation programmer interfae)
• low level hardware optimized
• hardware independent
• boundless extensions
• high level modeling: sene graphs
• window system interfaes: GLUT, GLX, AGL, WGLSyntaxfuntions gl-Pre�x: glClear, glPolygonModeonstants in CAPITAL LETTERS: GL_POLYGON, GL_RGBdatatypes GL-Pre�x: GLbyte, GLdouble, GLfloat

168

Libraries
• GLU:pre�x gluontent advaned routines, B-splines, omplex objets
• OpenInventorontent objet oriented toolkit, sene graphs
• Graphis Display: GLUT (glut) OS independent, GLX (glx) X-WindowSystem, AGL (agl) Apple, WGL (wgl) WindowsMatrix StaksSine the matries needed for transformations will be used more than one time,we should store them in a kind of stak push(Matrix m) and re-aess them weneeded pop().With this stak we an easily inlude a rendering ommand.Group::render()push(Matrix transformation);forall hildren : .render();pop();push matrix dupliate urrent matrix m→ m′. apply m′ to the matrix on topof the stak m̄→ m∗.

m∗ m̄ · · · · · ·We have a matrix history: the last step is always multiplied with the newest toreate the stak entry.pop matrix remove the top matrix from the stak.OpenGL di�erentiates between two di�erent types of matrix eah having it'sown matrix stak:GL_PROJECTION normalization (gluPerspetive())GL_MODELVIEW amera, modeling (gluLookAt(), glTranslate(), glSale(),glRotate(),. . .)By the ommand glMatrixMode() we may hoose on whih kind of matrix weurrently want to work.
169

GL_TEXTURE In fat there is a third kind of matrix assigned a third sep-arate stak of it's own. The texture matrix. This matrix is used for pro-jeting textures onto objets. It an be de�ned by: glTexCoords4f(s,t, r, q)Output PrimitivesThe de�nition of primitives always starts with glBegin(Primitive Type) andend with glEnd(). Single vertex oordinates an be set by vertex position(glVertex(position)). Primitives are:points (GL_POINTS), straight lines (GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP),irles, other oni setions, quadrati surfaes, spline urves and surfaes, poly-gon olor areas, harater strings.Additionally size and olor an be set.Display ListDisplay Lists are rendering maros (e.g. for rendering a hair) that are diretlyloaded unto the graphis ard and an easily be realled multiple times. Thisgives a speed improvement by a fator of 10.glNewList(1, glCompile); . . . glEndList(); . . . glCallList(1);Cartesian Referene FrameThe oordinate frame for sreen display an be set by gluOrtho2D(xmin, xmax,ymin, ymax);15 Programmable Graphis HardwareCon�guration matries, lighting parameters (Phong), texture mapsProblems portability, short innovation yle, vendor dependent, too many ex-tensions (OpenGL)Uni�ation Upload per-vertex and per-pixel ode diretly to the graphisdevie. Vertex and Pixel stages on the pipeline are replaed by pro-grammable units.+ vendor independent+ e�et librariesHaving several fragments per pixels, whih an even be shared by multiple pixels,we an do antialiasing. If we'd simply say fragment = pixel, we would enounterugly aliasing e�ets. 170

Pixel average value of multiple fragments that is displayed.Fragment one sample of a high resolution image.Antialiasing By rendering the image at a higher resolution and saling it down.Vertex Unit (Vertex Shader)The vertex unit deals with all per-vertex operations like transformations andlighting per vertex (see 13, Pipeline 3). Per-Vertex operations are required everythen, when data is hanging slowly enough to only hange the verties (and riskminor artifats). A vertex program is built out of three omponents:Input glVertex(), glNormal(), glColor(), glTexCoord()Parameters onstants like light diretion ~l, materialOutput normalized 3D sreen position, olor, seondary olors (glossy), textureoordinates, . . .Currently a reation of new verties or removal of existing ones is not possible(added in 2006/2007, XBox 360◦). There is no suh thing as an early returnstatement or �ow ontrol statements13, that means the hardware will need ex-atly the same time for eah vertex. Also, small vertex programs run faster.Vertex shaders an be used for
• shadow volume reation (see 8.5.4)
• lens e�ets (e.g. underwater)
• objet de�nition (making a mesh only one)
• objet twist, bend, taper operations
• proedural deformations (�ag, loth movement)
• primitive reation (send degenerated meshes)
• page urls, heat haze, water ripplesFragment Unit (Fragment Shader, Pixel Shader)The fragment unit deals with per-fragment or per-pixel operations like textur-ing or phong-shading (see 13, Pipeline 3). Per-Pixel/Fragment operations areneeded to aurately apture rapidly varying hanges. A fragment program isalso built of three omponents:Input interpolated olor, interpolated depth, interpolated texture oordinates,textures13Of ourse those an be simulated by register swaps as in Assembler171

Parameters onstants like light diretion ~l, material, . . .Output olor, depthThe light diretion is given in the eye-spae, beause of the OpenGL ModelViewmatrix (we an only work in the eye-spae).
⇒also transform the normals into eye-spae before passing them to theshaderLike Vertex Shaders �ow ontrol and early return is not possible without triks.Pixel Shader use an API instead of free programming ode, resulting in hardwaredependent optimized ode.Possibilities inlude
• ustomized texture mapping (bump mapping, environment mapping)
• aessing multiple textures (environment bump mapping)
• texture projetion
• killing whole fragments (not rendering them)
• lipping with arbitrary �planes�, e.g. a sphere
• multiple passes before rendering (allows for omplex rendering tehniques)
• rendering to a texture (e.g. to store multipass results, if no multi passingis available)
• Torrane-Sparrow Lighting using the Shlik approximationPrograms

Figure 127: OpenGL Shading LanguageARB_VERTEX_PROGRAM assembler like vertex shader172

ARB_FRAGMENT_PROGRAM assembler like fragment shaderThe program itself is passed as string: glProgramStringARB(enum target,enum format, size len, onst ubyte* program)And bound by: glBindProgramARB(enum target, uint program)Shading Language mainly maros for the ARB_PROGRAMSOpenGL Shading Language (GLSL) C-like language, global state/variablesfor the passing of parameters (e.g. state.material, state.light), re-sult parameters (result.olor, result.depth), �ow ontrol (loops, branhes,onditionals)vertex shader glPosition = glModelViewProjejtionMatrix * gl_Vertex;fragment shader glFragColor = ve4(1,0,0,1);These shaders an be inluded into OpenGL ode by: shader = glCreateShaderObjet(),glShaderSoure(shader, har* soure), glCompileShader(shader)Variable Quali�ersattribute appliation de�ned vertex attribute (vertex shader input)uniform appliation de�ned global variable (vertex/fragment shader input)varying omputed by vertex shader, interpolated by rasterization step, sent tofragment shader (vertex shader output, fragment shader input)onst onstant variables (e.g. π)16 HistorySome Numbersfps omplex global illumination (1 frame per day), movies (1 frame per 8 min-utes), interativity (5 fps), games (50 fps)throughput 106 pixel with 20 fps:
• proessing 20 · 106 pixels per seond
• 50 yles per pixel (1 GHZ CPU)
• 3 bytes per pixel (~60 MB)triangles games: 100.000 triangles, ave: 40.000 triangles (20 fps), reality:

80 · 106 trianglesper triangle we have three vertex oordinates, material properties, a tex-ture 173

rendering perspetive projetion to sreen, olusion omputation, rasteriza-tion, illumination, texturingGPU speed doubles every 6-12 months (CPU 18 month), denser, more tran-sistors and FLOPS than CPU (CPU are more �exible)Today: 600 · 106 verties / seond, 6.4 · 109 pixels / seond, 6 parallelvertex stages, 16 parallel pixel stagesHistorySinlair ZX81 (1982) omplete pipeline is performed by the CPUCommodore 64 (1982) graphi hips generates video signal (after CPU haswritten to the framebu�er)Atari ST (1985) GPU deals with 2D graphis operationsSGI Indy (1993) GPU does rasterization stepSGI O2 (1996) GPU does transformations and rasterizationSGI Onyx,Nvidia,ATI GPU does the entire pipelineToday programmable stages17 Virtual RealityVirtual Reality in general is a omputer generated world, that an be manipu-lated by the user. It's all about immersion, the feeling that what surrounds youis really real. For reahing immersion not only vision, should be onsidered, VRtries to apture other senses as well:Senses
• vision: real time graphis, stereo vision
• sound: surround sound
• haptis: fore feedbak, input resistors
• smell
• taste (not yet given)InputThe manipulation an be ahieved with 3D mouses, spaeballs, data gloves,traking devies or whole data suits. Another goal for data input is that theamera or eye an be moved by the user by moving the head. Even more di�ultis eye traking. Furthermore the ability to move objets and grab and drop arefavorable immersion boosts. 174

Output (Stereo Vision)

Figure 128: CAVEAn output system alled CAVE for an example for a great level of immersion.Graphis are often displayed by speial Head-Mounted Devies (HMD),speial beamer tehnology or whole rooms. The speial is referring to givingthe possibility of stereo vision, whih means to separate images for the left andfor the right eye. The �rst devie, the HMD, ahieves this by supplying oneLCD sreens for eah eye. HMD an easily ombined with sound output andposition traking input. However they are very heavy and unomfortable andthus redue immersion. A softer version of head glasses are Shutter Glasses.They alternately blaken the left and the right eye, thus providing the rightframes, simulate spatial viewing. However apart from them still being somewhatunomfortable, the images appear darkened synhronization must be assured.Talking about beamers we an use two separate beamers projeting theirimages through projetion �lters. Polarization �lters let pass light only in onediretion. Supplying the user with glasses whih have two projetion �lters withthe orresponding diretions, the images an be separated for stereo view again.This is what 3D inemas usually do. This is usually done by front projetion,however then often the user shadows the projetion by his geometrial physialform. Using a mirror we an use bak projetion as well, avoiding this problem.However then we need some room behind the sreen.A third alternative are work benhes. The sreen is like a drawing deskwhere upon the image is projeted. The user's position is traked and the imageis adjusted aordingly to provide 3D vision.Finally we an use a whole room or hamber to maximize the level of im-175

mersion. This is alled Cave Automatial Virtual Environment (CAVE).This is one of the most expensive VR arhitetures, sine we need six (twelve forpassive stereovision) beamers for every wall of the hamber inluding a beamerfor the bottom �oor underneath the room. Furthermore the omputation andsynhronization takes the power of graphis lusters.Stereo Projetion

Figure 129: Stereo ProjetionAssuming we know the position of the viewer, resp. her eyes, how an wealulate the right stereo images?A straightforward method is to plae the amera suessively onto the leftand the right eye and render the image towards the enter of the �sreen�.However this method fails when the viewer is not entered and looks at thesreen at a di�erent angle.Another method is alls sheared perspetive. The projetion sreen isthe image plane and we allow the eye point to be anywhere. This means ourviewing frustum beomes sheared. OpenGL o�ers a sheared viewing frustumsalled glFrustum.

176

List of Algorithms1 Bresenham Algorithm . 242 Seed Fill . 253 Sanline . 264 Cohen Sutherland . 275 α-lipping . 286 Gouraud Shading . 877 Deferred Shading . 898 Creating Penumbra Maps . 989 Shadow Volume Algorithm . 10010 Construting The Shadow Volume 10112 Shadow Volumes with Vertex Shaders 10211 Z-Pass Algorithm . 10213 Simple Stripi�ation . 11814 Tunneling . 11915 Corner Cutting . 12416 Subdivision Proess for B-Splines 12917 Illumination In Textures . 155List of Figures1 mapping from one oordinate system into another 132 solid angle . 213 Solid Angle Di�erential . 214 outodes for the lipping retangle 275 reversed lipping in a x-window system 286 Sutherland Hodgeman Classes . 297 Comparison with the RGB olor model 3410 horizontal shearing . 388 Isotropi Saling . 389 saling . 3811 Rotation . 3912 Euler Rotations . 4013 Re�etion . 4214 Transforming Normals . 4415 Canonial View Volume . 4616 Orthographi View Volume . 4717 Image Plane . 4918 Image Plane with variables . 4919 Perspetive Projetion . 5020 Field Of View . 5122 Mapping Of Z illustrated with olors 5221 View Frustum . 5223 Mapping Of Z illustrated with arrows 53177

24 Mapping Of Z illustrated with asymptotes 5425 penetration and yli olusion 5526 Axis Aligned Binary Spae Partitioning 5627 Sreen Door Transpareny . 5828 Problems with Delayed Blended Transpareny 5929 View Frustum Culling . 6130 View Frustum Culling . 6231 View Frustum Intersetion . 6332 Potentially Visible Sets separate the sene into arbitrary ells . . 6433 Portal Visibility . 6534 Olusion Horizon . 6735 Olusion Horizon: Di�ult Olusion 6736 London . 6837 Dual Ray Spae Olusion Culling 6938 A line in the Dual Ray Spae . 6939 A double triangle in the Dual Ray Spae 6940 Radiane . 7241 Relationship between inident and re�eted light 7342 �uoresene . 7443 phosphoresene . 7444 Point Light Soure . 7645 diretion of light for point light soure 7646 Parallel Light . 7747 Ambient Light . 7848 Re�etion from equally rough surfaes 7949 Lambert's Cosine Law . 7950 Di�use Light . 8051 Speular Light . 8152 Speular Light is view dependent 8153 Halfway Vetor Approah . 8254 Self-Shadowing . 8455 Flat Shading . 8556 Gouraud Shading . 8557 vertex normals . 8658 Gouraud Shading smears highlights 8759 Phong Shading . 8860 Deferred Shading . 8961 Storing shading parameters in the RGBα hannels of three Ren-der Targets . 8962 Problems ourring with planar shadows 9063 The sene as seen from the light. Only the depth values are stored. 9264 In the seond pass, the shadow map is aessed to determinewhether a pixel is lit or in shadow. 9265 The blue arrow shows where the urvature an be seen in theshadow . 93178

66 Spotlight shadows an be reated by using the amera's frustumas a shadow frustum . 9367 Adaptive shadow maps are ordered and aessed in a tree struture 9568 The shadow map resolution hanges with a projetive mapping . 9569 Partitioning of the sene into umbra, penumbra and lit areas. . . 9670 Shadow mapping ombined with a penumbra map to soften theshadow outlines . 9671 Overlapping Penumbras . 9972 Highlighted Shadow Volume . 9973 Dealing with multiple oluders 10174 Reursive Ray Traing . 10675 Snell-Desartes Law . 10776 Add a small onstant ε to ounter numerial instability 10877 Caustis . 11179 Color Bleeding . 11278 Color Transmission . 11280 Triangle Strip . 11481 Triangle Fan . 11582 Quad Strips . 11583 Enhaned Fae List Example . 11684 Direted Edges . 11785 Triangle Strips, where the vertex ahe an be optimally used (avertex may be alled up to 6 times) 12086 Di�erene between interpolation and approximation 12287 A Bézier Curve with four ontrol points: b0, b1, b2, b3 12388 Corner Cutting . 12389 The midpoints (blak points) resulting from orner utting, makeup the urve approximating the ontrol point p1 and are thusthose, whih we draw on the sreen. Some threshold an deter-mine the number of subdivisions. 12491 Ordering of Bézier ontrol points 12590 Algorithm of Casteljau . 12592 Shifting the splines basis funtion to the ontrol points 12893 Cubi B-Spline . 12994 Basi Operations of Construtive Solid Geometry 13195 Organization tree using a lass hierarhy 13296 Sene Transformations . 13397 A sene with and without texture mapping 13698 Nearest Neighbour Interpolation 13899 Bilinear Interpolation . 138100 Planar Projetion . 139101 Dia Projetion . 140102 Perspetive Interpolation . 141103 So instead of the standard rasterization we now interpolate withthe values returned by the mapping to the perspetive spae. . . 141104 A 3D map to model the inside of a human head 142179

105 Mip-Mapping . 143106 Trilinear Interpolation with Mip-Mapping 143107 Bump Maps adding height features 145108 Bump Maps ontain height information 146109 Emboss Bump Map . 146110 Gouraud Bump Map . 147111 Normal Map used for bump mapping 147112 Left: standard bump map, Right: parallax bump map 148113 Computation of the parallax o�set 148114 Displaement Maps . 149115 Environment Map with a ube 150116 Environment Map on a sphere . 151117 Paraboli Environment Map . 152118 Environment Bump Map with normal texture, environment map(+light soure) and a bump map 153119 Does the light ray lie above the horizon? 154120 North basis funtion texture and the resulting horizon map usingonly this basis texture . 154121 From physial radiane to BRDFs and other lighting/shadingmethods . 158122 Surfae mirofaets. 160123 The three major omponents of PRT 162124 Spherial Harmonis . 163125 PRT with inter re�etions . 165126 From verties to fragments . 167127 OpenGL Shading Language . 172128 CAVE . 175129 Stereo Projetion . 176List of Tables1 Physial Light Overview . 732 Phong Lighting Variables . 78

180

Index2D San Conversion, 25Aumulation Bu�er, 7aumulation bu�er, 103Ative Edge Table (sanline), 26Adaptive Depth Control, 108Adaptive Shadow Maps, 95adjoint matrix, 11a�ne invariant, 127Alpha Blending, 34alpha-lipping, 27Ambient Light, 77Angle, 20, 21Anistotropi Filtering, 30Antialiasing, 25, 29Antialiasing (Textures), 142Area Light Soure, 77Bézier Curves, 123Bézier Surfaes, 127Bak Fae Culling, 60, 117Baryentri Coordinates, 14Bernstein Polynomials, 18Bidiretional Re�etion Distribution Fun-tion, 158Bidiretional Surfae Sattering Re�etaneDistribution Funtion, 159Bilinear Interpolation, 138Binary Spae Partitioning, 55Blended Transpareny, 59Blending Funtion (Texture Mapping),144blending funtions, 126bottle nek, 167bottom plane, 47Bounding Hierahies, 62Bounding Volumes, 61, 110Box Filter, 25BRDF, 158Bresenham Algorithm, 23brightness, 31brightness (light), 72BSP, 55

BSSRDF, 159Bump Map, 145Camera Transformation, 51Canonial View Volume, 46Cartesian Coordinates, 13Casteljau, 125Cathode Ray Tube, 23Caustis, 111CAVE, 176Cave Automatial Virtual Environment,176Clustered Bak Fae Culling, 60CMY, 32CMYK, 32Cofator Matrix, 11Cohen Sutherland, 27Color Bleeding, 112Color Transmission, 112Construtive Solid Geometry, 131ontrol point, 121Corner Cutting, 123Corresponder Funtion, 144ross produt, 10Crossratio, 22CRT, 23CSG, 131Cube Map, 150Culling, 59Deferred Shading, 89Delayed Blended Transpareny, 59Determinant, 11Di�use Light, 78Direted Edges, 116Diretional Light, 77Displaement Map, 149Display List, 170Doppelverhätniss, 22Dot Produt Bump Map, 147Double Bu�er, 7Dual Ray Spae Olusion Culling, 68Edge Table (sanline), 26181

Eigenvalue, 12Eigenvetor, 12Emnboss Bump Map, 146Energy (light), 70Environment Map, 149Environment Map Filtering, 161Euler Angle, 40Euler Rotation, 40exitant �ux density, 71exitant light, 71eye position, 48far plane, 47Field Of View, 51Flat Shading, 85�ux density, 71Fog, 35Fragment Shader, 171Fragment Unit, 171Framebu�er, 7, 23Fresnel Term, 84Fresnel-weighted Phong-sytle anisotropiosine lobe model, 158FSAA, 30Full Sene Antialiasing, 30G Bu�er, 7G-Bu�er, 89Gamma, 34gaze diretion, 48General Triangle Strips, 114Geometry (Mesh), 113gimbal lok, 41Global Illumination, 75Glow Texture, 144GLSL, 173Gourad Bump Map, 147Gourad Shading, 85Gouraud Interpolation, 24Halfway Vetor, 82Haloing, 58Head Light, 79Head-Mounted Devies, 175Hidden Line Rendering, 57Hierarhial Bounding Volumes, 110

Hierarhial Modeling, 131Hierarhial Z-Bu�er, 66high frequeny light, 165HMD, 175Homogenous Coordinates, 14HSV, 33hue, 31Identity Matrix, 11Illumination, 75Illumination (Textures), 155Impliit Funtions, 16inident �ux density, 71inident light, 71Index Fae List (enhaned), 116Indexed Fae Set, 114Intensity (light), 71Interative Horizon Map, 153Inverse Matrix, 11Irradiane (light), 71Irradiane Map, 161isotopi luminane, 34Isotrophi Saling, 38Jittering, 30knot points, 128Lagrange Polynomials, 18Lambert's Cosine Law, 79Last Reently Used, 157LCD, 23least rossed riterion, 55left plane, 47Level Of Detail, 134Light, 31, 70Light Map, 91Light Maps, 91Light Spae Perspetive Shadow Map,95Lighting, 74Liquid Crystal Display, 23Loal Illumination, 75LOD, 134LRU, 157luminane, 31182

Matrix Stak, 169Mirofaets, 160Midpoint Algorithm, 23Mip Mapping, 143Most Reently Used, 157Motion Blur, 103MRU, 157Multi Texturing, 156Multipliative Blending, 144Multisampling, 30near plane, 47Nearest Neighbour Interpolation, 138Noise Textures, 137normal one, 60Normalized Devie Coordinates, 46NURBS, 130Olusion Culling, 63Olusion Horizons, 66Otree Spae Partitioning, 110Omnidiretional Light, 94OpenGL, 168OpenGL Olusion Test, 65OpenGL Shading Language, 173orthogonal, 10orthogonal projetion, 10Orthographi Projetion, 47orthographi view volume, 47orthonormal, 10overblurring, 143Painter's Algorithm, 55Paraboli Map, 152Parallax Bump Map, 148Parallel Light, 77Penumbra Map, 96Per-Pixel Bump Map, 147Perentage Closest Filtering, 94Perlin Noise, 137Perspetive Interpolation, 141Perspetive Projetion, 49Phong Lighting Model, 77Phong Shading, 88Phong Speular Equation, 161Photometry, 73

photometry, 70Photons, 70Pixel, 22Pixel Shader, 171Planar Shadow, 90Plank's Constant, 70Point Lightsoure, 76Polar Coordinates, 14Polygon, 113Polygon Mesh, 113Polygon O�set, 57Portal Visibility, 65Potentially Visible Sets, 64Preomputed Radiane Transfer, 162Prefething, 157Pre�ltered Environment Map, 152Proedural Models, 131Proedural Texture, 137Projetive Transformations, 45PRT, 162Pseudoinverse, 12PVS, 64Quad Strip, 115Quadrati Matrix, 10Quaternions, 20Radiane, 72radiane, 31radiant energy, 70radiant �ux, 70Radiant Intensity, 71radiometry, 70Radiosity, 71Raster, 22Raster Display, 23Ratio, 22Ray Aeleration, 23Ray Coherene, 111Ray Traing, 104Re�etion, 42, 104reparameterization, 121RGB, 32right plane, 47Ripmapping, 144Rotation, 39183

S3TC, 157Sampling Theorem, 142saturation, 31salar produt, 10Saling, 37Sanline, 22Sanline (algorithm), 25sene graph, 131sene tree, 131Sreen Door Transpareny, 58Seed Fill, 25Shading, 84Shadow, 90Shadow Map, 91, 154Shadow Volumes, 99Shared Vertex Set, 114Sheared Perspetive, 176Shearing, 38Shutter Glasses, 175Singular Value Deomposition, 12Singular Values, 12Snell-Desartes Law, 107Soft Shadows, 96Sorted Blended Transpareny, 59speular highlight, 81Speular Light, 78Spherial Harmonis, 163Spherial Map, 151Splines, 19Spotlight, 77stalling, 167Stati Textures, 136Stenil Bu�er, 7Stohasti Sampling, 30Stripi�ation, 118Subdivision Surfaes, 131Summed-Area Table, 144Sutherland Hodgeman, 29SVD, 12Teilungsverhältniss, 22tensor produt, 10texel, 137Texture Chahe, 156Texture Compression, 157Texture Mapping, 136

top plane, 47Topology (Mesh), 113Torrane Sparrow Light Model, 83Translation, 43Transpareny, 58Transpose Matrix, 11Triangle Fan, 115Triangle Strip, 114Trilinear Interpolation, 138Tripple Bu�er, 7Tristimulus Theory, 31Tunnel (Stripi�ation), 119Uniform Spae Partitioning, 110vanishing points, 45Vetor Display, 22Vertex Cahe, 120Vertex Program, 140Vertex Shader, 171Vertex Unit, 171View Frustum Clling, 61view-up vetor, 48Viewing Diretion, 48Viewing Pipeline, 54Virtual Reality, 174VR, 174W-Bu�er, 7, 58wavelength, 31White Noise, 137Window Edge Coordinates, 27Windowing Transforms, 44Wireframe Rendering, 57XYZ, 33YIQ, 32Z-Bu�er, 7, 56Z-Bu�er Fighting, 57Z-Fail, 103Z-Pass, 102
184

