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Prefa
eThis s
ript tries to merge information on 
omputer graphi
s and intera
tive
omputer graphi
s from the le
tures, the exer
ises, the books: FundamentalsOf Computer Graphi
s (from Peter Shirley) and Real Time Rendering (fromMöller and Akenine-Haines) and last but not least intuition and idea that arosefrom talking to Professor Stamminger and talking to and the help from ChristianGraef and Arian Baer.In it I tried to present the information in the way we understood it with manyhints and pi
tures that help understanding it. I think it is a valuable se
ondaryresour
e, in 
ase you did not understand a 
ertain topi
 or want to know moreabout it.As a merge from the above sour
es the 
ontents ex
eed the le
ture at manypla
es, you simply have to de
ide for yourself how mu
h you want to know andwhere to stop (I think knowing a little bit more than ne
essary does no harm,and instead you are more self 
on�dent and get a better overall understandingof the general problems and methods of 
omputer graphi
s, be
ause they repeatover and over again in di�erent 
ontext. On
e you had this realization, you 
anrest assured that you will pass the exam splendidly).0.1 De�nitionsGraphi
sComputer Graphi
s Any use of 
omputers to 
reate or manipulate images.Modeling mathemati
al spe
i�
ation of shape and appearan
e propertiesRendering 
reation of shaded imagesAnimation illusion of motion through sequen
e of imagesIntera
tivity allowing the user to intera
t with the s
ene, immediately dis-playing the results (e.g. grab & drop) 5-6 fpsReal-Time render 
hanges in the s
ene fast enough, that illusion of motion is
reated 20-60 fpsUnitsPixel PICture ELement. The smallest unit on the s
reen.Texel TEXture ELement. The smallest unit on a texture.Fragment Before the s
ene is rendered on the s
reen it often is rendered to abu�er having a greater (theoreti
ally also lesser) resolution. Sin
e some ofthe bu�ers elements are 
ast to one pixel, we introdu
e the term fragmentfor disambiguation. 6



Bu�ersZ-Bu�er A bu�er identi
al to the framebu�er 
ontaining depth information forevery pixel. Thus by having new obje
ts 
ome into view, we 
an 
omparethe obje
t's pixels' depth with the value stored in the Z-Bu�er and drawor dis
ard them a

ordingly.W-Bu�er An alternative to Z-Bu�ering. Instead of depth value the homoge-neous perspe
tive w 
oordinate is stored. The advantage of this methodis having uniform depth values.Sten
il Bu�er The sten
il bu�er is another dupli
ate of the framebu�er 
on-taining integer values (1 byte per pixel). It is mainly used to limit thearea of rendering: Render only to pixels highlighted on the sten
il bu�er(e.g. for drawing shadows). It 
an be e�
iently 
ombined with the depthbu�er, for example every time a depth test fails in
rease the pixels integervalue on this position in the sten
il bu�er by 1.Framebu�er A 
ertain 
hunk of memory used for display on s
reen. Graphi
sintended to be written to the s
reen is written to the framebu�er.Double Bu�er Writing to the framebu�er while the monitor's photon 
annonis displaying it's 
ontent, leads to �i
kering and artifa
ts. Therefore ate
hnique 
alled double bu�ering is 
ommonly used. Graphi
s are �rstwritten to the double bu�er (another framebu�er) and on
e the photon
annon rea
hes the bottom the two bu�ers are swapped.Triple Bu�er Double Bu�ering still 
an lead to artifa
ts: Image the pipelinejust writing to the double bu�er, when it is swit
hed with the framebu�er.In this 
ase no �i
kering will be seen, but depending on the amount of
hange, the s
ene's integrity will be broken for an instant. Thereforetriple bu�ering was suggested. The rendering is started on the triplebu�er, on
e a s
reen update has been made, double and triple bu�er areswapped and rendering is 
ompleted on the double bu�er, then in thenext step it is displayed to the viewer. Another advantage is that duringthe rendering of the double bu�er, the triple bu�er 
an be 
leared, whi
htakes an 
onsiderable amount of time. Therefore using triple bu�eringmore frames per se
ond 
an be displayed than using double bu�ering. Adisadvantage you should take into a

ount is the laten
y of 3 frames. Auser 
ommand/input will only have no e�e
t on the next two frames.A

umulation Bu�er A bu�er used to gather images of an obje
t with setoperations. It is mainly used to generate motion blurs, but also for softshadows or depth antialiasing. Usually out of this set a single image withhigher pre
ision is 
reated in
luding the motion blur e�e
t.G Bu�er A bu�er used for deferred shading (see 8.4.4). In short in it we storeevery pie
e of information we need for an a

urate lighting 
omputation,so that we are able to perform the lighting stage anywhere in the pipeline.7



Some words on the required memory. If we assume 1280x1024 pixels with true
olor, results in 8 bit per 
olor 
hannel = 3.75 MB. Using double bu�ering weneed twi
e as mu
h: 7.5 MB. The Z-Bu�er with 24 bit per pixel requires 3.75MB. Adding an a

umulation bu�er with 48 bit and a sten
il bu�er with 8 bitper pixel would result in 8,75 MB. Summing up to a total of 20 MB.ComputerCPU Central Pro
essing UnitGPU Graphi
s Pro
essing UnitFLOPS Float Operations Per Se
ond0.2 BibliographyFundamentals of Computer Graphi
s by Peter Shirley (Se
ond Edi-tion)A very good book that 
overs all the basi
s. If even with this s
ript you havenot 
ompletely grasped a 
ertain topi
 about the very fundamentals, open thebook and read the whole 
hapter about it. If however this topi
 of yours is alsoto be found in the book Real Time Rendering (see below), try the other one�rst. Although Shirley and Friends give real good explanations, the authors ofthe Real Time Book even surpass his explanations.A word on the edition. The �rst edition was written by Shirley alone, these
ond one by Shirley and seven other authors, whi
h added some minor 
hangesto existing 
hapters and added 
ompletely new 
hapters on their own. So tryto get hold of the se
ond one.Real Time Rendering by Tomas Akenine-Möller and Eri
 Haines (Se
-ond Edition)In my opinion this book even surpasses Shirley's. The authors really give in-tuitive and splendid explanations going hand in hand with huge amounts ofex
ellent pi
tures, �gures and graphi
s illustrating what is being explained.Furthermore they 
over the topi
s really good and 
an enri
h your knowledgeabout the topi
s 
overed in the le
ture. I've almost read through all the 
haptersand did never regret even one. If I didn't understand a topi
 with the slides andthe le
ture, I usually did understand it after reading through the 
orresponding
hapter, if existing.Other Resour
esApart from the slides you have from the le
ture, you should from time to timetry to �nd di�erent explanations of illustratory applets with google.The page of the le
ture of Professor Stamminger (Intera
tive Computer Graph-i
s http://www9.informatik.uni-erlangen.de:81/Tea
hing/SS2006/InCG/8



Material) o�ers a great fundus of additional free internet resour
es. Alsothe page of Möller's and Haines' Book (Real Time Rendering http://www.realtimerendering.
om/) and of Shirley's book (Fundamentals Of ComputerGraphi
s http://www.
s.utah.edu/~shirley/books/f
g2/) o�er ni
e slidesbased on their books and various other helpful links. Last but not least Wikipediafrequently helps with di�erent approa
hes to topi
s.0.3 CopyrightThis do
ument is to be seen as OpenSour
e and I would be happy if anyonede
ides to enri
h this s
ript by adding additional 
on
epts, better explanationsor additional examples and illustrations and of 
ourse 
orre
ting all the mistakes,that I made. The sour
es (.lyx or .tex) 
an be a
quired by writing a short e-mail to me: . However as in the GNU-Li
en
e, I hereby fobidanyone to postulate money for this do
ument or use parts from it for 
ommer
ialworks. It is meant to be a free help for students all over the world and it shouldremain free.1 Appli
ationMovies
omputer generated foregrounds, Animations, spe
ial e�e
tsGamesthe drive behind graphi
s developmentComputer Aided Design (CAD)ar
hite
ture, produ
ts, 
ars, planes, me
hani
al partsEdu
ation & Trainingsimulation of realisti
 environments, �ight simulatorVisualizationmedi
al appli
ations: model ling of (parts of) the human bodyVirtual Reality (VR)Immersion, response to head motion, stereo pi
tures, additional 
omponents(Sound, For
e Feedba
k)
9



2 Math2.1 Ve
tors2.1.1 Propertiesorthogonal ve
tors building a right angle: ~u · ~v = 0orthonormal orthogonal ve
tors having length 1: ~u ·~v = 0 and ‖~u‖ = ‖~v‖ = 1
onstru
tion use Gram-S
hmidt Orthognoalization / Orthonormalization2.1.2 Operationslength ‖~a‖ =
√

a2
x + a2

y + a2
zs
alar produ
t ~aT ·~b = ‖~a‖
∥

∥

∥

~b
∥

∥

∥ cosφusage: 
ompute the angle between two ve
tors.
~aT ·~b =





b1
b2
b3





(

a1 a2 a3

)

a1b1 + a2b2 + a3b3tensor produ
t ~a ·~bT = Mn×nusage: 
ombine two ve
tors to a matrix. e.g. for 
ombining two 1Dfun
tions to one 2D one (see Bézier Curves & Splines 10.2).
~a ·~bT =

(

a1 a2 a3

)





b1
b2
b3









a1b1 a2b1 a3b1
a1b2 a2b2 a3b2
a1b3 a2b3 a3b3




ross produ
t ∥∥∥~a×~b∥∥∥ = ‖~a‖
∥

∥

∥

~b
∥

∥

∥ sinφusage: 
ompute a third ve
tor perpendi
ular to ~a and ~b (3D)orthogonal proje
tion ~a→ ~b = ~a·~b
‖~b‖ = ~a · cosφ2.2 Matri
es

A =

[

a11 a12

a21 a22

]Quadrati
 An×m where n = m 10



Identity An×n having 1 on the diagonal and 0 everywhere else
I2×2 =

[

1 0
0 1

]Transpose AT : An×m → Am×n swit
h rows with 
olumnsAdjoint Ā. This matrix has the entries
aij := det (Aij) ·

{

−1 if (i+ j) odd
1 if (i+ j) evenwhere Aij means the matrix resulting from A when removing the ith rowand the jth 
olumn. The resulting matrix is 
alled the 
ofa
tor matrix.Take its transpose to get the adjoint matrix Ā.The adjoint has the following ni
e property:

A · Ā = det (A) · InInverse A ·A−1 = I

A−1 =
1

det (A)
Ā2.2.1 DeterminantsVe
torsThe determinant of two ve
tors, ~a,~bis a parallelogram.

∣

∣

∣~a~b
∣

∣

∣ = xayb − yaxbHaving three ve
tors it is a 
ube with parallel parallelograms as sides.
∣

∣

∣~a~b~c
∣

∣

∣ = xaybzc − xayczb − xbyazc + xcyazb + xbycza + xcybzaMatri
esThere are several methods to 
ompute the determinant of a given matrix. Lookthem up in a linear algebra s
ript.2.2.2 Eigenvalues & Eigenve
torsCondition matrix A has to be quadrati
.11



Eigenvalues
A~x = λ~xwhere λ is 
alled eigenvalue.

A~x = Iλ~x
(A− λI) ~x = 0










a11 − λ a12 a13 · · ·
a21 a22 − λ a23 · · ·
a31 a32 a33 − λ · · ·... ... ... . . .  x1

x2

x3... 







solve this to get λ1 . . . λn.Eigenve
torsPlug in λ1 . . . λn into A results in the eigenve
tors.Singular Value De
omposition (SVD)For non quadrati
 matri
es.Bene�t singular values, eigenvalues, orthonormal basis, pseudo inverse, 
ondi-tionSingular Values σfor symmetri
 matri
es they are equal to the eigenvaluesin 
ase A is not quadrati
 we have A = MMT and thus the singular valueswould be σMMT =
√
λADe
ompose A ∈ R

n×m into A = UΣV T , where
Σ =





σ1

σ2

σ3



with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0
U ∈ Rm×n and U · UT = I (orthonormal 
olumn ve
tors)
V ∈ Rn×n and V · V T = V T · V = I (orthonormal 
olumn and row ve
tors)Condition κ := σ1

σnIf κ is 
lose to one, the problem is well 
onditioned, if it is large the problem isunstablePseudoinverse At = V Σ′UT where Σ′ results from Σ when repla
ing all sin-gular values by their re
ipro
al values (σi | 1
σi

→ Σ′
)

12



2.3 Coordinate Systemsworld without expli
itly storing the 
oordinates of the origin, we usually haveone world 
oordinate system, where lo
al obje
t 
oordinate system will bepla
e in.lo
al a lo
al 
oordinate system refers to an obje
t. If it is pla
ed in a world
oordinate system, a mapping must be made to a

ess points in the obje
trelative to the world 
oordinate system.eye a perspe
tive spa
e with viewing 
oordinates.s
reen the s
reen spa
e is the 
oordinate system of the 
omputer s
reenmapping
Figure 1: mapping from one 
oordinate system into anotherThe world origin is o, the lo
al one e. The world basis ve
tors are denoted

x, y, z, the lo
al ones u, v, w. Then
e = (xe, ye, ze) = o+ xe · x+ ye · y + ze · zAdditionally the lo
al 
oordinate system may be rotated. Model ling bothrotation and translation by a matrix we 
an easily move forwards and ba
kwardsthrough di�erent 
oordinate systems (see 5).Example





px

py

1



 =





1 0 ex

0 1 ey

0 0 1









ux vx 0
uy vy 0
0 0 1









pu

pv

1



Mapping the eye spa
e to the s
reen spa
e requires a mapping to the viewfrustum (a unit 
ube) with normalized 
oordinates �rst.2.3.1 Cartesian CoordinatesWe use a orthonormal basis ve
tor system, with the three basis ve
tors x-axis
(1, 0, 0), y-axis (0, 1, 0) and z-axis (0, 0, 1).

p = (x0, y0, z0) = x · x0 + y · y0 + z · z013



2.3.2 Polar CoordinatesWe use two parameters to des
ribe any point in the 
oordinate system: distan
efrom the origin r and angle between 
oordinate axes and the ve
tor φ.
p = (r0, φ0)2.3.3 Bary
entri
 CoordinatesMainly used for interpolating 
olor values on triangles. We use non-orthogonalbasis ve
tors. a is the origin and (b− a) and (c− a) the basis ve
tors.

p = (β, γ) = a+ β (b− a) + γ (c− a)

p = (1 − β − γ)a+ βb+ γc

α ≡ 1 − β − γ

p = αa+ βb+ γcresulting in the 
onstrain that α+ β + γ = 1.2.3.4 Homogeneous CoordinatesUsed for matrix transformations. They are based on proje
tive geometry and ir-repla
eable useful in graphi
 transformations. The idea is to arti�
ially in
reasethe dimension.So being in 2D, we would result in having three 
oordinates
(x, y) → (x, y, 1)where 1 is the homogeneous 
oordinate. See (x, y, 1) as the line α · x, α · y, α |

α ∈ R
3Dire
tion And Lo
ationThe homogeneous 
oordinate w a
ts as a kind of pointer to a lo
ation (trans-lation from the origin). But often we want a ve
tor to store a dire
tion ratherthan a lo
ation. In the latter 
ase we simply set w = 0 ind the �rst 
ase w = 1.DehomogenizationIf our ve
tor is ~p =









x
y
z
w









, the dehomogenized ve
tor is ~p =





x
w
y
w
z
w





14



PropertiesHomogeneous 
oordinates have some very useful properties justifying their usage
• any two lines interse
t in one point
• points at in�nity
• a�ne transformation be
ome linear
• preserves 
ross-ratio2.3.5 MappingsCartesian -> Bary
entri


[

xb − xa xc − xa

yb − ya yc − ya

] [

β
γ

]

=

[

xp − xa

yp − ya

]Imagining a lines AC and AB passing through a bary
entri
 triangle, we 
anget β, γ and α by:
β =

fac (x, y)

fac (xb, yb)

γ =
fab (x, y)

fab (xc, yc)

α = 1 − β − γwhere fab (x, y) 
an impli
itly written as
fab (x, y) = (ya − yb)x+ (xb − xa) y + xayb − xbya = 0A third possibility is using areas Aa, Ab, Ac resulting from drawing lines fromthe 
enter to the three points (A = Aa +Ab +Ac):

α =
Aa

A
=
~n · ~na

‖~n‖2

β =
Ab

A
=
~n · ~nb

‖~n‖2

γ =
Ac

A
=
~n · ~nc

‖~n‖2in the 3D 
ase, we 
an use normal ve
tors instead of the area.
15



2.4 Impli
it Fun
tionsImpli
it LinesThe 
ommon line de�nition is:
y = m · x+ tthe impli
it form is easily obtained by:

y −m · x− b = 0where m is the slope (Steigung) and b the y-value, where the line 
rosses the
y-axis.Sin
e this form still la
ks some lines like x = 0 where m would be in�nitelarge, we advan
e to the more general

ax+ by + c = 0Any point (x0, y0) on this line must satisfy the equation: ax0 + by0 + c = 0Distan
e Point to Line:The distan
e from point (x1, y1) to the line ax+ by + c = 0 isdistan
e =
f (x1, y1)√
a2 + b2If (a, b) is a unit ve
tor, the distan
e is dire
tly given by f (x, y).Impli
it Cir
lesA 
ir
le with 
enter (cx, cy) and radius r has the impli
it form

(x− cx)
2

+ (y − cy)
2 − r2 = 0Impli
it EllipsisA ellipse with 
enter (cx, cy) and minor and major semi-axes a and b

(c− cx)
2

a2
+

(c− yx)
2

b2
− 1 = 0Given: fun
tion f (x, y, z), point ~p = (x, y, z)Surfa
e NormalThe surfa
e normal is given by the gradient

~n = ∇f (x, y, z) =

(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)16



Impli
it Planes
P : (~p− ~a) · ~n = 0A plane P given by three points ~a,~b,~c

~n =
(

~b− ~a
)

× (~c− ~a)

P : (~p− ~a) ·
((

~b − ~a
)

× (~c− ~a)
)

= 0Impli
it Spheres
f (x, y, z) = (x− cx)

2
+ (y − cy)

2
+ (z − cz)

2 − r2 = 02.5 Parametri
 Fun
tionsParametri
 Fun
tions use parameters to des
ribe the fun
tion.Parametri
 LinesA parametri
 line passing through points p0 = (x0, y0) and p1 = (x1, y1) 
an bewritten as
[

x
y

]

=

[

x0 + t (x1 − x0)
y0 + t (y1 − y0)

]

p (t) = p0 + t (p1 − p0)Parametri
 Cir
lesA 
ir
le with 
enter (cx, cy) and radius r 
an be written as
[

x
y

]

=

[

cx + r · cosφ
cy + r · sinφ

]Parametri
 Ellipsis
[

x
y

]

=

[

cx + a · cosφ
cy + b · sinφ

]3D parametri
 surfa
es have the form
x = f (u, v)

y = g (u, v)

z = h (u, v)17



Parametri
 SpheresConsider a sphere, that's 
enter is at the origin having radius r
x = r · cosφ sin θ

y = r · sinφ cos θ

z = r · cos θwhere φdenotes the longitude (angle between x-axis the y-axis and the ve
tor onthe xy-plane) and θ denotes the latitude (angle between the z-axis the xy-planeand the ve
tor). See FoCG p.41 .
θ = acos

(

z
√

x2 + y2 + z2

)

φ = acos (y, x)By that we get
~x = r ·





r · cosφ sin θ
r · sinφ cos θ
r · cos θ



+ ~c2.6 Curveslinear p (t) = c1t+ c0quadrati
 p (t) = c2t
2 + c1t+ c0
ubi
 p (t) = c3t

3 + c2t
2 + c1t+ c02.7 PolynomialsBernstein

Bn
i (x) =

(

n
i

)

(1 − x)
n−i

xiLagrange
Li (x) =

n
∏

j = 0
i 6= j

x− xj

xi − xjLegendre
Pn (x) =

1

2πi

∫

√

(1 − 2tx+ t2)t−n−1dt

18



Splines
b0 (t) =

1

6
t3

b1 (t) =
1

6
·
(

−3t3 + 3t2 + 3t+ 1
)

b2 (t) =
1

6
·
(

3t3 − 6t2 + 4
)

b3 (t) =
1

6
·
(

1 − t3
)

bn (t) = (n+ 1)

n+1
∑

i=0

ωi,n (t− ti)
nwhere

ωi,n =

n+1
∏

j = 0
j 6= i

1

tj − ti2.8 Linear InterpolationLinear Interpolation is the pro
ess of passing through a geometri
 surfa
e by aparameter t.E.g. as we have already seen:
p = (1 − t) a+ t · bis a linear interpolation. It is linear, be
ause t and t− 1 are linear polynomialsof t.Interpolating through a set of points on the x-axis having assigned a height

yi to ea
h point xi, interpolating over those height values, we get
f (x) = yi +

x− xi

xi+1 − xi

(yi+1 − yi)Conse
utively you 
an think of the x-values as 3D ve
tors and the y-values as
olor values.2.9 TrianglesTriangles usually are the fundamental primitives for graphi
s programs. Most
ommonly their verti
es store a 
olor value, whi
h is then interpolated a
ross thetriangle. To make this interpolation straight forward, we will use bary
entri

oordinates.Given: triangle △ABC 19



Area(2D) area = 1
2 |xayb + xbyc + xcya − xayc − xbya − xcyb|Internal Point a point p is inside the triangle if and only if 0 < α < 1,

0 < β < 1, 0 < γ < 1.Edge one point is zero, the other two between zero and oneVertex two points are zero, the other one is oneNormal Ve
tor ~n =
(

~b− ~a
)

× (~c− ~a) (a ve
tor perpendi
ular to the triangleedges)Area(3D) area = 1
2

∥

∥

∥

(

~b− ~a
)

× (~c− ~a)
∥

∥

∥2.10 QuaternionsThe quaternions H 
an be seen as an extension to the body of 
omplex numbers
C. Quaternions Complex Numbers

H = R × R
3

C = R × R

q = (q0, ~q) = a+ ib+ jc+ kd z = x+ iy
n+ = (0,O) n+ = (0, 0)
n· = (1,O) n· = (1, 0)

i· = 1
|q| (q0,−~q) i· = 1

|z| (x,−y)
q = |q| (cos (t) , sin (t) · ~n0) z = |z| (cos (t) , sin (t))2.11 Mis
ellaneousAngleThe angle θ of a 
ir
ular ar
 of length l and radius r is equal to

θ =
l

r
[rad]Example: Cir
le

l = 2πr
θ = l

r
= 2πr

r
= 2π [rad]

20



Solid Angle

Figure 2: solid angleA solid angle is the equivalent to the angle in 3D. The angle Ω witha spheri
al area a is equal to
Ω =

a

r2
[stearradians]Example: Sphere

a = 4πr2

Ω = a
r2 = 4πr2

r2 = 4π [sr]Solid Angel Di�erential

Figure 3: Solid Angle Di�erentialFor light purposed we need to di�erentiate the solid angle:21



ar
 length [θ, θ + dθ] : rdθar
 length [φ, φ + dφ] : r sin θdφarea di�erential dA = (rdθ) (r sin θdφ) = r2 sin θdθdφangle di�erential dω = dA
r2 = sin θdθdφ [sr]We 
an use this result to integrate over the entire sphere and get the solid angle

S

S =

∫ π

0

∫ 2π

0

sin θdθdφ = 4π [sr]Ratio (Teilungsverhältniss)Having three points A1, A2, A3 on a line, we have the ratio
|A1A2|
|A2A3|Crossratio (Doppelverhätniss)Having four points A1, A2, A3, A4 on a line, we 
an de�ne a 
rossratio
|A1A2|
|A2A3|
|A2A3|
|A3A4|3 Raster AlgorithmsPixel (pi
ture element) a single element of a raster display indexed by rowand 
olumn (i, j)Raster re
tangular array of pixelsS
anline row of pixels in the raster3.1 Display Types3.1.1 Ve
tor Displayadvan
ed os
illos
ope, 
ontrolled by horizontal/verti
al plate voltage, 
reationof whole obje
ts (i.e. ve
tors) instead of single pixels+ high resolution, intera
tivity, s
aling- few 
olors, wire frames without surfa
es, low 
omplexity, expensive
22



3.1.2 Raster DisplayCathode Ray Tube (CRT) traditional monitor with blobby pixels asso
i-ated with a pat
h of phosphor, that's glow depend on the ele
tron beam'sintensity (
olor CRTs have three beams red, blue, green)Liquid Crystal Display (LCD) almost perfe
t squares a
t as �lters, whi
hvary their opa
ity to darken a ba
k light. They do this by liquifying whenshot at with heatFramebu�er memory array in whi
h an image is stored, before it is displayedon the s
reen+ �lled surfa
es, 
olor variation per pixel (lighting, shading), real time refresh- aliasing: artifa
ts, moire patterns, di�
ult sele
tive update, dis
rete sampling,jaggies3.2 Line RasterizationGiven start and end point, we want an algorithm that draws a line betweenthem. Usually only integers are respe
ted (i.e. whole pixels are used for theline).Ray A

elerationDraw every pixel the line tou
hes.+ fast- uglyBresenham Algorithm (Midpoint Algorithm)Makes use of a impli
it form of the line:
f (x, y) = (y0 − y1)x+ (x1 − x0) y + x0y1 − x1y0 = 0where (x0 < x1). The key idea of the algorithm is the line's slope m

m =
y1 − y0
x1 − x0The algorithm assumes the line to pro
eed more horizontally than verti
ally fromstart to end point, so the next pixel is either on the same level (x+ 1, y) or oneabove (x+ 1, y + 1). All other 
ases 
an be dedu
ed straight forwardly (e.g. forthe verti
al 
ase, swit
h y and x. Now the idea is to look at the midpoint betweenthose 
andidates (x+ 1, y + 0.5) and 
ompute whether the line goes above orbelow it and make a de
ision a

ordingly. We 
an get the distan
e betweenpoint and line as explained in 2.4 by simply evaluating f (x+ 1, y + 0.5). Sin
e23



x1 > x0, (x1 − x0) will always be positive. Thus we 
an read whether the line isbelow or above the point, by looking if (x1 − x0) y has in
reased or de
reased.Algorithm 1 Bresenham Algorithm
y = y0for x = x0to x1 dodraw(x, y)if(f (x+ 1, y + 0.5) < 0) then

y = y + 1For more e�
ien
y, we 
an reuse previous results using the following properties
f (x+ 1, y) = f (x, y) + (y0 − y1)
f (x+ 1, y + 1) = f (x, y) + (y0 − y1) + (x1 − x0)

y = y0
d = f (x0 + 1, y0 + 0.5)for x = x0to x1 dodraw(x, y)if(d < 0) then

y = y + 1
d = d+ (y0 − y1) + (x1 − x0)else
d = d+ (y0 − y1)We still have a real operation when adding 0.5, yet the 
ode uses only integersapart from that. We 
an outmaneuver this by multiplying with 2.

d = 2f (x0 + 1, y0 + 0.5)

d = d+ 2 (y0 − y1) + 2 (x1 − x0)

d = d+ 2 (y0 − y1)If the line is very diagonal, it will have fewer pixels than a straight line and thusappear less bright. As a solution you may take the distan
e to the midpoint dand use it to adjust the pixels brightness a

ording to d. For grey-s
ale 
olor
1√

2 cos α
has proven to be a good 
ompensation.3.3 Triangle RasterizationGouraud InterpolationDetermine the triangles pixels 
olors by interpolating the 
olor at it's verti
es:

c = αc0 + βc1 + γc2where (α, β, γ) are the pixel's/point's bary
entri
 
oordinates (see 2.3.3).24



If the pixel is on the edge of two adja
ent triangles, there is no �right one� toassign it to. Therefore we just de
ide for one of them, as long as the de
ision iswell de�ned. One solution is to 
hoose a random o� s
reen point, and make thede
ision depending on it's position.AntialiasingThe edges of triangles will appear pretty �jaggy� blurry on the s
reen. A simplesolution for this problem is to allow pixels to be half on (αvalue).Box Filter: One easy method is to underlay a re
tangle and use it as a�lter, where the pixel's 
olor is set to the average values inside the re
tangle.3.4 Polygon RasterizationIf we are dealing with polygons in general rasterization is getting a bit thougher.Our task is still to draw all pixels within a polygon.Seed FillAlgorithm 2 Seed Fill1. draw polygon edges with the Bresenham algorithm (see 3.2)2. randomly pi
k a point within the polygon and draw it3. 	 re
ursively 
he
k all neighbouring pixels for being inside and draw them- deep re
ursion (sta
k over�ow), ine�
ient, no shading2D S
an ConversionUse the edges to partition the s
reen into out
ode areas and apply α-
lipping(see 3.5), painting every pixel inside.- a lot of useless 
omputation, highly ine�
ient+ slightly better when using small s
reen bounding boxes, instead of the entires
reenS
anlineThe idea is to pro
eed s
anline per s
anline from bottom to top, to �nd interse
-tions with the polygon and draw between the interse
tion points. The x-valueto start the line at 
an be determined by storing the lowest x-
oordinate of theedges and keep this one up to date by adding the re
ipro
al slope 1
m

= ∆x
∆y

ea
htime we 
limb a line higher. 25



Edge Table a list of all edges of the form
ylower xlower yupper 1

m
= ∆x

∆y
֌next edgethese nodes are sorted by ylower. 1

m
is the in
rement required to step a linehigher.A
tive Edge Table a list of edges that are interse
ting with the 
urrent s
an-line

xinterse
t yupper 1
m

= ∆x
∆y

֌next edgesorted by xinterse
t. The 
urrent interse
tion point is (xinterse
t, ys
an)Algorithm 3 S
anline1. initialize Edge Table (ET)2. set A
tive Edge Table (AET) to ∅: AET = NULL3. draw all horizontal lines4. ys
an = ylower of the �rst ET entry5. do
• move all edges with ys
an == ylower from ET to AET
• sort AET
• draw lines:� AET[0℄.x, ys
an to AET[1℄.x, ys
an� AET[2℄.x, ys
an to AET[3℄.x, ys
an� · · ·
• ys
an + +

• remove all edges with yupper ≤ ys
an from the AET
• x = x+ 1

m

	 while AET 6= ∅+ fast, e�
ient, allows a good 
ombination with shading3.5 Line ClippingThe task of 
lipping is, to only draw what is inside the visible area (e.g. there
tangle of the monitor). Now we haven given start and end points of lines, ifthey're both inside the 
lipping re
tangle, we draw the line. Yet even if theyare both outside, it is not given, that the line between does not 
ross the visiblere
tangle. 26



Cohen SutherlandWe partition the image into nine areas by lengthening the re
tangles edges.Then we assign ea
h area with an out
ode (see �gure).
Figure 4: out
odes for the 
lipping re
tangleThe four Boolean 
orrespond to: |x < xmin| |x > xmax| |y < ymin| |y > ymax|where

xmin, ymin, xmax, ymax refer to the lower left and the upper right 
orner of the
lipping re
tangle.Algorithm 4 Cohen Sutherland1. determine the out
odes for the start and end points P1 and P22. 
he
k Trivial A

ept: both points are inside
outcode (P1) ∨ outcode (P2) = 0

→ draw the entire line3. 
he
k Trivial Reje
t: both points are outside in respe
t to one edge
outcode (P1) ∧ outcode (P2) 6= 0

→ draw nothing4. �nd interse
tion points S1, S2 where the line interse
ts with edges. Repla
e
Pi by the nearest interse
tion point.
	 restart at 1.

α-
lipping
α-
lipping adds an Improvement to the Cohen Sutherland algorithm by intro-du
ing Window Edge Coordinates (WEC) For both points of the line wedetermine four WECs: WECleft (P ) = px − xminWECright (P ) = xmax − px27



WECbottom (P ) = py − yminWECtop (P ) = ymax − pyIf WECE (P ) < 0 then P is outside in respe
t to edge E. This 
an be used foran e�
ient out
ode generation.For α-
lipping we 
hoose the parameter form of a line: P1P2 = {p = p1 + α (p2 − p1) , α ∈ [0, 1]}.The value of this parameter α for getting an interse
tion point S with an edge
E 
an be determined by

αS =
WECE (P1)WECE (P1) −WECE (P2)Algorithm 5 α-
lipping1. 
ompute the eight WEC for P1 and P22. 
ompute the out
odes (take the sign of the WECs)3. 
he
k Trivial A

ept and Trivial Reje
t4. αmin = 0, αmax = 15. 	 for every E where an out
ode is set

• αS = WECE(P1)WECE(P1)−WECE(P2)

• if outcodeE (P1) → αmin = max {αmin, αS}
• else if outcodeE (P2)→ αmax = min {αmax, αS}6. if αmin > αmax → return empty lineelse → return (p1 + αmin · (p2 − p1) , p1 + αmax · (p2 − p1))If we are dealing not with an re
tangle, but with a Convex Clipping Domainwe simply apply α-
lipping with one WEC per edge. If however, we have aCon
ave Clipping Domain we have to partition it into 
onvex ones andmerge the results.

Figure 5: reversed 
lipping in a x-window system28



In X-window systems we often have multiple windows overlapping. In this 
asewe may also apply α-
lipping, yet we have to reverse the results (do not drawwhat's inside).3.6 Polygon ClippingSimilar to line 
lipping, but now we have a 
omplete polygon to 
lip against a
lipping re
tangle.Sutherland HodgemanThe idea is to 
lip against all edges 
onse
utively and when appropriate addinterse
tion points or polygon verti
es to the �nal set of verti
es. Doing this wehave to di�erentiate four di�erent 
lasses:
Figure 6: Sutherland Hodgeman Classesinside/inside add Pi+1 to the set of verti
esinside/outside 
ompute and add interse
tion point Soutside/inside 
ompute interse
tion point S and add S and Pi+1outside/outside do nothingDoing this 
he
k 
onse
utively for all verti
es (P1P2 → P2P3 → · · · → PnP1)for all four edges, we 
an return a set of verti
es de�ning the visible polygon.3.7 CullingWhen an entire triangle lies outside the view volume, it 
an be 
ulled. Cullingmeans elimination of a triangle or a whole obje
t from the pipeline. See theChapter about O

lusion & Visibility 7.7.3.8 AntialiasingIn general aliasing o

urs when Nyquist's sampling theorem was hurt (see 11.5.1),therefore the best way, if possible, is to use a higher sampling frequen
y.
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3.8.1 LineLine's often appear often jagged having aliasing artifa
ts. Methods to 
ounterthis are:
• treat them as a one pixel wide quadrilateral blended with the ba
kground
• 
onsider an in�nitely thin obje
t with a halo
• use a anti aliased texture3.8.2 S
reen BasedA te
hnique often used for s
reen based antialiasing is weighted interpolation ofneighbouring pixels:

p (x, y) =

n
∑

i=1

ωic (i, x, y)where ωi are weights des
ribing the 
ontribution of a neighbouring pixel and
c (i, x, y) returns the 
olor of neighbouring pixel i. Note that the weights haveto sum up to 1: ∑n

i=1 ωi = 1.Other methods in
ludeFull S
ene Antialiasing (FSAA) Render the image at a higher resolutionand average neighbouring pixels. This is usually 
ombines with Mip-Mapping (see 11.5.2), but instead of 
hoosing the Mip-Map level by thelonger side of the parallelogram, we take the smaller side and thus 
hoosea Map in higher resolution than usual, but also render the obje
t in higherresolution than the �nal image on the s
reen has. Now for every pixel inthe s
reen we 
he
k the n 
losest fragments in the higher resolution imageand average them to determine the pixel's value at the 
urrent position.The more parallel fragment pipelines we have, the more e�
ient this nper 1 look-up 
an be realized.Anisotropi
 Filtering see FSAA aboveA

umulation Bu�er Use the a

umulation bu�er (see 0.1) to use multiplepasses blending over ea
h otherMultisampling 
ompute a polygon's grid 
overageSto
hasti
 Sampling (Jittering) instead of sampling uniformly, sample ran-domly. This results in uniform noise added to the resulting image, but thehuman vision system is very forgiving to uniform (or white) noiseGamma Corre
tion see next 
hapter 4.8
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4 ColorColor as per
eived by human being is always a three dimensional problem, sin
ethe human eye di�erentiates three kinds of 
ones for 
olor per
eption and rods,sensors dete
ting brightness and darkness (Tristimulus Theory). Ours areespe
ially sensitive to red, green and blue.8 Bit Byte entries in a pseudo 
olor framebu�er point to a look-up table with
olor values24/32 Bit 1 Byte per 
olor (True Color)Using multipass rendering te
hniques the 
olor depth be
omes espe
ially impor-tant. If the pre
ision (depth) used for one pixel's 
olor is to low, nasty visiblequantization artifa
ts will o

ur.4.1 LightSeeing works with light entering the eye hitting the retina. We des
ribe thislight signal and its wavelength as the radian
e.radian
e L (λ) radian
e is the intensity of light with a 
ertain dire
tion andwavelengthwavelength λ = c
f
with c as the speed of light and f as frequen
y.light has a huge spe
trum of wavelengths, of whi
h a small part are visibleas 
olor. Other spe
tra are UV, infrared, mi
rowaves, radio waves, x-rays,gamma-rayshue the seen 
olor, i.e. the dominant wavelength. E.g. the hue of pink is red.saturation 
olor intensity (how far is it from grey of equal intensity)brightness the light energy, the emitted light. It is also 
alled luminan
e.E.g. darkblue and lightblue.ResponseThe human eye per
eives light not linearly, but is more sensitive to 
ertainspe
tra; whi
h also is true for 
ameras. Therefore we 
an de�ne a response tolight: response = k

∫

w (λ)L (λ) dλwhere w (λ) is the response fun
tion and k a hardware dependent (organi
 de-pendent) 
onstant.ColorThe phenomena of 
olor is based on di�erent wavelengths of light. E.g. red isaround 4.3 · 1014 outcode 31



4.2 RGB
Using red, green and blue (RGB) as basis 
olors, we have an additive 
olorsystem. This is suited for monitors, whi
h work with additive light.4.3 CMY
Having a
tual paint, like with printers, we fall ba
k to the well known subtra
tive
olor system. For this is is 
ommon to use 
yan, magenta and yellow (CMY) asthe three basis 
olors.CMYKOften the CMY model is extended by the 
olor bla
k. This model is mainlyused for printing devi
es, sin
e it would be more 
ostly to mix bla
k out of 
yan,magenta and yellow.4.4 YIQThe YIQ 
olor model is traditionally used in NTSC-television. The variable Ysolely 
ontains the luminan
e ne
essary for bla
k & white television and I, Qhold additional 
olor information.
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4.5 HSV
The Hue, Saturation, Value (Brightness) 
olor model is a more intuitive 
olormodel derived form the RGB model. In the HSV model 
olor is more de�ned byit's properties (hue, saturation and brightness) than parted into three di�erent
olors.hue given as angle between [0◦, 360◦]saturation the distan
e from grey [0, 1]value from white to bla
k [0, 1]4.6 XYZ

The XYZ 
olor model is based on the Tristimulus Theory and attempts tostandardize 
olor values. In 
ontrast to physi
al reality the CIE1 developed amodel in whi
h any linear 
ombination between 
olors is possible, even if it is
ontradi
ting reality. In addition there is one grey light without hue information(
olor saturation) and two with zero luminan
e and only hue information. Wehave
X/Y/Z = 683

∫ 800

380

x̄/ȳ/z̄ (λ)L (λ) dλwhere 683 is a 
onstant to 
onform luminan
e standards and [380, 800] is therange of visible light. Y returns the luminan
e (brightness). The big advantage1Commssion Internationale de L'E
lairage33



of this approa
h is that in 
ontrast to the previously dis
ussed models, thismodel is hardware independent.

Figure 7: Comparison with the RGB 
olor modelIn 
ontrast to other models the XYZ is therefore able to model every visi-ble 
olor, however monitors are not, sin
e they are limited to the 
olors they
an produ
e by adding three light beams. The triangle represents the monitorgamut.There is an addition 
alled isotopi
 luminan
e. This is what you see at night,when you look at a world lit by moonlight. Although it is not possible to dedu
ethe isotopi
 V dire
tly from X,Y, Z there is a good approximation
V = Y

[

1.33

(

1 +
Y + Z

X

)

− 1.68

]Alternatively you 
an add V as fourth value.4.7 Alpha BlendingThe α refers to the degree of visibility of a pixel. If a pixel is only half visible(α = 0.5), we want to see half of the pixel behind it (e.g. glass, water). Having
cf referring to the foreground pixel's 
olor and cb to the 
olor of the ba
kgroundpixel, we get a kind of interpolation:

c = αcf + (1 − α) cb4.8 GammaMonitors are non-linear in respe
t to the input intensity a (0.5 input intensity
an be displayed as 0.25). This degree of freedom is referred to as gamma value
γ. displayed intensity = M · aγ34



where M is the monitors maximum intensity.
a = 0.5γ → γ =

ln 0.5

lnαTo �nd a you 
an for example let your monitor display two images: a bla
k &white 
he
kerboard pattern and a grey value image at intensity 0.5. Fiddling onthe intensity you 
an �nd the grey value that 
orresponds to the 
he
kerboard,whi
h will also look like grey. Having this you 
an dedu
e a.Having γ we 
an 
orre
t this non-linearity by the transform a = a
1

γWithout Gamma Corre
tion we will en
ounter the following phenomena:
• 
olor interpolation is not linear (without Gamma Corre
tion mid toneswill appear too dark)
• 
olor �delity: 
olors will di�er from their true hue
• distan
e-squared fall-o�: 
olors fade out to darkness way too fast
• dithering: blending of 
olors (see S
reen Door Transparen
y 7.6), appearsonly with 
olor depths below 24bit
• aliasing (Attention: gamma anti-aliased images for CRTs look jagged onLCDs)
• problems with the use of anti-aliased textures (MipMapping has to takegamma 
orre
tion into a

ount)4.9 FogThere are four arguments for using fog:1. in
reasing realism2. helps viewer to determine distan
es3. helps 
ulling (far obje
ts are hidden in fog), avoids far-plane pop ups4. implemented in hardwareAdding fog to a s
ene the user sets two variablesfog 
olor cffog fa
tor f ∈ [0; 1] de
reasing with the distan
e from the viewerIf cs denotes the 
olor resulting from shading, the 
olor added fog cp 
omputesas

cp = f · cs + (1 − f) cf35



f 
omputes by the distan
e given in z-values
f =

zend − zp

zend − zstartwhere start and end denote the fogged area or exponentially falling fog
f = e−df zpwhere df 
ontrols the fog's density.4.10 Color ConversionRGB → CMY





C
M
Y



 =





1
1
1



−





R
B
G



CMY → CMYK








K
C
M
Y









=

min {C,M, Y }
C −K
M −K
Y −KRGB → YIQ





Y
I
Q



 =





0.299 0.587 0.114
0.596 −0.275 −0.321
0.212 −0.523 0.311









R
B
G



RGP→HSV
V = max {R,G,B}
S = max{R,G,B}−min{R,G,B}

max{R,G,B}

H =











60 · G−B
max{R,G,B}−min{R,G,B} if max {R,G,B} = R

60 · B−R
max{R,G,B}−min{R,G,B} + 120 if max {R,G,B} = G

60 · R−G
max{R,G,B}−min{R,G,B} + 120 if max {R,G,B} = BRGB → XYZSin
e the XYZ 
olor model is the only dis
ussed model, that is hardware inde-pendent, it is hard to 
onvert from the other models, be
ause hardware infor-mation is required.





X
Y
Z



 =





Xr Xg Xb

Yr Yg Yb

Zr Zg Zb









R
B
G



36



where XrYrZr refers to and des
ription of the monitor's red 
hannel in the XYZ
olor model. By linear algebra this 
onversion 
an be redu
ed, so that only
Yr, Yg, Yb must be known. Additionally those three values 
an be approximatednumeri
ally, when now hardware information is given. However the XYZ s
ale
an be dire
tly 
onverted to grey s
ale RGB 
olor

Y = 0.2125R+ 0.7154G+ 0.0721B5 Transformation Matri
esIn general we want to use matri
es to 
hange a set of ve
tors representing anobje
t.
[

a11 a12

a21 a22

] [

x
y

]

=

[

a11 + x a12 + y
a21 + x a22 + y

]We 
an partition these 
hanges into 
ategories:Types
• Rigid Transformations: preserving distan
es and angles� identity, rotation, translation
• Similitudes: preserving angles, preserving width/height ratio� isotropi
 s
aling
• Linear Transformations� s
aling, re�e
tion, shearing
• A�ne Transformations: parallel lines remain parallel, line ratios arepreserved� translation
• Proje
tive Transformations: parallel lines interse
t at points at in�n-ity, preserves 
ross ratio)� proje
tive transformation5.1 S
alingS
aling 
hanges length and dire
tion.
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Figure 10: horizontal shearingisotropi
 s
aling
Figure 8: Isotropi
 S
aling

scale (s) =

[

s 0
0 s

]s
aling
Figure 9: s
aling

scale (sx, sy) =

[

sx 0
0 sy

]5.2 ShearingShearing pushes obje
ts sideways.horizontal shear (s) =

[

1 s
0 1

]verti
al shear (s) =

[

1 0
s 1

] 38



5.3 Rotation
Figure 11: RotationRotation rotates a ve
tor around a 
ertain angle. We rotate around the origin.

rotate (φ) =

[

cosφ − sinφ
sinφ cosφ

]5.3.1 Arbitrary Rotations In 3DOrthogonal Matri
es3D rotation matri
es are orthogonal and preserve the orientation.
OT ·O = I

det (O) = 1The rows are three arbitrary orthogonal unit ve
tors (i.e. orthonormal) and the
olumns are three di�erent orthogonal unit ve
tors (i.e. orthonormal):
Ruvw =





ux uy uz

vx vy vz

wx wy wz



with
~u · ~u = ~v · ~v = ~w · ~w = 1

~u · ~v = ~u · ~w = ~v · ~w = 0Therefore
Ruvw · ~u =





~u · ~u
~v · ~u
~w · ~u



 =





1
0
0



 = xand Ruvw · ~v = y, Ruvw · ~w = zNote The inverse of an orthogonal matrix is its transpose: R−1
uvw = RT

uvw
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Rotation About An Arbitrary Axis/Ve
torSo we have found out that we 
an 
reate arbitrary rotation matri
es from a or-thonormal basis. If we want for example to rotate about an arbitrary axis/ve
tor
~a, we1. build an orthonormal basis with this ve
tor ~w = ~a2. rotate the uvw basis to the 
anoni
al basis3. rotate around the z-axis4. rotate ba
k to the uvw basisThree Euler Rotations

Figure 12: Euler RotationsEuler found out that any rotation in 3D 
an be des
ribed using three angles
(φ, θ, ψ) (the Euler Angles). If we put these into rotation matri
es, we 
anmake one matrix out of them: A = BCDUsually the �rst rotation φ is about the z-axis, the se
ond θ about the x-axisand the third ψ about the z-axis again. This draws

B =





cosφ sinφ 0
− sinφ cosφ 0

0 0 1





C =





1 0 0
0 cos θ sin θ
0 − sin θ cos θ





D =





cosψ sinψ 0
− sinψ cosψ 0

0 0 1



The theory behind is that we are using a lo
al 
oordinate e′x, e′y, e′z systemde�ned by the three Euler angles
φ = 〈(ez, e

′
z)〉

θ = 〈(ex, L)〉40



ψ = 〈(L, e′x)〉where L is the interse
ting line between exey and e′xe
′
y. So instead of a realrotation, we are just translating another 
oordinate system and the Euler anglesstore the relationship between both 
oordinate systems.- There is a problem with Euler angles 
alled gimbal lo
k: We want to rotatearound the z-axis. First we rotate by 90◦ around the x-axis (pit
hing),make no y rotation, �nally any rotation around the z-axis. At this pointthis z-axis rotation a
tually 
orresponds to a rotation around the y-axis2.This problem does not appear when using Quaternions (see below).Rotation Axis And AngleIn this method we des
ribe an arbitrary rotation be giving an axis n and anangle ω.1. partition a ve
tor ~x into a parallel part x‖ = 〈x | n0〉n0 and an orthogonalpart x⊥ = x− x‖2. rotate the orthogonal 
omponent: ~x = x⊥ cos (ω) + (n0 × x⊥) sin (ω)3. add the parallel part: ~x = ~x+ x‖This 
an of 
ourse be represented by a matrix by mapping unit ve
tors.If we are given an orthogonal matrix O we 
an �nd the axis of rotation n bylooking for the eigenve
tor to the eigenvalue of 1. The angle ω 
an be determinedby:

ω = arccos

(

trace (O) − 1

2

)be
ause
trace (O) = 1 + 2 · cos (ω)Complex Numbers and QuaternionsAny 2D rotation 
an be des
ribed by a 
omplex number z0

z = n · z0And any 3D rotation of point ~v about axis ~n and angle ω 
an be des
ribed bya quaternion q (see 2.10)
rotate (~n, ω) = cos

ω

2
+ sin

ω

2
· ~n

‖~n‖2Try it with your head. Pit
hing / x-axis rotation means moving your head towards yourshoulder. If you now try to rotate it in z-dire
tion (forward), you a
tually rotate around youry-axis (imagine an extension of your spline through your head.41



the result is of the form
q−1 · (0, ~v) · qMatrix representation 
an be a
quired mapping the three unit ve
torsAxis n and angle ω 
an also be a
quired easily.

~n = ~q

cos
(ω

2

)

=
q0
|q|Two Planar Re�e
tionsA rotation has the form

rotate (φ) =

[

cosφ − sinφ
sinφ cosφ

]a re�e
tion 
an also be written in terms of trigonometry
reflect (φ) =

[

cos 2φ sin 2φ
sin 2φ − cos 2φ

]Therefore we get the equation
reflect (θ) reflect (φ) = rotate (2 (θ − φ))allowing us to express any rotation by two planar re�e
tions.Note that rotation matri
es have a determinant of 1 while re�e
tion matri
eshave determinant −1.5.4 Re�e
tion

Figure 13: Re�e
tionRe�e
ting an obje
t on an axis.x-axis reflect (s) =

[

1 0
0 −1

] 42



y-axis reflect (s) =

[

−1 0
0 1

]Later we will introdu
e an ordering of verti
es of a triangle (see 10.1.8). A re-�e
tion might distort this ordering resulting in wrong illumination and lighting.To determine whether a matrix is re�e
tive, 
ompute it's determinant and 
he
kthe sign: −1 means re�e
tive.5.5 TranslationThe problem with translation is that talking about the other transformations wehave seen every ve
tor as o�set from the origin, what makes them unmovable.Therefore we arti�
ially move a dimension up using homogeneous 
oordinates:Translation usually is performed by adding a translation ve
tor ~t:




a11 a12 t1
a21 a22 t2
0 0 1









x
y
1



 =





x+ t1
y + t2

1



after dehomogenization, we have what we wanted.5.6 Composition of TransformationsA 
omposition of matrix transformations 
orresponds to a matrix multipli
ationof the transformation matri
es involved. However matrix multipli
ation is not
ommutative meaning it does matter whether you do a rotation before s
alingor a s
aling before rotating.Be
ause it is asso
iative we 
an 
ombine all transformations into a singlematrix and use this matrix to transform all involved ve
tors only on
e.Note matri
es are multiplied from right to left
M = RSmeans �rst a shearing is applied and then a rotation.De
ompositionThe opposite is of 
ourse possible as well. Using for example SVD (see 2.2.2)we 
an de
ompose the matrix into a diagonal part (re�e
tion and s
aling) andorthonormal/orthogonal parts (rotation). Interesting is that any transformation
an be de
omposed into two rotations and one s
aling:

A = R2

[

σ1 0
0 σ2

]

R1A rotation on the other side 
an be de
omposed into three 
onse
utive shearings:
[

cosφ − sinφ
sinφ cosφ

]

=

[

1 cos φ−1
sin φ

0 1

] [

1 0
sinφ 1

] [

1 cos φ−1
sin φ

0 1

]This is important sin
e shearing is a very e�e
tive raster operation.43



5.7 Transforming Normal Ve
torsOne problem is that we 
annot apply the same transformation matrix both tothe obje
t and to the obje
t's normal ve
tors. Consider a shearing, the dire
tionof the y-ve
tors are not 
hanged, yet the form 
hanges and the y-normal ve
tor'sdire
tion is no longer perpendi
ular to the surfa
e.
Figure 14: Transforming NormalsThe normal ve
tors are dealt wrongly with the transformation matrix appliedto the obje
tTherefore we need to dedu
e separate transformation matri
es for the normalve
tors. We start with the fa
t, that the normal ve
tor ~n and a tangent ve
tor

~t are perpendi
ular:
~nT · ~t = 0We add an identity matrix

~nT · ~t = ~nT · I · ~t = ~nTM−1M · ~t = 0and 
hange the order
(

~nTM−1
)

(Mt) =
(

~nTM−1
)

~tM = 0

~nT
M = ~nTM−1

~nM =
(

~nTM−1
)T

=
(

M−1
)T
~n

N =
(

M−1
)TIf however we know our matrix to be orthogonal (e.g. it has been formed by ro-tations), we 
an take the matrix itself for transforming the normals, be
ause theinverse of an orthogonal matrix is its transpose and two transpositions 
an
elea
h other out. Finally sin
e rotations and translations are rigid body trans-forms (the shape is not 
hanged) the matrix will return a unit normal ve
tor.In 
ase of uniform s
aling, the matrix 
an be used to transform the normals,yet the resulting normals have to be normalized (they are no unit ve
tors).5.8 Windowing TransformsOften we will need to s
ale a window in a X-window system. The most easy wayto 
reate a 
orre
t matrix for this task is to see it as three di�erent transforms.1. move the lower left point of the window to the origin2. s
ale the window re
tangle3. move the lower left point to the target position44



5.9 Inverse TransformationsSin
e ordinary matrix inversion is a 
ostly operation, we 
an use ba
kgroundknowledge to qui
ken the inversion:translation ~t→ −~trotation R → RTs
aling scale (sx, sy, sz) → scale
(

1
sx
, 1

sy
, 1

sz

)Curiously enough we 
an make use of the SVD, be
ause of the fa
t that we 
anpartition any transformation into
M = R1 scale (sx, sy, sz)R2the inverse is simply

M−1 = RT
1 scale

(

1

sx

,
1

sy

,
1

sz

)

RT
25.10 Proje
tive TransformationsProje
tive Transformations have 1,2 or 3 vanishing points. These are pointswhere virtually parallel lines interse
t in the perspe
tive spa
e. These 3 vanish-ing points vi 
an be found at the bottom row of or homogeneous 3D transfor-mation matrix.









1 0 0 t1
0 1 0 t2
0 0 1 t3
v1 v2 v3 1









ti des
ribe a translation of the obje
t.5.11 Big MAll together we now have a matrix of the form








a11 a12 a13 t1
a21 a22 a23 t2
a31 a32 a33 t3
v1 v2 v3 1







where aij denote the linear part for all linear transformations, ti the a�ne partfor translations and vi the part for proje
tive transformations.
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6 ViewingIn this 
hapter orthographi
 and perspe
tive proje
tion as well as dealing witho

lusion and hidden lines is dis
ussed.orthographi
 three dimensional obje
ts are displayed on the two dimensionals
reen, but without perspe
tive viewing. That means parallel lines arestill parallel in the orthographi
 3D modelperspe
tive perspe
tive also refers to the displaying of 3D obje
ts, yet as seenby a 
amera/eye. That means parallel lines will interse
t at some pointon the horizon.o

lusion When modeling 3D s
enes some obje
ts will be in front of others,some will be partially o

luded. We got to �nd out whi
h are in front.hidden lines both in orthographi
 and perspe
tive transformations we willhave to deal with hidden lines (e.g. of wire frames). Sin
e this easilyleads to artifa
ts and a wrong perspe
tive/orthographi
 impression wewill dis
uss methods to deal with these phenomena6.1 Canoni
al View Volume
Figure 15: Canoni
al View VolumeThe 
anoni
al view volume refers to a 
ube with the dimensions (x, y, z) ∈

[−1, 1]
3. It serves as a intermediary between any viewing transformation andthe s
reen (Clipping is mu
h easier inside this volume). Let nx, ny be the pixelson the s
reen, then x = −1 will be mapped to the left half, x = 1 to the righthalf, y = −1 to the bottom half and y = 1 to the top of the s
reen.





xpixel
ypixel

1



 =





nx

2 0 nx−1
2

0
ny

2
ny−1

2
0 0 1









x
anoni
al
y
anoni
al

1



maps the pixels of the 
anoni
al view volume to real pixel 
enters ([−0.5, nx − 0.5]×
[−0.5, ny − 0.5]) of s
reen pixels.Coordinates inside this volume are 
alled normalized devi
e 
oordinates.Advantages of using this intermediary step are

• the transformation 
an be expressed as a 4 × 4 matrix46



• proje
tion to the 2D s
reen be
omes easier (throw away z)
• 
lipping against the unit 
ube is more e�
ient than against the frustum
• maintains relative depths (important for the Z-Bu�er)6.2 Orthographi
 Proje
tion

Figure 16: Orthographi
 View VolumeHaving a general orthographi
 view volume we di�erentiate the six planesof it by:left plane l = xright plane r = xbottom plane b = ytop plane t = ynear plane n = zfar plane f = zNote that n > f !Usually the 
amera's or user's head is pointing to the y-dire
tion and looking into
−z-dire
tion. Furthermore the y-dire
tion in upwards, x-dire
tion is sidewardsand z-dire
tion in/outwards.Mapping to the Canoni
al View VolumeFor that we �rst move the orthographi
 view volume to the origin and then doa s
aling:









x
anoni
al
y
anoni
al
z
anoni
al

1









=









2
r−l

0 0 0

0 2
t−b

0 0

0 0 2
n−f

0

0 0 0 1

















1 0 0 − l+r
2

0 1 0 − b+t
2

0 0 1 −n+f
2

0 0 0 1

















x
y
z
1








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If the matrix that maps the 
anoni
al view volume to s
reen 
oordinates is addedat the left, we 
an dire
tly map to s
reen 
oordinates. The resulting matrix is
alled Mo and we get:








xpixel
ypixel

z
anoni
al
1









= Mo









x
y
z
1







6.3 Viewing Dire
tionWe often want to 
hange the viewing dire
tion, if e.g. the user or 
amera movesit's head. For spe
ifying the view dire
tion we de�ne three variables:eye position e, the position the eye sees fromgaze dire
tion g, the dire
tion the viewer is lookingview-up ve
tor t, any ve
tor bise
ting the viewer's head, where �up� is for theviewerFurthermore we de�ne a spe
ial 
oordinate system for viewing with axes u, v, wand the origin at e. Then we get:
w = − g

‖g‖

u =
t× w

‖t× w‖

v = w × uMapping the viewing 
oordinates to the orthographi
 view volumeAgain we �rst move the viewing 
oordinate system to the origin of the ortho-graphi
 view volume and then align uvw to xyz.
Mv =









xu yu zu 0
xv yv zv 0
xw yw zw 0
0 0 0 1

















1 0 0 −xe

0 1 0 −ye

0 0 1 −ze

0 0 0 1







And again we 
an 
ombine the latter two matri
es to dire
tly transform tos
reen 
oordinates:
M = MoMv

48



6.4 Perspe
tive Proje
tion
Figure 17: Image PlaneThe mathemati
al idea is to think of an image plane between the viewer andthe obje
t. Now for every point in the viewing plane, think of a line pointingdire
tly to the viewer's eye. This line interse
ts with some point of the obje
t.Draw this point on the pixel the line started from.

Figure 18: Image Plane with variables
ys =

d

z
yThe key of dealing with perspe
tive proje
tions are the homogeneous 
oordinates(see 2.3.4). They allow to use linear fun
tions i.e. matri
es even for thosetransformations. If we are done with our obje
t transformations we 
an use aproje
tive matrix Mp for mapping to the orthographi
 view frustum:

Mp =









1 0 0 0
0 1 0 0

0 0 n+f
n

−f
0 0 1

n
0







be
ause of the dehomogenization (division by w), we 
an s
alar multiply Mp by49



to make it more pretty (no divisions):
Mp =









n 0 0 0
0 n 0 0
0 0 n+ f −fn
0 0 1 0







The third entry in the last 
olumn has a spe
ial meaning. Sin
e applying per-spe
tive proje
tion depth information would get lost, we use this position tomap the original z-value to the homogeneous slot w. If we later dehomogenize,we e�e
tively divide by the z−
oordinate and get the perspe
tive view e�e
t.Mapping the perspe
tive model to the orthographi
 view frustum
Figure 19: Perspe
tive Proje
tionThanks to the homogeneous 
oordinates we still found a matrix to map ba
kto the orthographi
 view frustum. Therefore on
e again we 
an 
ombine ourmatri
es to dire
tly map to the 
anoni
al view volume. Note that in generalthis 
annot be done, be
ause the perspe
tive matrix destroys angles and ratios,whi
h we would need for lighting 
al
ulations. So in general we will perform thelighting stage after model and view and then apply the perspe
tive matrix.

M = MoMpMv

M =









2n
r−l

0 r+l
r−l

0

0 2n
t−b

t+b
t−b

0

0 0 n+f
n−f

2n·f
n−f

0 0 −1 0







ItemsDiagonal transforming the view frustum range [−∞,∞] to the 
anoni
al viewvolume [−1, 1]. 1
∆x

gives [0, 1] and the 2 in the enumerator gives [−1, 1].The n and n+ f is be
ause of the perspe
tive.50



r+l
r−l

, t+b
t−b

shearing fa
tors. The frustums side planes needs to be sheared to a
ube. n, f are already sheared 
orre
tly.
−1 very important. By this fa
tor the z−
oordinates are written to the w−
oordinate.That means dehomogenizing means division by z and therefore getting theperspe
tive into 2D 
oordinates.
2n·f
n−f

As mentioned above we will divide by z when dehomogenizing. Thatwould mean to loose our z-values. Therefore this term allows us to havethe original z-values (depth values) in the z−
oordinate after dividing itby z. This is important, be
ause we will later need these depth values,when we want to determine whi
h obje
t to draw (i.e. �lling the Z-Bu�er).Properties
• maps lines to lines, triangles to triangles and planes to planes
• point/ve
tor ordering may 
hange (be
ause∞ is mapped to a �nite point)
• line segments 
an be split (be
ause ∞ is mapped to a �nite point)
• maps parallel lines to lines interse
ting at in�nity
• points at in�nity (vanishing points)6.5 Field Of View (Camera Transformations)

Figure 20: Field Of ViewA 
amera is de�ned by intrinsi
 and extrinsi
 parameters:extrinsi
 position and rotationintrinsi
 fo
al length (Brennweite) and aperture (opening)Extrinsi
 TransformationsCamera position is at the origin, view dire
tion is −z and up is y. Extrinsi
transformations 
hange these three values.OpenGL gluLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, upz)51



Figure 22: Mapping Of Z illustrated with 
olorsThe verti
al line represents the position of the eye. The orange part behindthe eye is mapped beyond the blue part representing everything beyond the farplane+∞. The green part is the view frustum and below the 
anoni
al viewvolume. The yellow part between the eye and the near plane remains.Intrinsi
 Transformation
Figure 21: View FrustumDes
ribes the proje
tion frustum. The image plane is lo
ated at n = −z. Theviewing frustum is important, be
ause it 
orresponds to the visible world. Ev-erything outside will be 
lipped to this frustum.OpenGL gluPerspe
tive(fovy, aspe
t, near, far) or glFrustum(left, right,top, bottom, near, far) for asymmetri
 frustumfovy opening angle of frustum along y-axis (typi
al 45◦ − 60◦)aspe
t widthheight , e.g. 800

600 = 1.3̄near/far distan
e between origin and near/far plane, e.g. n = 10cm, f = 100mNote a tighter view frustum makes the o

lusion test (Z-Bu�er) easier6.6 Mapping Of ZDue to homogeneous 
oordinates and the spe
ial normalization matrix storingvalues of z in w, we have to know what happens with out z-values. What will52



Figure 23: Mapping Of Z illustrated with arrowsThe arrows indi
ate where the 
orresponding points are mapped to.happen is that every z-value behind the eye will be mapped to beyond +∞. Butsin
e we have +∞ as a vanishing point (last row, third 
olumn of the proje
tionmatrix), we get �nite points for these values again. Instead the eye point ismapped to −∞ when dehomogenizing the 
oordinates.Consequen
es
• ordering of points on a line 
hanges
• 
lipping draws wrong results (see below)6.7 Clipping In Homogeneous CoordinatesAs mentioned above the ordering of points may 
hange with perspe
tive proje
-tion. If we would do a standard 
lipping we miss parts of line segments, that hadbeen split during perspe
tive proje
tion. For example imagine a line startingfrom a point behind the eye and ending inside the frustum. After dehomoge-nization the point behind the eye will be mapped to some positive point behindthe far plane, the point in the frustum will remain. Displaying the line betweenboth points we get a line that wrongly leave through the far plane instead ofthe near plane. This line will be wrongly 
lipped by the far plane.The solution is to perform 
lipping in homogeneous 
oordinates.That means we perform standard α-
lipping to the six fa
es of the unit 
uberesulting in six WEC per point: WECr (x, y, z, w) = w− x, WECl (x, y, z, w) =

w+x, WECt (x, y, z, w) = w−y, WECb (x, y, z, w) = w+y, WECf (x, y, z, w) =
w − z, WECn (x, y, z, w) = w − z
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Figure 24: Mapping Of Z illustrated with asymptotes
z: before the proje
tion
z̃: after the proje
tionThe asymptotes indi
ate how the values behave after the proje
tion. The leftmost point of the graph is 
onne
ted with the right most point, mapping in�nityto a �nite point. On the other hands �nite points between the near plane andthe eye (z̃-axis) are mapped to in�nity.6.8 Viewing Pipeline1. Geometri
 Transformation, Lighting, Clipping → model 
oordinates2. Model Transformation → world 
oordinates3. Viewing: Camera Transformations → 
amera/eye 
oordinates

4. Perspe
tive Transformations
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(a) Normalization Transformation → normalized homogeneous 
oordi-nates(b) Clipping In Homogeneous Coordinates(
) Dehomogenization → s
reen 
oordinates5. Viewport Transformation → window 
oordinates6. Rasterization → devi
e 
oordinates7 O

lusion & VisibilityIn s
enes we will always be fa
ed with the problem of multiple obje
ts o

ludingea
h other. So we need a way to determine whi
h obje
t is at front and shallbe painted.7.1 Painter's Algorithm1. sort obje
ts from ba
k to front2. render them in this orderIn this way front obje
ts will simply be painted over the ba
k ones.
Figure 25: penetration and 
y
li
 o

lusion- painting the ba
k obje
ts is unne
essary- the sorting of several million triangles is highly ine�
ient- 
annot handle penetration and 
y
li
 o

lusion7.2 Binary Spa
e Partitioning (BSP)Binary Spa
e Partitioning is a kind of painter's algorithm, but mu
h more ef-fe
tive, sin
e it la
ks the disadvantages of sorting, unne
essary painting and 
anhandle penetration and 
y
li
 o

lusion.The idea is to use the impli
it representation of a plane (see 2.4) to makeadvantage of the easy way to a

ess distan
es to this plane. Now we pi
k atriangle that best subdivides the s
ene in half3 and build a plane, so that the3usually the triangle that's plane has the lowest number of interse
tions, this strategy is
alled the least 
rossed 
riterion 55



triangle 
ompletely lies on this plane. We assume for now that no other trianglepenetrates this plane. Now depending on the eye position e we 
an de
ide thesafest drawing order (�rst draw triangles on the side where the eye is lo
ated).Thinking of this pro
ess re
ursively like a tree (the BSP-Tree) we 
an give anoverall ordering for all triangles.PenetrationWe assumed that no triangle penetrates our plane, still we 
an handle this 
aseby 
utting the penetrating triangle into two and handle them as three separatetriangles, whi
h we add to the BSP-Tree.SliversMore often than assumed it will 
ome to a 
ase where a triangle only penetratesa plane tightly with a vertex. In this 
ase the triangle will be 
ut into threetriangles. One of whi
h is a sliver and one of almost zero size. We do better indete
ting this spe
ial 
ase and leave the triangle untou
hed.Axis Aligned Binary Spa
e Partitioning
Figure 26: Axis Aligned Binary Spa
e PartitioningAlternatively we 
an use planes that 
ut the 
omplete s
ene in half and testagainst them (see �gure). Always the line is 
hosen that subdivides the s
enebest into halves (horizontal or verti
al (axis aligned)).7.3 Ray Tra
ingCast a ray through ea
h s
reen pixel to �nd the �rst interse
tion (for Ray Tra
ingsee 9)7.4 Z-Bu�erThe idea is to 
reate a bu�er equal to the size of the image, where there isdepth information stored for every pixel. The depth value 
orresponds to the

z-
oordinate after normalization. O

lusion 
he
ks 
an than be performed bysimple depth 
omparison. The bu�er is initialized by the far plane.56



Creation The Z-Bu�er is �lled during rendering/rasterization. The �rst ob-je
t's depth values drawn on the s
reen are stored in the Z-Bu�er. After-wards in 
ase of an su

essful test (the new obje
t's depth value is 
loserto the viewer), they are overwritten.Usage It is used when it is �lled, during rendering/rasterization. Che
k apixel's depth value, if it is 
loser to the s
reen draw it and update theZ-Bu�er value for this pixel, otherwise dis
ard it.Deletion After rendering the bu�er's allo
ated memory 
an be freed.Issues & Strengths- requires fast memory- non-uniform depth values. The 
loser we are to the far-plane the smaller thedi�eren
e in the depth values be
ome. Therefore pre
ision is of fundamen-tal importan
e for Z-Bu�ering- the pre
ision is hardware dependent (the more far away near and far planeare, the more pre
ision 
omes into play) → depth di�eren
e be
omes verysmall for distant obje
ts (try to move the near plane as 
lose as possibleto the far plane! moving the far plane on the other hand does not help)- Z-Bu�er �ghting+ 
an handle 
y
li
 o

lusion and penetrationOpenGLglEnable(GL_DEPTH_TEST)glClear(GL_DEPTH_BUFFER_BIT)StrategiesZ-Bu�er Fighting This phenomena means the situation when the value inthe Z-Bu�er so mu
h resembles the 
urrent one, that a jumping for andba
k with ea
h s
reen update 
an be seen.Polygon O�set Polygon O�set means to push 
ertain values inside the depthbu�er a little towards the near plane. Sin
e they are not tou
hed on thereal framebu�er, this 
hange 
annot be seen. Still on
e the next depth
he
k o

urs, this o�set will 
ome in handy and avoid Z-Bu�er �ghting.[A℄ Hidden Line Rendering (Wire frame Rendering)1. render polygon as a wireframe (render to the Z-Bu�er only, not to thes
reen)2. render the polygon a se
ond time as a solid, using a polygon o�set (pushingea
h depth value in the Z-Bu�er towards the near plane by this o�set)57



[B℄ Haloing Make use of gaps between hidden lines to emphasize depthper
eption and avoid Z-Bu�er �ghting1. render the polygon as wireframe using thi
k lines (render only to depthbu�er, not to s
reen)2. render the lines again with normal thi
kness and polygon o�setThis 
an also be done with two di�erent kind of 
olors instead of di�erentthi
kness.7.5 W-Bu�erThe W-Bu�er is an alternative to the Z-Bu�er. Instead of depth values thehomogeneous w 
oordinate is stored. The advantage of this method is havinguniform �depth� values. Thus we do not need to pay attention to the distan
ebetween near and far plane. However a disadvantage is that we 
annot linearlyinterpolate between those values of w (logarithmi
 s
ale, be
ause of perspe
tiveproje
tion).7.6 Transparen
yInstead of o

lusion obje
ts from behind might shine through obje
ts in front,if these are transparent (e.g. a tree behind a window).S
reen Door Transparen
y
Figure 27: S
reen Door Transparen
yInstead of a solid obje
ts, the transparent obje
t is drawn as a 
he
kerboardpattern, where the number of gaps depends on the α-value. By this te
hniqueobje
ts behind may shine through these gaps.- worsens if more than one obje
ts 
an be seen through the transparent obje
ts.- if two overlapping transparent obje
ts share the same α-value, they have thesame number of gaps on the same position and the rear one 
annot beseen
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Blended Transparen
yDraw the obje
ts in the order given by the depth test.- The depth bu�er draws the foremost obje
t �rst. That means, given thes
enario, the transparent obje
t is drawn before the opaque one o

ludingit, no transparent e�e
ts will be seen.Delayed Blended Transparen
y
Figure 28: Problems with Delayed Blended Transparen
yDraw opaque obje
ts �rst, then 
ontinue with depth bu�er test for transparentobje
ts.- still wrong results when transparent obje
ts in front are rendered before trans-parent obje
ts in the rear, be
ause blending is not 
ommutativeSorted Blended Transparen
yDraw opaque obje
ts �rst, then sort the transparent ones from ba
k to front.- still problems o

ur when obje
ts interse
t and no pre
ise ordering 
an begiven7.7 CullingWhen an entire triangle lies outside the view volume, it 
an be 
ulled. Cullingmeans elimination of a triangle or a whole obje
t from the pipeline. However inpra
ti
e perfe
t 
ulling (i.e. of every single triangle, primitive) is more expensivethan letting the Clipping module take 
are of them. Yet if we use boundingvolumes around groups of triangles 
ulling 
an be
ome very useful. We only
he
k whether a whole bounding volume lies outside our volume, eliminate if itdoes or pass it on to Clipping if it doesn't.Culling in hardware is very di�
ult, be
ause it is not supported pretty welland the entire s
ene has to be known. So often it is performed in the appli
ationstage, where the entire s
ene is known or solved by pre
omputation. Howeverit 
an and is performed at any stage of the pipeline as well.59



7.7.1 Ba
k Fa
e CullingThe idea of ba
k fa
e 
ulling is that only those fa
es 
an be seen, that are fa
ingtowards the user. Other will fa
e the ba
kside of obje
ts and this be invisible tothe viewer. The orientation of a fa
e 
an be 
he
ked by examining the outwardsfa
ing normal of it in respe
t to the view ve
tor. The fa
e is visible if
~v · ~n > 0Dealing with polygons the orientation is impli
itly 
oded in the ordering of theverti
es (see 10.1.8). The orientation 
an be tested using the ve
tor produ
t(thumb, indexing �nger and middle �nger). A polygon △abc with p = a− b and

q = c− a is ordered 
ounter 
lo
kwise if
(p× q)z > 0The question remaining is when to perform ba
k fa
e 
ulling.world spa
e before the s
ene is transformed to s
reen spa
e+ fast (fa
es are sorted out qui
kly)- real normal is neededs
reen spa
e (after s
reen spa
e transformation)+ no normal needed, more general+ supported by OpenGL- more expensiveClustered Ba
k Fa
e CullingA small extension to standard ba
k fa
e 
ulling where polygon groups sharinga similar normal are either rendered together or dis
arded altogether (If partof the groups is front fa
ing, the other not, all are rendered). These �normalsharing� mathemati
ally e�e
ts in a normal 
one, a trun
ated 
one 
ontainingall the normals and points of a set. Now the viewing dire
tion is 
omparedto the normals of the 
one, and all points asso
iated to normals whi
h di�ersigni�
antly are dis
arded. The normals ~n of a 
one are front fa
ing the viewer

~v if
~n ·





~v − ~f
∥

∥

∥~v − ~f
∥

∥

∥



 ≥ sin (α)where α is the opening angle of the 
one. This works be
ause even if only partof the polygons are fa
ing towards the viewer, the unin
identally rendered arelater dis
arded during 
lipping. 60



7.7.2 View Frustum Culling

Figure 29: View Frustum Cullingall obje
ts outside of the frustum are 
ulledThe idea of view frustum 
ulling is to 
he
k obje
ts against the view frustum,i.e. against what the view is a
tually seeing. Doing this by polygons would betedious and in fa
t the e�
ien
y gain is worse than skipping 
ulling altogetherand let the 
lipping module 
lip the frustum. However if we see the obje
ts as
omplete single entities, we gain a e�
ien
y bonus.Bounding VolumesFor that we must en
lose them into geometri
 bounding volumes (e.g. 
ube,sphere). Now we 
he
k the bounding volume by simple impli
it geometry and
ull the obje
t if frustum and volume share no 
ommon points and render it ifthey share all or only some points. In the latter 
ase we again leave the pre
isionwork to the 
lipping module.Bounding Sphere Finding sphere exa
tly �tting the obje
t is 
omplex andsin
e we look for speed, we go with sphere that will be bigger than theobje
t but easily 
omputed: We take the 
enter of mass as the 
enterof the sphere and 
hoose the radius to 
over all obje
t verti
es. A greatadvantage of bounding spheres is that they are invariant to rotations.Axis Aligned Bounding Box Creation is easy. A box is des
ribed by six val-ues: xmin, xmax, ymin, ymax, zmin, zmax. These values are simply the max-imum/minimum of all verti
es, e.g. xmin = min {x-value of all verti
es}.A disadvantage is that axis aligned bounding boxes are not invariant torotations and must be adapted for rotation. Like the sphere approa
h,this approa
h results in mu
h bigger boxes than obje
ts inside.61



Oriented Bounding Box A bounding box tightly �t to the obje
t whi
h 
on-siders rotation. However the 
omputation and interse
tion tests are moredi�
ult. Computation in
lude: �nding the 
enter, 
ompute the 
ovarian
ematrix (think of the 
enter as mean), Eigenvalue analysis, use Eigenve
-tors as dire
tions (basis) and use them a box that in
ludes all verti
es ofthe obje
t.Bounding Hierar
hies

Figure 30: View Frustum Cullingall obje
ts outside of the frustum are 
ulledEven more 
an be gained if we build a hierar
hy of bounding volumes, i.e.a bounding volume around several bounding volumes. If a big volume lies
ompletely in the volume, we render all its 
hildren obje
ts; if it shares pointswith the frustum, we 
he
k ea
h volume inside it separately, if not all obje
tsinside are 
ulled.Other hierar
hies 
an also be applied. They are dis
ussed later on in the
hapters about Ray Tra
ing, see 9.3 and the 
hapter on O

lusion for BinarySpa
e Partitioning , see 7.2. However they usually perform worse under dynami

hanging s
enes. On the other hand the deliver better results and should beused for stati
 s
enery.
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Interse
tion Test

Figure 31: View Frustum Interse
tionInterse
tion tests with the frustum are not trivial, even if all verti
es of an obje
tare outside, parts of the obje
t might be in.The interse
tion test is not as easy as it might appear (see �gure). Therefor weapply a strategy similar to those from 
lipping:We model the frustum as six interse
ting planes (half-spa
es) and use impli
itplane representation. Then a point x lies in the half-spa
e partitioned by theplane spanned by plane point p and normal ~n, if
(x− p) · ~n > 0We repeat this test for all six planes and 
ombine the results to know whetherthe point lies inside in respe
t to all planes or not.A modi�
ation is to test only the most 
riti
al point (i.e. the point 
losest)of the obje
t against the 
urrent plane. To �gure this 
riti
al point out, we
omparing the obje
t's verti
es minimal and maximal in respe
t to a 
oordinatedire
tion to the plane, to the half-spa
e's normal. Then the obje
t is inside ifthe 
riti
al point is inside, outside if the 
riti
al point as well as it's opposite
orner lies outside and partly inside otherwise. Taking errors into a

ount wein
rease the test e�
ien
y by using the following rule of de
ision:box within all half-spa
es → renderbox outside one half-spa
es → 
ullotherwise → renderIn fa
t the outside test 
an de
ide an obje
t as outside, whi
h has parts inside.This is 
alled a 
riti
al error.7.7.3 O

lusion CullingFinally o

lusion 
ulling intends to 
ull obje
ts that are o

luded, i.e. hid byother obje
ts. This is important sin
e only using the Z-Bu�er several pixels will63



be drawn multiple times, in fa
t whole obje
ts later invisible will be drawn �rst.While O

lusion 
ulling intends to remove these obje
ts, there are other methodsthat try to sort the obje
ts to only render the ones in front (see Chapter aboutO

lusion & Visibility 7). In general aspe
ts that have proven to be maxims forgood o

lusion 
ulling are:
• O

luder Combination: 
ombine several o

luders to one big o

luderwhenever possible
• O

luder Choi
e: try to use the best o

luders for 
he
king o

lusion;best o

luders are: big obje
ts and obje
ts 
lose to the viewer
• Pre
omputation: pre
ompute as mu
h as possible, but keep intera
tiv-ity in mind
• Validity Over Time: try to keep the 
urrent o

lusion 
omputationsvalid for as long as possible (e.g. as long as the user is within one roomor 
ell) and don't 
ompute everything from s
rat
h ea
h frame
• Level Of Detail: use obje
t models in higher resolution for obje
ts 
loseto the eye, and lower resolution ones for distant obje
ts (see 10.7)
• Hierar
hy & Bounding Box: hierar
hies and bounding volumes overthe s
ene are very useful, but it is usually hard to update them for qui
kly
hanging dynami
 s
enesPotentially Visible Sets (PVS)

Figure 32: Potentially Visible Sets separate the s
ene into arbitrary 
ellsThis �rst approa
h separates the s
ene into 
ells and 
omputes whi
h 
ells 
anbe seen from a parti
ular 
ell. This is done with pre
omputation. Then dur-ing rendering we 
he
k the 
ell, the 
amera is positioned in and only render64



the 
ells/sets that are potentially visible from here. Sin
e it heavily uses pre-
omputation, rendering time is e�
ient while we have a high memory load.Furthermore the 
omputations for a 
ell 
an usually be kept for a 
ouple offrames, as long as the viewer remains in that same 
ell.The visibility of other 
ells 
an be pre
omputed using visibility rays (seeChapter about Ray Tra
ing 9).Portal Visibility

Figure 33: Portal VisibilityIn the Portal Visibility approa
h subdivide the s
ene into 
ells that are 
on-ne
ted by portals (e.g. doors, windows, holes). It is a very ex
ellent method forrendering the inside of buildings. Now the algorithm goes:
• �nd the 
ell, the 
amera is lo
ated in
• render this 
ell
• for all portals in the 
ell: if portal is visible, render neighbouring 
ellre
ursivelyTo 
he
k whether a portal is visible, we 
an 
he
k its bounding box against theview frustum (see previous point �View Frustum Culling� above). Further morethis allows for a spe
ial integration of mirrors, by seeing mirrors simple as aspe
ial kind of portal (sigh is reversed).OpenGL O

lusion TestOpenGL implements its own o

lusion 
ulling strategy by o�ering a spe
ialrender mode 
alled O

Cull-mode. In this mode a
tually nothing is rendered,instead the number of potentially rendered pixels is 
ounted. Now this 
an beused for 
ulling like this: 65



• set the 
ounter to zero
• render the obje
t's bounding box in O

Cull-mode
• render the obje
t if the 
ounter is above a threshold4The disadvantage of this very simple test is, that it stalls the pipeline and thateven 
ounting 
an be expensive for thousands of triangles. This behaviour 
anbe improved by installing several 
ounters and parallelize the 
ounting rendermode. Then the stalling of the pipeline does only o

ur one time instead of oneper obje
t. This method is espe
ially useful for very distant or 
omplex obje
ts(leafs on a tree).7.7.4 Hierar
hi
al Z-Bu�erA hierar
hi
al z-bu�er has several levels. At bottom level 0, the a
tual z-valuesare stored. One level above the highest value among a group of 
hildren z-valuesis stored and so on.Now if we want to test an obje
t for 
ulling we proje
t the bounding box ofthe obje
t and sear
h for the node in the Z-Tree that 
ompletely 
overs it and
ompare depth values. This leads to many fast reje
ts. If the obje
t is nothidden, we pro
eed to its 
hildren. Passing level 0 we eventually render it.For this to work the Z-Bu�er hierar
hy must be kept 
onsistent. Using a tree-like stru
ture this is easy: On
e a value 
hanges, this 
hange simply propagatesupwards.This method works best when the s
ene is rendered from front to ba
k. Che
kthe 
hapter about O

lusion & Visibility on page 7 for methods to a
hieve su
hrender orderings.7.7.5 O

lusion HorizonsO

lusion Horizon is a spe
ialized 
ulling te
hnique for urban s
enes. We sep-arate the s
ene's obje
ts into: plain ground, opaque buildings, buildings onground. Apart from that we geometri
ally subdivide the s
ene into equallyspa
ed quads. And we redu
e the dimension a little bit to 2 1

2 by using height�elds for the height of buildings. For ea
h building we 
ompute a set of prismsthat are 
ompletely inside (inner hull) and a set of prisms des
ribing the bound-ing hull (outer hull).Now we traverse the quadtree while moving away from the 
amera and pro-
ess the buildings with in
reasing distan
e to the 
amera. We keep tra
k of a so
alled o

lusion horizon (e.g. for x, the 
urrent maximum value of x). Nowfor every building being pro
essed, we 
he
k whether the building is behind thehorizon (→ invisible) or in front of it (→ render building, adapt horizon).4Obje
ts only having a few pixels visible 
an usually be 
ulled without great loss. Alter-natively the obje
t 
an be rendered in a highly simpli�ed way.66



Figure 34: O

lusion HorizonThis o

lusion horizon is implemented as a 
onstant pie
ewise fun
tion a

essedby x, stored as binary tree with values of y (see �gure). Tests against the horizonare performed with the buildings outer hulls and updated of the horizon aremade with the inner hulls.Caveat

Figure 35: O

lusion Horizon: Di�
ult O

lusionHowever it's not always that easy, as the �gure above shows. Although buildingsA is 
lose to the 
amera, B o

ludes A. To avoid su
h s
enarios we introdu
ea priority queue with new buildings (entered at the 
urrent horizon) sorted bymaximum distan
e. Buildings from the queue are only then added to the horizonon
e their minimum distan
e is smaller than the maximum distan
e from thequeue. With the queue, in the above s
enario A would still be in this queue,when B is tested: 67



• test A - visible! - render A, put A into queue
• test B - visible! - render B, put B into queue
• A and B de�nitely in front of C - insert A and B into horizon
• test C. . .Last but not least the idea of the horizons 
an be 
onne
ted with Mip Mapping(see 11.5.2). Depending on the distan
e of the 
urrent horizon from the eye,buildings and other obje
ts 
an be rendered using a lower resolution. Obje
tsat horizons 
lose to the eye should be rendered with an extra high resolutionfor details.7.7.6 Dual Ray Spa
e O

lusion Culling

Figure 36: LondonWith Dual Ray Spa
e O

lusion Culling the PVS for a single 
ell of size 100x100
m2 
an be rendered in 2.5 sImagine the map of London (see image) with an area of 160km2, this 
ouldbe rendered by about 1, 7 · 106 polygons. The goal Dual Ray Spa
e O

lusionCulling is aiming at, is that a user 
an virtually walk through the streets, whilethe data is downloaded via the internet. Only what user 
an see is rendered,and while he walks data for buildings that soon 
ome into vision is downloaded.The strategy sounds familiar, we separate London into 
ells and determinethe PVS (see above) for ea
h 
ell. The 
urrently valid PVS is kept on the 
lientas well as the PVS of all neighbouring 
ells. As in o

lusion horizons we restri
tthe dimension to pseudo 3D (2 1

2D). In addition we also take o

lusion horizons'quadtree idea to re
ursively determine the nodes of the quadtree that are visible.But how do we de
ide whether a quadtree node is visible from another or not?We solve this by a new idea: 68



Figure 37: Dual Ray Spa
e O

lusion CullingFirst we �nd the two fa
es of Z and Q fa
ing ea
h other.Then we model them as parametrized line segments: Q0+s (Q1 −Q0) , s ∈ [0; 1],
Z0 + t (Z1 − Z0) , t ∈ [0; 1]And now we transform this model to a Dual Spa
e, where every Ray in our
urrent spa
e is represented by a point.

Figure 38: A line in the Dual Ray Spa
eFor example all rays between Q and Z that hit a random point v will build aline in this Dual Spa
e.
Figure 39: A double triangle in the Dual Ray Spa
eNow 
onsider a whole line segment between Q and Z, all rays interse
ting thissegment build a double triangle in the dual spa
e.Slowly the idea be
omes 
lear, we represent the spa
e of all rays in the dual rayspa
e as image [0; 1]2. Then we render this image bla
k and 
ompute for ea
hsegment between Q and Z the 
orresponding double triangle. After all segments69



have been pro
essed, we 
he
k whether there are any bla
k pixels left, if thereare not, we assume total o

lusion.8 Lighting8.1 LightTo understand algorithms of lighting it is important to understand light, re-spe
tively the measuring of su
h 
alled radiometry or the human per
eptionof light referred to as photometry.8.1.1 RadiometryRadiometry is the physi
al measurement of light. Sin
e light is a form of energy,we measure it in joule [J ].PhotonsLight 
an also be seen as a large amount of photons. A photon is a light quantumhaving a position, a dire
tion and awavelength λ given in nanometer 1nm =
10−9m. Furthermore light has speed c (depended on the material it passesthrough) and a frequen
y f = c

λ
. Finally the amount of energy q 
arried isgiven by
q = hf =

hc

λwhere h = 6.63 · 10−34 is Plank's Constant.EnergyThe energy of light in general (radiant energy, Strahlungsenergie) Q is thensimply the sum of the single photon's energy qi.
Q =

n
∑

i−l

hc

λi

[J ]Furthermore we 
an give Q relative to the wavelength λ by integrating over aninterval on the wavelength:
Q =

∆q

∆λThen we 
an give Q relative to time (radiant �ux, Strahlungsleistung)
Φ =

dQ

dt

[

W =
J

s

]
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ExampleA light bulb with 100 Watt emitting about 5% as light, then the radiant �ux Φwould be: Φ = 5WThe radiant energy Q, relative to a surfa
e (�ux density, Fluÿdi
hte) is givenby
dΦ

dA

[

W

m2

]Irradian
eIrradian
e is the amount of ingoing light that hit a 
ertain point, the in
identlight or in
ident �ux density (Strahlungsenergie).
E =

dΦin
dA

[

W

m2

]RadiosityRadiosity is the light emitting from a surfa
e. It is 
alled exitant light orexitant �ux density (spezi�s
he Ausstrahlung) and measured the same way:
B =

dΦout
dA

[

W

m2

]Example
• A big area light with Φ = 5W and A = 1m2 has a radiosity of 5 W

m2

• A small area light with Φ = 5W and A = 100cm2 has a radiosity of 500 W
m2Radiant IntensityRadiant Intensity (Strahlungsintensität) is used for point light sour
es and givesthe emitted light per solid angle (see 2.11)

I =
dΦ

dω

[

W

sr

]This means, if by tilting the area is getting smaller, the same light is gettingbrighter (the light be
omes more 
ompa
t).Approximation Usually the dome is negle
ted, just the area is taken intoa

ountNote By /r2 dimension and size leaves the formula. Thus dimension and sizeof the sphere does not in�uen
e the out
ome.71



Radian
e

Figure 40: Radian
eFinally radian
e 
ombines �ux density with radiant intensity (Strahldi
hte)adding a dire
tional dependen
y to radiosity/irradian
e.
L (x, ω) =

d2Φ

dω · dA · cos θ

[

W

sr ·m2

]where d2Φ is the �ux5, dω is the di�erential solid angle and dA the di�erential ofthe Area (cos θ is explained below). This results in the brightness. This is thevalue measured by 
ameras. Radian
e is also the most important radiometri
unit for 
omputer graphi
s, sin
e it is exa
tly what we want to store in a pixel.IntuitionWe want to measure how many photons originate from a 
ertain point x into adire
tion ω. We use a light sensitive sensor as 
ameras use and pla
e it abovethe surfa
e. Now to get sure only the rays originating from our point we needto en
lose the sensor by a bla
k 
one whi
h has a broad opening towards xand a small towards the sensor, so that rays 
oming from another dire
tion areabsorbed by its bla
k walls when boun
ing.Still some rays will get through, therefore we need to make the 
one in�nites-imal small (dω).Still some rays will rea
h the sensor, 
ause it has a 
ertain area size, thereforewe need to make this area in�nitesimal small (dA).Still our sensor will be oriented in some kind, therefore we need to take thisorientation into a

ount (cos θ)(e.g. verti
al, horizontal or in between).Now we get only the desired photons. If on the other hand we want to measureirradian
e we pla
e the sensor on the surfa
e.5d2be
ause we di�erentiate two times 72



Invariant Radian
e is 
onstant along a ray

Figure 41: Relationship between in
ident and re�e
ted lightAn important relationship is between in
ident light Li and the light re�e
ted
Lr and transmitted by the surfa
e A

Ei = Li

(

~n ·~l
)

dωi

Ei = Li cos θidωiOverview Table 1: Physi
al Light OverviewMeasure Meaning ModelingFlux general light �ow without di�erentiationIntensity light per angle (e.g. the intensity of a light bulb) powerRadiosity light per area (all dire
tions) di�useRadian
e light per area into a dire
tion spe
ularIrradian
e in
oming light per area from any dire
tion Lin8.1.2 PhotometryWhere radiometry 
overs the physi
al measurement of light, photometry 
oversthe human measurement of light. The human system is only 
apable of per
eiv-ing a limited range of radiation. Furthermore the human response system is notlinear: Some wavelengths appear brighter than others (e.g. red).The average human vision 
apabilities (daytime) are 
overed in lumen V (λ)
[

lm
W

].
Lv 
overs how bright a 
ertain wavelength is per
eived.

Lv = km

∫

L (λ) V (λ) dλ

Bv, Qv,Φv are expressed 
orrespondingly.73



8.2 LightingLighting is the simulation of physi
al light to make a 3D s
ene look real. Howevera real approximation takes far too long, so that we make a lot of approximations,simpli�
ations and ha
ks. Our task is to 
ompute the luminous intensity at apoint in the s
ene.8.2.1 Simpli�
ationsSin
e we are far from able to model light physi
ally 
orre
t, we often are for
edto make some of these 
ommon simpli�
ations:
• no intera
tions between wavelengths (e.g. �uores
en
e)

Figure 42: �uores
en
e
• time invarian
e (distribution remains 
onstant over time, e.g. phospho-res
en
e)

Figure 43: phosphores
en
e74



• light transport in va
uum (no intermediary medium, emission and absorp-tion just on obje
ts, e.g. smoke, mist)
• isotropi
 obje
ts (identi
al material)
• dire
t illumination (no or limited re�e
ted illumination)Light Hitting A Surfa
e 
an be
• absorbed
• s
attered
• re�e
ted
• refra
ted
• transmitted8.3 IlluminationTransport of energy (in parti
ular, the luminous �ux of visible light) from lightsour
es to surfa
es & surfa
e to eye. There are two major 
omponents of illu-mination:
• light sour
ea light sour
e has a 
ertain spe
trum (
olor), a dire
tion and a shape(e.g. point light sour
e, parallel light, area light sour
e).
• surfa
e propertiesa surfa
e has a re�e
tan
e spe
trum (
olor), a position, an orienta-tion (given by a surfa
e normal at every point) and ami
ro stru
ture(important for s
attering and re�e
tion)Lo
al IlluminationIllumination by one or several light sour
es (point, parallel). This results inhaving no shadows. An example is Phong Lighting.Global IlluminationGlobal light ex
hange (area light sour
es). Slower but with shadows and higherquality. An example is Ray Tra
ing
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8.3.1 Light Sour
esPoint Light Sour
e

Figure 44: Point Light Sour
eLight is equally emitted in all dire
tion originating from a single point. Thusthe light dire
tion towards a surfa
e varies for every surfa
e point. Thus wehave to 
ompute a normalized light dire
tion ve
tor for every point:
l =

p− x

‖p− x‖

Figure 45: dire
tion of light for point light sour
e
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Dire
tional / Parallel Light

Figure 46: Parallel LightLight is modeled by parallel rays originating from a quasi in�nite distant lightsour
e (e.g. the sun). The dire
tion of the surfa
e relative to the light dire
tionbe
omes important.SpotlightA point light sour
e with parallel light. Outside the spotlight, the light remainsparallel but fades away in intensity, limiting the light to a 
ertain area. Amixture of the two above.Area Light Sour
eDe�ned by a 2D emissive surfa
e (e.g. a �ashlight). Area light sour
es are
apable of 
reating soft shadows.8.3.2 Phong Lighting ModelProperties
• lo
al illumination
• heuristi
, no physi
al simulation
• fastVariablesRe�e
ted LightIn Phong Lighting, re�e
ted light does not exist per se and is therefore approx-imated by three 
omponents:Ambient Light Indire
t light modeled by a 
onstant (omnipresent light)77



Variable meaning
~l dire
tion of light
I light Intensity
~v ve
tor towards the eye
~n surfa
e normal
k surfa
e 
onstant (
olor)

nshiny empiri
al 
onstant (spread of the highlight)
~r ideal re�e
tan
e ve
tor
~h halfway ve
torTable 2: Phong Lighting VariablesDi�use Light re�e
tion from rough surfa
es (uniform into all dire
tion)Spe
ular Light re�e
tion from glossy (no perfe
t mirrors) surfa
es

Ltotal = Lambiebt + Ldi�use + Lspe
ularAmbient Light

Figure 47: Ambient LightCovers obje
ts that are not dire
tly light, but that would be still visible byindire
t illumination.
Lamb = kambIambSome properties of ambient light:

• no physi
al base (ne
essary be
ause indire
t/global illumination is skipped)78



• better results by giving ambient light per light sour
e, so that if one lightsour
e is turned o�, it's ambient light is removed from the obje
ts
• if a surfa
e is not 
overed by any light sour
e, only ambient light is appliedgiving the surfa
e an uniform look and no 3D features (there often anadditional light sour
e 
alled head light is used above the viewer to makesure everything visible is at least lit by some dire
t light sour
e.Di�use LightIn prin
iple the s
attering/re�e
tion of light depends on the surfa
e's mi
rostru
ture. In Phong Lighting we assume rough surfa
es to be equally roughs
attering light equally in all dire
tions.

Figure 48: Re�e
tion from equally rough surfa
esFor this 
ase we may apply Lambert's Cosine Law:
Figure 49: Lambert's Cosine LawRe�e
ted radiant intensity in any dire
tion varies as the 
osine of the anglebetween light dire
tion and surfa
e normal.Therefore we require the angle between the light dire
tion ~l and the surfa
e79



normal ~n to 
ompute di�use light:
Ldi� = kdi�IIn cos θ

Ldi� = kdi�IIn (~n ·~l
)

Figure 50: Di�use LightAs you 
an see the view dire
tion does not appear in the formula. This meansthe di�use light is view independent and thus looks the same from any dire
tion.The angle θ gives us more information. If
•
(

~n ·~l
)

< 0: light is below the surfa
e
• (~n · ~v) > 0 : eye is below the surfa
eIn both 
ases we 
lamp I to zero.Some properties of di�use light:
• di�use light is view independent
• di�use light is based on Lambert's 
osine law and with that based on realworld physi
s
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Spe
ular Light

Figure 51: Spe
ular LightRe�e
tion for glossy materials, e.g. polished metal. Light 
auses a bright spot onthis surfa
e (spe
ular highlight). This highlight depends on the dire
tion theviewer looks at the surfa
e, thus it is view dependent. Spe
ular light approa
hesmirror like re�e
tan
e (see Figure).
Lspe
 = kspe
IIn cos (φ)nshiny
Lspe
 = kspe
IIn (~v · ~r)nshiny

Figure 52: Spe
ular Light is view dependentwhere nshiny determines the spread of the highlight. A large nshiny makes for arather glossy (narrow) highlight, and a small nshiny a rather di�use one. The81



ve
tor ~r of ideal re�e
tan
e 
an be 
omputed as
~r =

(

2
(

~n ·~l
))

~n−~lSome properties of spe
ular light:
• view dependent (the highlight moves with the viewer)
• halfway ve
tor redu
es 
omputation time
• no physi
al base or validity
• looks unrealisti
 with per-pixel shading (Phong Shading, see below 8.4.3)Complete Re�e
ted Light
Lre�e
ted = kambIamb +

#lights
∑

i

Iini

(

kdi� (~n ·~li
)

+ kspe
 (~v · ~ri)nshiny)Halfway Ve
tor Approa
h

Figure 53: Halfway Ve
tor Approa
hComputing the ideal re�e
tan
e ve
tor ~r is 
ostly. The Halfway Ve
tor Approa
h
omes 
lose to the results of using ~r but is far more e�
ient. The idea is thatthis halfway ve
tor ~h is exa
tly equal to ~n if the view dire
tion ~v is parallelto the re�e
tion dire
tion ~r. When it deviates from ~n, the angle of deviationis φ′ = φ
2 . Therefore the inner produ
t (~n · ~h

) equals cos
(

φ
2

). The halfwayve
tor spe
ular formula is:
~h =

~l+ ~v
∥

∥

∥

~l+ ~v
∥

∥

∥82



Using ~h draws
Lspe
 = kspe
IIn cos (φ′)

nshiny
Lspe
 = kspe
IIn (~n · ~h

)nshinyIf the light is dire
tional and the view parallel (orthographi
), both ~l and ~vbe
ome 
onstant, resulting in a 
onstant ~h.AttenuationFor parallel light there is no attenuation, sin
e we have parallel light rays every-where, therefore we 
onsider a point lightsour
e at position p, whi
h is d awayfrom the surfa
e point x it is lighting (d = ‖p− x‖2).
IIn =

I

‖p− x‖2But this approa
h is problemati
 for 
lose and distant light sour
es. Thereforewe add some 
onstants and build a polynomial:
IIn =

I

c0 + c1d+ c2d2where ci model for example atmospheri
 attenuation, smoke or va
uum.Note that a physi
ally 
orre
t attenuation pro
eeds quadrati
 in respe
t tothe distan
e to the light sour
e. However we usually do not model this be
ause a)the sun is too far away (hardware �oat pre
ision), b) it results in very unrealisti
looking light and 
) we 
an model additional atmospheri
 attenuation like smoke.Material ColorsThe material 
onstants ki may 
onsist of two parts:a brightness value k ∈ [0, 1]a 
olor frequen
y Oλ, λ ∈ RGBαThis allows the mixing of lightsour
e and material 
olor frequen
y8.3.3 Torran
e-Sparrow Light ModelThe Torran
e-Sparrow Light Model tries to model physi
s. Here we do notassume equally rough surfa
es, but 
onsider isotropi
 
olle
tions of planar mi-
ros
opi
 fa
ets.
L = IIn · F (~l · ~h)G(~n · ~v, ~n ·~l

)

D
(

~n · ~h
)

π (~n · ~v)
(

~n ·~l
)
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Variable Meaning
~n standard surfa
e normal
~h normal for rough surfa
es (
urrent normal wandering a
ross the hill)
~v view ve
tor
~l light ve
tor
π a

ounts for surfa
e roughness

D
(

~n · ~h
) distribution of mi
ro fa
ets / normals (Gaussian)

G
(

~n · ~v, ~n ·~l
) attenuation, masking and self shadowing

F
(

~l · ~h
) Fresnel Term

(~n · ~v)
(

~n ·~l
) ~maybe~ for the spe
ular highlight?The Fresnel Term des
ribes the relation between in
oming and re�e
tedlight and takes surfa
e properties (glass, water) into a

ount.Self shadowing means that re�e
ted light boun
es against a fa
et:

Figure 54: Self-ShadowingS
hli
k gives an fast and e�
ient approximation of the 
omplex Fresnel Term:
F = fλ + (1 − fλ)

(

1 − ~v · ~h
)where fλ is the Fresnel re�e
tan
e of the material at normal in
iden
e.8.4 ShadingShading is a kind of parent to lighting, it de
ides for whi
h pixels lighting is
omputed and how these values are interpolated a
ross a fa
e.
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8.4.1 Flat Shading

Figure 55: Flat ShadingThe polygon is partitioned into fa
es. Ea
h fa
e has a uniform surfa
e normal.Therefore we 
ompute lighting for a single point on the fa
e, and take it for therest.- ina

urate for fa
eted obje
tsOpenGL glShadeModel(GL_FLAT)8.4.2 Gouraud Shading

Figure 56: Gouraud ShadingInstead of applying Phong Lighting with surfa
e normals for 
omplete fa
es, weapply it with vertex normals. Ea
h vertex of a polygon is assigned a normal,85



whi
h is an average by the surfa
e normals of surfa
es 
ontributing to this vertex(wireframe).
~nv =

∑#fa
es
i ~ni

∣

∣

∣

∑#fa
es
i ~ni

∣

∣

∣

Figure 57: vertex normalsThe next step is then to interpolate the vertex values a
ross the fa
es.OpenGL glShadeModel(GL_SMOOTH)
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Algorithm 6 Gouraud Shading

1. apply Phong Lighting Model to verti
es I1, I2, I32. interpolate these values along the edges → Ia, Ib

Ia =
ys − y2
y1 − y2

I1 +
y1 − ys

y1 − y2
I2

Ib =
ys − y3
y1 − y3

I1 +
y1 − ys

y1 − y3
I23. use s
anline algorithm to interpolate between the edges → Ip

Ip =
xb − xp

xb − xa

Ia +
xp − xa

xb − xa

IbAs with the s
anline algorithm a in
remental update 
an be found to makesthings faster/numeri
ally more stable- fails to 
apture spotlight e�e
ts- Through the interpolations highlights are smeared and light de
reases slower
Figure 58: Gouraud Shading smears highlights87



Gouraud Shading 
an be arti�
ially modi�ed to perform Phong Shading.This is done by making the surfa
es (triangles) smaller than pixels, so thate�e
tively shading per pixel is performed.This is done be
ause many graphi
s hardware support Gouraud Shading, butnot Phong Shading.8.4.3 Phong Shading

Figure 59: Phong Shading1. 
ompute vertex normals at ea
h polygon vertex2. interpolate these normals a
ross the fa
e3. re
ompute lighting for ea
h pixel with the interpolated normalThe interpolation of the normals works just as the interpolation of light inGouraud Shading.+ looks really good+ good highlights → implement a highlight test ((~n · ~h
)

≥ τ , Threshold τ)and use Phong Shading only for fa
es with highlights+ 
orre
t size- high 
osts- three ve
tor 
omponents- 
onstant renormalization ne
essary (square root) → interpolate s
alar prod-u
ts instead, saves renormalization- huge amount of lighting 
al
ulations88



Figure 60: Deferred ShadingWe store all parameters important for shading in RGBα Render Targets (tex-tures)
Figure 61: Storing shading parameters in the RGBα 
hannels of three RenderTargetsNote that 16bit are overkill for di�use re�e
tan
e.8.4.4 Deferred ShadingThe idea of deferred shading is postpone shading as far behind as possible. Wedo this by saving all we need for shading during the modeling stages: pixel posi-tion, normals, light/
olor: di�use and spe
ular albedo, material. To e�e
tivelystore all these values, we 
an use Multiple Render Targets or Multiple Texturing(see 11.15) and make use of the individual RGBα 
hannels (see �gure). Thispat
h of memory is then 
ommonly referred to as G-Bu�er.Having all parameters, that we need, we 
an redu
e the 
omplexity signi�
antlyand result in the following pro
edure:+ worst 
ase: O (obje
ts+ light sour
es) (other shading te
hniques have: O (obje
ts · light sour
es))+ works best for depth 
omplex s
enes with multiple light sour
esAlgorithm 7 Deferred ShadingFor ea
h obje
t:
→render lighting properties to the G-Bu�er.For ea
h light:
→ framebuffer + BRDF(G-Buffer, light)89



+ models many small light sour
es just as fast as one big one+ allows for the integration of all popular shadow methods8.5 ShadowsComputing shadows is not very easy, sin
e the entire s
ene has to be knownto de
ide whether a point lies in shadow (does the light hit the point, is thepoint o

luded by another obje
t, is it self-o

luding). However the pipeline isa sequential pro
ess where one triangle is rendered after the other, but ea
h newtriangle 
ould 
ast shadows to the previous ones.8.5.1 Planar ShadowsAnother idea is to generate a 2D proje
tion of an obje
t onto a plane:1. render ground2. render obje
t3. set matri
es to the desired proje
tion4. render the shadow in bla
kProblems

Figure 62: Problems o

urring with planar shadows- shadow outside of polygon ground- Z-Bu�er �ghting (be
ause the shadow is so �ne)These 
an be solved by using the sten
il bu�er:1. render the obje
t 90



2. render the ground and set sten
il bu�er to 1 for ground pixels3. turn o� Z-Test4. render shadow where sten
il bu�er is equal to 1Properties+ fast+ simple- only for shadows on planar obje
t- no self shadowing8.5.2 Light MapsOne idea arising from this problem is to pre
ompute shadows by light maps.Light maps are textures that store the light 
onditions of a stati
 s
ene in animage. Often light maps are 
alled stati
 shadow maps.8.5.3 Shadow MapsShadow Maps are more general than planar shadow proje
tion and allow for the
asting of 
urved shadows on 
urved surfa
es, however this te
hnique requirestwo rendering passes: One from the �view� of the light sour
e and one from the
amera.Light View everything that is visible from here, must be lit. All hidden partsare in shadow. Sin
e we are only interested in how deep the obje
ts arelo
ated, we only save the depth values (Z-Bu�er).
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Figure 63: The s
ene as seen from the light. Only the depth values are stored.Render Pass now we transform our (x, y, z) 
oordinates to a

ess the shadowmap (x′, y′, z′) (see texture mapping 11 for details). Then we 
he
kwhether:
z′ = shadow (x′, y′) → pixel is lit
z′ > shadow (x′, y′)→ pixel is in shadow (render it bla
k)

Figure 64: In the se
ond pass, the shadow map is a

essed to determine whethera pixel is lit or in shadow.Dimmed ShadowsEven ni
er results 
an be obtained, when the shadow map returns grey valuesinstead of white and bla
k. Then the shadows are dimmed and not entirely92



bla
k.Colored ShadowsBut still the shadows will not 
ontain any of the materials property 
olor. If wewant the shadows to return even a full spe
trum of 
olor, taking into a

ountmaterial 
olors we just have to render the s
ene before the �rst pass with onlyambient light turned on. However this results in having three rendering passes.Curvature Shadows
Figure 65: The blue arrow shows where the 
urvature 
an be seen in the shadowWe 
an even make 
urvatures visible in shadows by 
omputing di�use re�e
tion,although we are in shadow. We simply darken the (�not� in
oming) light by somefa
tor and apply Lambert's 
osine law. To make the 
urvature look good we
an use a so 
alled fragment shader.Spotlight Shadows

Figure 66: Spotlight shadows 
an be 
reated by using the 
amera's frustum asa shadow frustumIf we are dealing with spotlights the shadows will be limited to the light spreadof the spotlight. We 
an obtain this e�e
t by using the 
amera's view frustum93



as a shadow frustum when 
reating the shadow map. The 
amera's frustumparameters are adjusted to �t the spotlight (view dire
tion is spot dire
tion,spot angle is fovy).Dire
ted Light ShadowsIn 
ase of a parallel/dire
ted light sour
e, we use the planar shadow methodfrom above if possible (surfa
e for the shadow required). If not we have to usean orthographi
 proje
tion rather than a perspe
tive one to render the lightview.Omnidire
tional LightIn 
ase the point light is outside of the s
ene (what we have assumed), we 
anuse the standard methods presented. If however the point light is within thes
ene we speak of an omnidire
tional light and need a variation of the method.A solution is to use a 
ube environment map for 
reating six shadow maps (ora paraboli
 for two) and use the referen
e te
hniques of environment texturemapping (see 11.10).Propertiesstati
 one render pass, only one shadow mapdynami
 two/three render passes, shadow map generated per frame- ma
hine pre
ision allows only for the test z′ ≈ shadow (x′, y′), but not z′ =shadow (x′, y′) (render with a small depth o�set, glPolygonOffset)alternatively to real depth values polygons or even whole obje
ts 
an beassigned an ID. During rendering this ID is 
ompared, and if it mat
hesthe polygon/obje
t is lit.- aliasing: the resolution of the saved shadow map easily be
omes visible (worstfor light from opposite dire
tion: the shadow will be proje
ted right to thenear plane and be huge, best for a miner's lamp above the obje
t: straightproje
tion without perspe
tive distortion.)- the light is assumed to be outside the s
ene. If it isn't the �light view� tri
kwon't work.for this 
ase environment maps 
ould be used (e.g. a resp. six 
ube maps)Aliasing 
an be met with antialiasing te
hniques su
h as linear interpolating theshadow map (see 3.8). However be
ause depth values may have hard jumps,per
entage 
losest �ltering is suggested: We 
ompare the 
urrent pixel'sdepth value with the surrounding ones and only take those for bilinear interpo-lation that's depth value equals at least X per
ent of the pixel's depth value.
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Figure 67: Adaptive shadow maps are ordered and a

essed in a tree stru
tureAnother idea areAdaptive Shadow Maps where similar to Mip-Mapping (see11.5.2) shadow maps are stored in di�erent sizes (here the resolution remainsthe same, instead the size varies depending on the position on the s
reen, see�gure). Then depending on the s
reen se
tion the appropriate is 
hosen. Theshadow maps are ordered and a

essed in a quadtree stru
ture (see �gure). To
hoose whi
h shadow map is appropriate, Mip-Mapping hardware supportedte
hnique 
an be exploited.+ very good shadows- many passes until the quadtree has been 
ut- di�
ult if the 
amera turns around- not yet appli
able in dynami
 s
enesA third method to meet shadow map aliasing espe
ially for large s
enes areLight Spa
e Perspe
tive Shadow Maps. The idea is to use a proje
tivemapping to shift resolution to regions 
lose to the 
amera. A suggestion forwhere to pla
e the eye for this proje
tive proje
tion popt (this is the degree offreedom) is
popt = n+ (n · f)

1

2

Figure 68: The shadow map resolution 
hanges with a proje
tive mapping95



+ only one shadow map8.5.4 Soft ShadowsMaybe the biggest problem dealing with shadows is the 
reation of soft shadows.Soft shadows mean shadows respe
ting attenuation (by distan
e to the o

luder)and a blurred border line. Alas simple blurring of the border line by low-pass�ltering does not in the results we want. If 
omputation time is unimportantwe 
an simulate an area light sour
e by several point light sour
es (at least 64ne
essary to avoid artifa
ts) and blend between them.

Figure 69: Partitioning of the s
ene into umbra, penumbra and lit areas.Modeling real area light sour
es we 
ome up with a model the separates thes
ene into three regions: umbra, penumbra and lit (see �gure).Penumbra Maps
Figure 70: Shadow mapping 
ombined with a penumbra map to soften theshadow outlinesPenumbra Maps are an extension to Shadow Maps respe
ting soft shadows. Wesimplify the model by modeling an arbitrary area light sour
e with a �dis
/sphere�light sour
e modeled again by a point light sour
e and a radius. Then we add96



a se
ond shadow map, whi
h we 
all penumbra map. This image 
ontainspenumbra values between [0; 1]. This value is used to modulate the already
omputed hard shadow turning it soft (see image). The question remains howto 
ompute this penumbra map:
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Algorithm 8 Creating Penumbra Maps

1. 
ompute o

luder's silhouettes (see shadow volumes 8.5.4)2. generate penumbra 
ones (silhouette verti
es) and sheets (silhouetteedges)3. render penumbra 
ones and sheet in light view4. take the blue hulls/outlines for penumbra regions (use the Z-Bu�er toobtain blue region)


ompute penumbra value for ea
h pixel

pen =
(zF − zvi)

(zP − zvi)where zvi is the distan
e of the o

luder to the 
enter of the light sour
e,
zF the distan
e of the fragment and zP the distan
e of the re
eiver(taken from shadow map) . zF lies on the interse
tion of the penumbraedge with the line from the pixel zpto the light sour
e's 
enter anddetermines the penumbra value. Now if:

zF = zvi the penumbra value results in pen = 0
zp−zvi

= 0, meaning bla
k a totalshadow the penumbra value results in , meaning white, atotal la
k of shadowEverything in between results in a soft shadow.
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+ 
an be done by a fragment shader- be
ause of modeling any area lightsour
e as dis
, we get re
tangular lightsour
es, whi
h prefer one dire
tion, wrong (shadow is harder for one di-re
tion as for the other)- having a dis
 or sphere the proportions of the penumbra value determinationmethods get wrong, be
ause e.g. 40% of the diameter does not 
orrespondto 40% of the sphere's volume (dis
's area), be
ause it gets broader in themiddle. We 
an a

ount for this by using this transformation:
pen′ = 3pen2 − 2pen3- overlapping: how to deal with overlapping penumbras (many di�erent s
enar-ios, see �gure)

Figure 71: Overlapping PenumbrasAs you 
an see there are several di�erent 
ases, that would need to be di�eren-tiated, when penumbras overlapShadow Volumes
Figure 72: Highlighted Shadow Volume99



Shadow Volumes des
ribe the boundary surfa
es between lit and shadowed re-gions. Their appli
ation is restri
ted to watertight, 
onvex surfa
es6. Imagine
onne
ting all verti
es of a triangle with the light sour
e (point) and extendingthese lines into in�nity. Above the triangle we will have a pyramid and below atrun
ated pyramid. Everything that lies within this trun
ated pyramid is withinthe shadow of the triangle. This trun
ated pyramid is what we 
all a shadowvolume.Algorithm 9 Shadow Volume Algorithm1. render the s
ene without shadows2. generate shadow volume3. determine for every pixel, whether it is within the volume4. dim pixels within the shadow volumeConstru
tion: Triangletake the triangle and shadow surfa
es of the edges 
onne
ted to the light sour
e's
enter.Constru
tion: Triangle Meshtake the triangles fa
ing the light sour
e, and shadow the surfa
es of the obje
t'ssilhouette. Use the s
alar produ
t between surfa
e normal and light dire
tionto determine the light fa
ing triangles:triangles where (~n ·~l
)

> 0 are fa
ing the light sour
etriangles where (~n ·~l
)

< 0 aren'tIf with two triangles A and B, A is fa
ing the light sour
e and B ain't, then weadd the edge between A and B to the silhouette of the obje
t.6We 
an break these restri
tions by elongating the surfa
e bottom wards or 
opying it andsti
king it to the ba
kside. Be
ause the problem arises with surfa
es having no thi
kness andnormals only for one side. Also take spe
ial 
are with the borderline.
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Algorithm 10 Constru
ting The Shadow Volume1. determine (~n ·~l
) for all triangles and store it as signum +/−2. for ea
h neighbouring triangle (use fa
e list for topology information, see10.1.5):if the signi of both triangles di�er(a) extrude the 
ommon edge [p, q] away from the light sour
e towards

∞(b) add the resulting surfa
e to the shadow volumeMultiple O

luders

Figure 73: Dealing with multiple o

ludersHaving multiple o

luders we build shadow volumes for ea
h of them. Butthen the problem arises that we 
an enter and leave shadow volumes. Onepossibility is to set up a 
ounter, following the eye in
rementing when enteringand de
rementing when leaving a shadow volume. When the 
ounter is greaterthan zero, we are within shadow. However this is not very e�
ient (e.g. be
auseof interse
tion 
omputations).Another idea is to make use of the sten
il bu�er:
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Algorithm 12 Shadow Volumes with Vertex ShadersTwo passes, for front and ba
k fa
ing triangles.1. send all edges to the vertex shader as degenerated quad literals2. 
he
k the edges for being silhouette edges (see above)(a) if they are: two of their edges are proje
ted away from the lightsour
e(b) if they aren't: render them as degenerate polygons 
overing no pixels3. all the transformed quad literals now de�ne the shadow volume sidesAlgorithm 11 Z-Pass Algorithm1. render the s
ene with Z-Bu�er turned on2. lo
k writing to Z-Bu�er and framebu�er (but leave the Z-Test enabled)3. render shadow volumes fa
ing the viewer: for every rendered pixel, in
re-ment the sten
il bu�er on this position4. render shadow volumes ba
k fa
ing the viewer: for every rendered pixel,de
rement the sten
il bu�er on this positionNow every pixel where the sten
il bu�er is greater then zero is in shadow.Step 3 and 4 
an be rendered in one pass, if the shadow 
olumns do not overlap.Propertiesin�nite shadow volumes use in�nity point with w = 0+ only one pass for rendering shadow volumes (front/ba
k fa
ing is supportedby OpenGL)+ optimal quality+ less silhouette edges than verti
es+ no sampling problems (does not use texture maps)- restri
ted to watertight 
onvex surfa
es- limited depth of the sten
il bu�er (8 bits, max 
ounter 255)simply use another bu�er, e.g. 
olor or α-bu�er- determining the silhouette in software is very expensive- rendered shadow volumes are very large (high �ll rate ne
essary), espe
ially
lose to the light sour
e, rasterizer be
omes a bottlene
k102



- viewer in shadow: 
ounter values are wrong (determine alternate global 
ounterstart value, pla
e the viewer far away from the near plane)- too 
lose near plane: the near plane might be beyond the entry point of the�rst shadow volume and remove it (di�erent 
ounter starting values)There is an alternative algorithm 
alled z-fail, whi
h reverses the orderof the z-pass algorithm, but z-fail en
ounters the same problem with thefar-plane (we start at the far plane and in
rease/de
rease the sten
il, on
ea depth test fails). However if we move the far-plane to ∞ the problem issolved. Note that be
ause of matrix 
al
ulations the other way round, i.e.setting the near-plane to 0 is not possible (
hoosing even −∞ obje
ts willbe perspe
tively stret
hed to in�nity).Disadvantages of this method is hardware dependen
y and that in generalthe z-pass method will �ll less pixel overall and thus be faster.- disadvantage of the z-fail method is, that a lot more pixels have to be renderedthan using z-pass. Be
ause usually the s
ene goes on quite a lot after theview frustum far-plane.In general it is important to �nd out where the bottlene
k is lo
ated. For ex-ample using simpler models for the o

luders won't help when using the shadowvolume approa
h, sin
e its bottlene
k is usually the �ll-rate. On
e the bottle-ne
k is spotted a 
ommon approa
h is to use several simpli�
ations (e.g. simplermodel, lower refresh rate for shadow information) and take wrong, ina

urateshadows into a

ount to get a a

eptable frame rate (the idea is that it is hardto determine the 
orre
tness of a shadow by the eye alone anyway)8.6 Motion BlurMotion Blur is a feature added to moving obje
ts to support the illusion ofmovement. A simple idea is, taking for example a sword sli
ing through the air,to add 
opies of polygon at previous positions setting their α-value for blendingwith the ba
kground. For this e�e
t we need to gather a series of images. Forthis purpose a spe
ial extra big bu�er, 
alled a

umulation bu�er has beenset up (see also 0.1).To make this pro
ess �t for real time, we do not gather n images beforedisplaying them, but use image operations. If we rendered the n + 1th image,we subtra
t the image n− x from the bu�er and add the new image n+ 1. Bythis we only need two renderings per frame.An alternative is to use vertex shaders (see 15) for the se
ond pass. In the�rst pass we render the obje
t normally, in the se
ond a vertex shader appliesthe previous frame's and the 
urrent frame's transformation to ea
h vertex. Thedi�eren
e between both gives a motion ve
tor: Che
k the dot produ
t betweenmotion ve
tor and surfa
e normal, whether the vertex is fa
ing away from themotion:if it is fa
ing away: take the vertex's previous position as output103



if it is fa
ing motion: take the vertex's 
urrent positionThe length of the motion ve
tor 
an be used to determine the α-values forblending.8.7 Re�e
tionA 
ommon way to render re�e
tions without Ray Tra
ing (see 9) is to renderthe real s
ene again mirrored on the re�e
ting surfa
e (e.g. written to a texturemap). Then these mirrored rendered obje
ts are made semitransparent. Toavoid rendering over opaque areas the sten
il bu�er 
an be used to hide themfrom rendering. Also remember to 
hange from ba
k-fa
e 
ulling to front-fa
e
ulling or turn it o� (slower rendering), sin
e everything will be reversed.9 Ray Tra
ingThe idea of ray tra
ing is to 
ast a ray for every pixel on the s
reen to the eyeand follow it through all obje
ts it interse
ts with. By that intera
tions betweenobje
ts be
ome feasible. Espe
ially shadows and re�e
tions be
ome easy prey.We di�erentiate four kinds of rays:
• primary rays: ray from the eye through the s
reen pixel
• shadow rays: on
e a primary ray hits an obje
t, a se
ondary/shadowray is sent towards the light sour
e
• re�e
ted rays: on
e a shadow ray hits a light sour
e, it is re�e
teda

ording to surfa
e properties
• transmitted rays: if the obje
t is translu
ent, in addition to re�e
tan
etransmission rays are 
reated and the result is 
arried ba
k to the �rstinterse
tion point9.1 ViewingThe prin
iple is very similar to what we got to know in perspe
tive transforma-tions, we simply draw the �rst obje
t the ray, a 3D dire
ted line with origin eand uwv 
oordinates, interse
ts with.

~e+ t · ~dwhere ~b is the ve
tors dire
tion. We 
an repla
e ~d with (~s− ~e), where ~s isthe pixel on the s
reen we are pro
essing. ~s's 
oordinates 
an be found betransforming the s
reen 
oordinates into the uvw-
oordinate system.
ws = ~n

us = l + (r − l)
i+ 0.5
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vs = b+ (t− b)
j + 0.5

nywhere (i, j) are the pixel's indi
es. Thus
s = ~e+ us~u+ vs~v + ws ~wNote If t < 0 the obje
t is behind the eye, and we don't have to render it.Of 
ourse this method is highly view dependent, meaning, on
e the viewing
hanges, we have to re
al
ulate everything.9.2 LightingLighting 
an also be done by 
asting rays. On
e our eye-ray interse
ts with anobje
t we send a ray from this interse
tion point towards the light sour
e and
ompute lighting. If it doesn't hit the light sour
e, we are inside a shadow. If itdoes we 
ast re�e
tion and transmission rays a

ording to the surfa
e propertiesand then shade the pixel with the following 
omponent:

• dire
t illumination� material properties (
olor)� surfa
e normal� light from the light sour
e
• indire
t illumination� in
oming light from re�e
ted rays� in
oming light from transmitted rays
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Figure 74: Re
ursive Ray Tra
ingWe see that Ray Tra
ing is a highly re
ursive pro
edure. This sounds mu
h likea physi
al simulation of sun rays, yet it isn't. If we'd to simulate reality, weought to start from the sun and 
ast rays on any point on any obje
t and theninto all dire
tions. If one of there rays hits the eye, we 
an see it and render it.But the probability for a ray hitting the eye is really low.ShadowsIf a shadow ray does interse
t with an obje
t on it's way to the light sour
e, weare in a shadow. We 
an basi
ally use the same algorithm as for viewing rays,but we 
an simplify it: Sin
e we are not interested in the 
losest interse
tingobje
t, we 
an stop the algorithm, when we �nd the �rst interse
tion with anobje
t.Soft ShadowsSoft shadows 
an be obtained by modeling an area light sour
e by a numberof point lightsour
es. However sin
e 
asting rays for every of these point lightsour
es would be tedious and the resulting shadows would still show hard visibleboundaries of values of grey, an idea is to randomly sele
t one or more of thesepoint light sour
es for every ray.Re�e
tionIn 
ase the shadow ray did not interse
t with an obje
t and we are dealing witha re�e
ting surfa
e, we 
ast a re�e
tion ray. The dire
tion of the ideal re�e
tion106



~r 
an be 
omputed by
~r = ~v + 2 (~v · ~n)~nIn reality 
olor is re�e
ted di�erently depending on the 
olor of the re�e
tingmaterial. E.g. gold re�e
ts yellow better than blue. We 
an respe
t this byadding a fun
tion to determine the re�e
tion ray's 
olor
olorc = c+ csray
olor (~p+ s~r, s ∈ [ε,∞[)Transparen
y / Refra
tionAs with re�e
tion we send transmission rays, if the surfa
e material is translu-
ent. Refra
tion is a bit di�erent from re�e
tion. The transmission ray will bebent, like e.g. a sun ray entering water. Thus the next obje
t it hits, will appeartranslo
ated on the transmissive surfa
e. We 
an make use of Snell-Des
artesLaw to 
ompute the refra
tion angle:

Figure 75: Snell-Des
artes Law
sin θi

sin θt

=
ηi

ηt

= ηr

cos2 θt = 1 − ~n2
(

1 − cos2 θi

)

~n2
twhere η des
ribes the refra
tion property of the material and ~n is the surfa
enormal, whereas ~nt is the bend surfa
e normal.107



Epsilon ε

Figure 76: Add a small 
onstant ε to 
ounter numeri
al instabilityBe
ause of numeri
al instability, we always should add a small 
onstant ε to therays mentioned above, else the �rst interse
tion might be with the surfa
e itselfand result in unwanted self-shadowing.Adaptive Depth ControlThis re
ursive 
reating of re�e
tion and transmission might never end. Thereforewe should add thresholds:Number Of Re�e
tions ρ: The number of re�e
tions threshold obviouslystops if the ray has been re�e
ted more than ρ timesIntensity τ : The intensity thresholds stops re�e
tion when the re�e
tion ray'sintensity drops beneath τ . To rea
h a drop down of intensity we 
onsiderea
h materials individual attenuation properties.9.3 Interse
tionWe 
an determine interse
tions by using impli
it representations of our ray andof our obje
ts.SphereAn impli
it sphere is given by
(x− xc)

2
+ (y − yc)

2
+ (z − zc)

2 − r2 = 0or with ve
tors
(~p− ~c) · (~p− ~c) − r2 = 0108



Now we simply plug-in our impli
it ray as a �point� on this sphere and 
he
kwhether we still get 0:
(

~e+ t~d− ~c
)

·
(

~e+ t~d− ~c
)

− r2 = 0rearranging for t we 
an get a simple quadrati
 equation:
(

~d · ~d
)

t2 + 2~d · (~e− ~c) t+ (~e− ~c) · (~e− ~c) − r2 = 0TriangleFor triangles we 
an use the handy bary
entri
 
oordinates (see 2.3.3). Ourimpli
it triangle was given by
~a+ β

(

~b− ~a
)

+ γ (~c− ~a)Now for interse
tion we set them equal
~e+ t~d = ~a+ β

(

~b− ~a
)

+ γ (~c− ~a)And we remember, that if β, γ > 0 and β + γ < 1 the point lies within thetriangle.PolygonOur given polygon has m verti
es ~p1 . . . ~pm and the surfa
e normal ~n. We startwith 
he
king whether the ray hits the plane the polygon is lying in
(~p− ~p1) · ~n = 0by plugging the impli
it ray in as a point

(

~e+ t~d− ~p1

)

· ~n = 0solving for t
t =

(~p1 − ~e)~n

~d− ~nBy that we �nd the point ~p where the ray hits the plane.Now se
ondly we 
he
k whether ~p is inside the polygon or not. We do thisby proje
ting polygon and point unto the most parallel 
oordinate-plane (e.g.by throwing away the biggest 
omponent in the normal ve
tor) and 
reate yetanother ray, starting from ~p having dire
tion (~pi − ~p). We only allow for positive
t and 
he
k whether this ray interse
ts one or two time with the polygon edges(by 
he
king 
onse
utively against all edges).One ~p is inside the polygon 109



Two ~p enters and leaves the polygon and must be outsideAttention: handle interse
tions at verti
es and along edges with spe
ial 
are.Further more 
on
ave polygons 
an also lead to wrong de
isions and morethen 2 interse
tions.Be
ause of su
h an amount of spe
ial 
ases, most 
ommonly testing per triangleand tessellation is preferred whenever possible.A

eleration Te
hniquesWe now have a stable method to 
ompute interse
tions between rays and ob-je
ts, however if we do these interse
tion test for ea
h ray and ea
h obje
ts, wetake 9x% of the 
omputation time & power. But there are some strategies fora

elerating the pro
edure of �nding the �rst interse
tion:
• bounding volumes
• spa
e partitioning
• ray 
oheren
eBounding VolumesFor ea
h obje
t we add a simply geometri
 obje
t that 
ompletely surrounds it.E.g. a re
tangle or a sphere. Then we interse
t with those bounding volumes.In 
ase the ray hits one of the we do an interse
tion test with the obje
t inside.Another advantage is, that at the �rsts step we do not even need to know wherethe ray hit our bounding volume, whi
h makes the interse
tion test mu
h easier.Hierar
hi
al Bounding VolumesAt a next step we might 
ombine several obje
ts, whi
h are 
lose to ea
h other,to one big bounding volume (e.g. table + 
hairs + fruit bowl). If the big volumeis hit, we interse
t with the smaller ones inside and eventually with the obje
tsthemselves.Uniform Spa
e PartitioningWe partition the spa
e into any number of uniform quadrants and only 
he
kobje
ts whi
h are (partly) inside the quadrants, the rays hits. Furthermore we
an make use of the te
hniques developed for the Bresenham Algorithm (see3.2). With that we do not need to 
he
k every spa
e part but like with the line,only the next of the upper next one.O
tree Spa
e PartitioningAgain we 
an move one level higher and repartition every quadrant. If the raypasses a quadrant we re
ursively s
ale down the partitioning for this quadrantand then 
he
k for obje
ts within the passed by smaller quadrants.110



Ray Coheren
eThe idea is to 
ombine several rays into a bundle of rays.9.4 Di�erent UsageInstead of doing only ray tra
ing, ray tra
ing 
an be used as an auxiliary te
h-nique for standard rendering:
• to generate high 
lass textures (see 11 for all kinds of di�erent textures)
• for vertex shaders: only 
ast rays from verti
es (disadvantage: GouraudShading Artifa
ts)9.5 LimitsCausti
s

Figure 77: Causti
sAppear with simple re�e
tion at 
ertain angle at the interior side of a shiny
ylinder and result in 
ompli
ated 
urves (see �gure).Causti
s 
an be modeled using photon maps (forward ray tra
ing):1. Shoot a huge amount of photons from the light sour
e.2. Store their hitpoints in some 3D bu�er3. Get photon density: Use 
lustering algorithms to �nd hot spots (e.g. forevery hit point, get the 50 
losest hit points and 
al
ulate the max distan
eto the 
hosen hitpoint) 111



Figure 79: Color Bleeding4. The denser the region, the more 
austi
s we renderColor Transmission

Figure 78: Color TransmissionColor Transmission means that to the shadow of an obje
t 
olor is added dueto the translu
ent property of the obje
t (see �gure).Color BleedingThe transfer of 
olor between nearby obje
ts, 
aused by the 
olored re�e
tionof indire
t light.9.6 Properties+ enormously parallel: ea
h ray 
ould be 
ast in parallel, if we'd had enoughparallel 
omputational power ray tra
ing would ex
eed all other methods112



is speed and quality+ global illumination+ very ex
ellent results+ 
ombines various di�erent illumination aspe
ts in one ray (re�e
tion, refra
-tion, transparen
y, shadows, soft shadows, global illumination, ...)- very slow with 
urrent un�t hardware10 ModelingModeling is all about 
hoosing the right representation for the obje
ts in a s
ene.Postulations
• good representation of the obje
t
• easy to render
• memory/runtime requirements
• intera
tion properties/possibilities
• 
reation pro
ess10.1 Polygon MeshesPolygons are the basis for most 3D appli
ations, they 
an be rendered easily andexpress almost every obje
t given due 
onversion time. Usually either triangleor quadrilateral meshes are used.Polygon An ordered set of verti
es: P0, P1, . . . , PnPolygon Mesh A 
olle
tion of polygons, su
h that any interse
tion betweenpolygons of the mesh is either at a vertex or a
ross an edge.OpenGL glBegin(GL_POLYGON): glVertex3fv(P0); . . . glVertex3fv(Pn); glEnd();It is important to di�erentiate between topology and geometry of a mesh:Topology neighbourhood relationsGeometry the position of the verti
es xyz-
oordinatesIn general whole obje
t's 
an not be represented by a single polygon mesh. Soour goal is to �nd the ideal de
omposition into smaller polygon meshes. Howeverthe 
omplexity of the stated problem is NP-
omplete.113



10.1.1 Indexed Fa
e Set (Shared Vertex Set)The idea of indexed fa
e sets is to use two separate lists:vertex list 
apturing geometry (
oordinates)fa
e list 
apturing topology (whi
h verti
es form fa
es)10.1.2 Triangle Strips
Figure 80: Triangle StripWe try to model both geometry and topology in one list, by using a sequen
e ofverti
es, where every three verti
es form a fa
e. Of 
ourse this means we haveto do a through ordering.ExampleGiven is the list: P0P1P2P3, P4, . . . , PnThis 
orresponds to the fa
es: P0P1P2;P1P2P3;P2P3P4;...OpenGL glBegin(GL_TRIANGLE_STRIP): glVertex3fv(P0); . . . glVertex3fv(Pn);glEnd();General Triangle Strips The generalization means that both edges of an endtriangle 
an be used to 
ontinue the triangle strip. If this method is notavailable (e.g. it isn't in OpenGL), you 
an insert dummy triangles to
hoose the edge you want to 
ontinue with. The advantage of generaltriangle strips is, that they 
an be
ome mu
h longer (see Stripi�
ationbelow 10.1.9)
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10.1.3 Triangle Fans

Figure 81: Triangle FanTriangle fans are very similar to triangle strips, ex
ept that every fa
e starts atthe same point P0.ExampleGiven is the list: P0P1P2P3, P4, . . . , PnThis 
orresponds to the fa
es: P0P1P2;P0P2P3;P0P3P4;...OpenGL glBegin(GL_TRIANGLE_FAN): glVertex3fv(P0); . . . glVertex3fv(Pn);glEnd();10.1.4 Quad Strips
Figure 82: Quad StripsSimilar to triangle strips, but every four verti
es form a fa
e, and the interpre-tation of the ordering is di�erent a

ording to quadrangles.ExampleGiven is the list: P0P1P2P3, P4, P5, P6, P7, . . . , Pn115



This 
orresponds to the fa
es: P0P1P3P2;P2P3P5P4;P4P5P7P6;...OpenGL glBegin(GL_QUAD_STRIP): glVertex3fv(P0); . . . glVertex3fv(Pn);glEnd();10.1.5 Enhan
ed Indexed Fa
e ListApart from modeling we often will want to a

ess and 
hange the renderedmodel. For that we need an e�
ient way to answer 
alls like: what are adja
enttriangles, whi
h triangles share an edge, whi
h fa
es share a vertex or whi
hedges share a vertex, therefore we might want a data stru
ture allowing forfaster a

ess to those relations: the Enhan
ed Fa
e List.We enhan
e the fa
e list by three referen
e pointer to the three neighbouringtriangles by e.g. a pointer to the third vertex 
reating the neighbouring triangles.

Figure 83: Enhan
ed Fa
e List Examplevertex list Triangle0 = x0, y0, z0, Triangle1 = x1, y1, z1, Triangle2 = x2, y2, z2,Triangle3 = x3, y3, z3fa
e list Fa
e0 = 0, 1, 2, Fa
e1 = 3, 2, 5, Fa
e2 = 1, 4, 3, Fa
e3 = 3, 5, 2enhan
ed fa
e list Fa
e0 = 3,−1,−1, Fa
e1 = 5, 0, 4, Fa
e2 = 6, 2,−1, Fa
e3 =
−1, 1, 610.1.6 Dire
ted EdgesThis problem is 
ommonly solved by giving edges a dire
tion. This is by repla
-ing the fa
e list with a list of dire
ted edges, with two entries

• start vertex of edge
• pointer to the opposite edge indexindexed by an edge index. 116



Figure 84: Dire
ted Edgesedge list Edge0 = 0,−1, Edge1 = 1, 5, Edge2 = 2,−1, Edge3 = 1, 8, Edge4 =
3, x, Edge5 = 2, 110.1.7 Normal Ve
torsThe normal ve
tors of surfa
es 
an be obtained either in the design pro
ess (e.g.when using NURBS or impli
it surfa
es) or taken as average of the involvededges' normals:

~n0 =
n
∑

i=1

Pi · Pi+1, Pn+1 = P110.1.8 Fa
e Orientation (Ba
k Fa
e Culling)This is rather important, sin
e usually only one side of the obje
t is visible (un-less the viewer is inside the obje
t, or there are holes in it). Thus we want onlyto render the fa
es fa
ing front (towards the eye) and leave the rest unrendered,this e�e
ts in about 50% less polygons to render. The idea is to impli
itly storethe orientation in the ordering of the verti
es:
lo
kwise fa
e is seen from the ba
k
ounter-
lo
kwise fa
e is seen from the frontProperties- approximation to smooth geometry (no silhouettes)- very large number of polygons- very bad intera
tivity- di�
ulty to in
rease/de
rease the resolution of the obje
t- di�
ult to extra
t geometri
al information (e.g. 
urvature)117



10.1.9 Stripi�
ationA simple approa
h to �nd a de
omposition into triangle strips:Algorithm 13 Simple Stripi�
ation1. randomly sele
t an unused triangle2. start a triangle strip along one edge
�2: until an used edge has been rea
hed3. 
ontinue triangle strip into opposite dire
tion
�3: until an used edge has been rea
hed4. �1: until the polygon is 
ompletely de
omposed

The SGI approa
h adds a little improvement: The starting triangle (orange)is not sele
ted randomly, but by the number of least unused neighbours (ifambivalent, 
he
k the neighbours as well)Even better results 
an be obtained by using general triangle strips, sin
e thenthe strips 
an be
ome mu
h longer. Furthermore better usage of the vertex
a
he (see below) 
an be made:
118



Algorithm 14 TunnelingEa
h triangle is seen as a node in a graph.Then we use graph algorithms to �nd paths between the nodes, without usinga node twi
e.Eventually we seek for �edges� 
onne
ting two end points of su
h paths (dottedlines). These are 
alled tunnels.The so dis
overed �best� path is then the general triangle strip.1. generate a trivial path set of triangles (e.g. empty set, all isolated)2. � for ea
h path endpoint oi:
→ for ea
h other path endpoint oj : sear
h for a tunnel oioj3. was a tunnel found?(a) TRUE: swap all dashed and solid edges →2(b) FALSE: Return path as general triangle stripWith every swap the number of triangle strips gets e�e
tively redu
ed by one.

Note that even tunneling does not return the global minimum of strips, yetthe results are pretty good. For example a bunny obje
t 
onsisting of 70.000triangles results in about 700 strips when using SGI Stripi�
ation and in 158when using tunneling.Note Be 
areful about the triangle's orientation (vertex ordering)! Whentrying to 
ontinue a strip at one of its endpoints, the strip might suddenlyend in a triangle that's order is di�erent to the original starting triangle.However this new triangle will be 
hosen as starting triangle for the strip,so the order of the 
omplete strip is reversed resulting in wrong rendering.119



10.1.10 Vertex Ca
heThe vertex 
a
he is a 
a
he for pro
essed verti
es, normals, texture 
oordinatesor 
olor arrays. The idea is that for example in a triangle strip the same vertex'sattributes will be used multiple times in short noti
e (up to 6 times). Thereforea little 
a
he for the last n pro
essed verti
es 
an give us an enormous speed im-provement. However for the look-up statement to work, we require indexed fa
esets (without we don't know whether vertexi equals vertexj). In the optimum
ase (see �gure below), whi
h is not as rare as you think (e.g. tessellation ofBézier Surfa
es), half of the verti
es are already in the 
a
he or in other words,fet
hing one single vertex 
an lead up to two new triangles.Example
Figure 85: Triangle Strips, where the vertex 
a
he 
an be optimally used (avertex may be 
alled up to 6 times)If we use a vertex 
a
he of size 7 for this strip, we reuse half of the verti
es:Ca
he: 7 4 1 5 2 6 3 , the verti
es 4,5,6 and 7 are used again.If however we limit the size to 6:Ch a
he: 3 7 1 5 2 6 , the verti
es 4,5,6 and 7 are overwritten, beforewe 
an reuse them, and we end in no reuses.A typi
al size for vertex 
a
hes is n = 16, 32, 64. The optimal ratio betweenpro
essed verti
es and triangles is 2.A 
ombination between Stripi�
ation using the Vertex Ca
he is to stop the strip,on
e the 
a
he overruns. In this 
ase the next strip started will make reuse ofat least half of the 
a
hed verti
es.Triangle Strip LengthNote that we need to distinguish two 
ases to determine the optimal trianglestrip length. This di�erentiation is made on the used data-type. If we useindexed fa
e sets, only then will we be able to make use of the vertex 
a
he,and the optimal length of an indexed fa
e set should be limited by the vertex120




a
he 
apa
ity. If we however have simple triangle-strips without topology in-formation, the rule: the longer the better, 
ounts and we might use tunnelingto greedily get longer ones.Indexed Fa
e Sets limit size to vertex 
a
he 
apa
ityTriangle Strips the longer the better10.2 Parametri
 Surfa
esWe 
an de
ide between using polynomial or rational 
urves and between usingglobal or pie
ewise models.42 global pie
ewisepolynomial Bézier B-Splinesrational rat. Bézier NURBSInstead of simple monomials (xn) we will use more suitable basis fun
tions:Bézier Bernstein Polynomials (see 2.7)B-Splines B-Spline basis fun
tions (see 2.7)A 
urve is then represented by a polynomial linear 
ombination of one thesebasis fun
tions and so 
alled 
ontrol points cn
F (x) =

n
∑

i=0

ciBi (x)This is only one possible kind of representation, we 
ould also use impli
it 
urves(see 2.4):
f (x, y, z) = 0where the impli
it fun
tion f returns 0 if the point (x, y, z) lies on the 
urve.Impli
it representations are espe
ially useful for geometri
 primitives like spheresor planes, where �xed formulas exist. In the other 
ases Computer Graphi
Designer usually prefer parametri
 
urves, sin
e be
ause of the free parameter,they are easier to sample and to draw.InterpolationHaving these 
ontrol points cn we have to estimate the values in between, ap-proximating them by a polynomial. One problem is, that whilst a polynomialinterpolating points cn is unique for every degree, a 
urve has in�nite manyrepresentations. The pro
ess of transforming one representation of a 
urve intoanother of the same 
urve is 
alled reparametrization. We 
an make use ofthis to �nd a representation that is most 
onvenient for our appli
ation.Apart from that polynomials are fun
tions, that means for every x there is121



one and only one y. Yet for a 
urve, there 
an be more than one y (e.g. a
ir
le). Se
ondly polynomials of a high degree tend to os
illate (over�tting, seePattern Re
ognition). Therefore instead of a global model often a pie
ewisemodel appears to be more �tting.Linear Interpolation Linear Interpolation means to �nd the simplest
urve between any number of points and distributing the values of these pointsin between linearly. E.g. for two points we have
p (t) = t · p0 + (1 − t) p1, t ∈ [0; 1]Bilinear Interpolation Bilinear Interpolation means linear interpolationin two dire
tions (a
ross a pat
h).

p (s, t) = (1 − s) (1 − t) p00 + s (1 − t) p10 + (1 − s) t · p01 + s · t · p11where s, t ∈ [0; 1] are the free parameters de�ning the pat
h.Trilinear Interpolation Trilinear Interpolation means linear interpola-tion in three dire
tions (through a room).Approximation

Figure 86: Di�eren
e between interpolation and approximationWe di�erentiate the terms interpolation and approximation in so far, that withinterpolation the 
urve/polynomials must pass every 
ontrol point, while withapproximation they only in�uen
e the 
urve's graph.122



10.2.1 Bézier Curves

Figure 87: A Bézier Curve with four 
ontrol points: b0, b1, b2, b3Bézier 
urves 
hose the later idea and approximate 
ontrol points rather thaninterpolate them. Ex
eptions are the end points of the 
urve, whi
h are inter-polated. As you 
an see in the �gure above, the dire
t lines between the pointsare tangents of the a
tual 
urve. The degree of the Bézier 
urve is the numberof 
ontrol point minus one.An intuitive way to understand how we 
an draw su
h a non dis
rete fun
-tion, i.e. a perfe
t 
urve, to the s
reen is illustrated by 
orner 
uttingCorner Cutting
Figure 88: Corner CuttingCorner Cutting means to su

essively 
ut the 
orners o�, to make the 
ornerpoints more smooth. We 
ut them of by spanning lines between a 
orner pointand 
ut/
lip o� the outside. The limes of in�nite many subdivisions is indeeda smooth 
urve.
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Algorithm 15 Corner Cutting
subdivide(p0, p1, p2) {

p01 = p0+p1

2

p12 = p1+p2

2

pm = p01+p12

2subdivide(p0, p01, pm)subdivide(pm, p12, p2)}

Figure 89: The midpoints (bla
k points) resulting from 
orner 
utting, makeup the 
urve approximating the 
ontrol point p1 and are thus those, whi
h wedraw on the s
reen. Some threshold 
an determine the number of subdivisions.We use 
orner 
utting to approximate the 
ontrol points and draw our �smooth�
urve on the s
reen. We only use the midpoints pm resulting from 
orner 
uttingto de�ne the shape of our 
urve (see �gure above).
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Figure 91: Ordering of Bézier 
ontrol pointsNote that the order of the 
ontrol points is very important, as illustrated in this�gure.Algorithm Of Casteljau

Figure 90: Algorithm of CasteljauAn generalization to 
orner 
utting is a number of su

essive linear interpola-tions 
alled the algorithm of Casteljau.
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OrderContinuityOf 
ourse we also will have to 
onne
t Bézier Curves. In this 
ase we want toassure that we have at least C0 and C1 
ontinuity7:We have
C0 if the graph has no gaps
C1 if the tangent ve
tors mat
h (no sharp 
orners)With these assuran
es we have a 
urve without gaps and sharp 
orners. How-ever for some appli
ations 
ontinuity up to C5 is useful, so we bid spe
ial 
aredepending on the appli
ation. For example C2 
ontinuity is needed, when theobje
t is in motion and we want the motion to be smooth.Quadrati
 Bézier CurvesQuadrati
 Bézier Curves have only one approximation (
ontrol) point p1. For
t ∈ [0; 1] we get

p (t) = (1 − t) ((1 − t) p0 + t · p1) + t (t · p0 + (1 − t) p1) + t · p2

p (t) =
(

1 − t2
)

p0 + 2 (1 − t) p1 + t2p2thus we result in having the weights w0 =
(

1 − t2
)

, w1 = 2 (1 − t) , w2 = t2.These weights or 
ontrol points are often referred to as blending fun
tions.So the 
urve is the weighted average of the 
ontrol points:
p (t) =

n
∑

i=0

wi (t) piThe weights must always sum up to 1 and we allow no negative weights.Cubi
 Bézier CurvesCubi
 Bézier Curves are also based on the subdivision pro
edure and haveone additional point to approximate. This results in 4 
ontrol points w0 =
(1 − t)

3
, w1 = 3 (1 − t)

2
t, w2 = 3 (1 − t) t2, w4 = t3Bézier Curves Of Higher OrderDealing with Bézier Curves of any order, we 
an �nd a generalization of theblending fun
tions using Bernstein binomial 
oe�
ients:

wn
i (t) =

(n− 1)!

i! (n− i)!
· (1 − n)

n−i−1
ti7Cn
ontinuity means the fun
tion is 
ontinuous and all of it's derivatives up to the nthalso are. 126



Bézier Surfa
esBézier Surfa
es are a generalization of Bézier Curves in 3D. A Bézier Surfa
e isalso given by the average of all 
ontrol points:
p (s, t) =

m
∑

j=0

n
∑

i=0

wij (s, t) · pijwhere the blending fun
tions wij must be 
ontinuous.There is a great property of Bézier Surfa
es (
ontinuous blending fun
tions),that allows us to separate the 2D blending fun
tions into two 1D ones.
p (s, t) =

m
∑

j=0

n
∑

i=0

wj (s) · wi (t) · pijwhere wj (s) · wi (t) is a tensor produ
t (see 2.1.2), sin
e one goes in x and theother in y dire
tion. This also means we 
an give two 1D 
urves to make asurfa
e. We simply have to �nd a matrix representation of our fun
tion (whi
hwe 
an, be
ause we are dealing with linear fun
tions) and handle these matri
esas they would be ve
tors and apply the tensor produ
t.Properties+ the most striking advantage is that an obje
t des
ribed by su
h 
urves is
ompletely resolution independent and will show no signs of aliasing.+ easy adjustment: the 
urve's shape is manipulated by manipulating 
ontrolpoints (de�ne tangents on the 
urve)+ the 
urve always remains in the 
onvex hull of 
ontrol points+ a�ne transformations on the 
urve , a�ne transformations of the 
ontrolpoints (a�ne invariant)- the 
urve depends on all 
ontrol points, so 
hanging a single one reshapes thewhole 
urve (this 
an sometimes be an advantage as well)- many 
ontrol points lead to a high-degree polynomial (degree = number of
ontrol points minus one)A small simple applet to play with Bézier 
urves 
an be found here Bézier CurveApplet http://www2.mat.dtu.dk/people/J.Gravesen/
agd/de
ast.html. Lookhow moving a single 
ontrol point in�uen
es the whole 
urve. If you still wantto see more, here's an applet illustrating Bézier Surfa
es Bézier Surfa
e Applethttp://www.nbb.
ornell.edu/neurobio/land/OldStudentProje
ts/
s490-96to97/anson/BezierPat
hApplet/index.html127



10.2.2 Uniform B-Splines8A way to avoid both negative properties mentioned above is to use splines.Splines are polynomials of a lower degree that are 
ombined to approximate apolynomial of a higher degree. Basis fun
tions for B-Splines 
an be looked uphere: 2.7. With these basis fun
tions a B-Spline is de�ned as:
S (t) =

n−1
∑

i=0

pibi (t)Now geometri
ally speaking we 
ombine these splines by shifting the basis fun
-tions to given so 
alled knot points ki, whi
h serve as 
onne
tion points be-tween the splines. In our 
ase we 
hoose them uniform.
ki = ki−1 + 1

Figure 92: Shifting the splines basis fun
tion to the 
ontrol pointsThis 
hoi
e for knot points in uniform distan
e results in having the same splineover and over again, only translated to the knot point. This also means we don'thave to store the knot points, sin
e they 
an be 
reated automati
ally and needonly to store the 
ontrol points.Subdivision Pro
essThe subdivision pro
ess is similar to the Bézier 
ase, yet we do not take themidpoints. Instead we use the midpoints between midpoints:8From Basis-Splines, 
ause they are all 
reated from the same set of basis fun
tions
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Algorithm 16 Subdivision Pro
ess for B-Splines
1. Choose midpoints in ea
h segment of the 
ontrol polygon2. Conne
t midpoints of these and the original 
ontrol points3. Also use midpoints of the 
orner segmentsCubi
 B-Splines

Figure 93: Cubi
 B-SplineLike with 
ubi
 Bézier Curves we have four points, but now, even the end pointsare not ne
essarily on the 
urve. All the properties of Bézier Curves do also
ount here, but only lo
ally: lo
al 
onvex hull, lo
ally 
ontinuous, lo
al 
ontrolby 
ontrol points.Properties+ every spline has C2-
ontinuity+ 
onstant degree of basis fun
tions: more e�
ient and more numeri
ally stable+ lo
al 
ontrol of 
ontrol points: e�e
ts are only lo
al+ bound by the 
onvex hull of the points+ a�ne invariant- only an approximation like polygons, no a

urate modeling129



- no 
ontrol points on the 
urve (the 
urve will be de�ned by parameter values)- removing of 
ontrol points 
an lead to a 
omplete restru
turing of the whole
urve, sin
e the number of 
ontrol points between two knot points is 
on-stantA series of applets illustrating uniform B-Splines 
an be found here: B-SplineApplet http://www.ibiblio.org/e-notes/Splines/Basis.htm. Look howthe B-Spline fun
tions all look equal, expe
t for being translated to the knotpoints. Try to move the 
ontrol points to in�uen
e the 
urve. Moving one
ontrol point will only in�uen
e the part of the 
urve, that is dependent on it.You 
an also try to destroy the uniform spa
ing of the knot points on theright side of the applets and see how the representation 
hanges.10.2.3 NURBSNon Uniform Rational B-Splines (NURBS) are a generalization of B-Splinesrational ratio of two polynomials instead of one 
ubi
 one (results in an exa
trepresentation of 
oni
s (e.g. 
ylinders, 
ir
les)non-uniform di�erent spa
ing between knot points (results in an easier addingand deleting of 
ontrol points, simply add the point 2.5 between 2, 3 →
2, 2.5, 3 or simply remove the point 3 between 2, 3, 4 → 2, 4)These 
hanges mean that we have to de�ne and store two knot sequen
es for

x and y dire
tion; wi (x) , wj (y). We 
an 
ombine them for a knot matrixde�ning a surfa
e, like we did with Bézier Curves, by 
ombining them with atensor produ
t.
N (x, y) =

m
∑

j=0

n
∑

i=0

wi (x) · wj (y)Pijor written with the ratio
N (~u) =

∑n
i=0 hipiwi,k,~t (~u)
∑n

i=0 hiwi,k,~t (~u)where ~t is the knot ve
tor and k the B-Spline degree parameter. Where Pij isan array (a matrix) 
ontaining all the 
ontrol points.
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10.3 Constru
tive Solid Geometry (CSG)

Figure 94: Basi
 Operations of Constru
tive Solid GeometryThe idea of Constru
tive Solid Geometry is to use a set of operations to 
ombinesolid shapes. These operations 
an be seen as operations on sets (∪,∩,−).+ 
an e�
iently be 
ombined with ray tra
ing10.4 Subdivision Surfa
es10.5 Pro
edural ModelsPro
edural models provide pro
edures that 
an generate points on a 
urve(model), that are neither impli
it nor parametri
. A good example for pro-
edural models are fra
tals.10.6 Hierar
hi
al Modeling10.6.1 S
ene Tree / S
ene GraphThe idea of hierar
hi
al modeling is to gather obje
ts as 
hunks. The root isthe s
ene itself, partitioned by obje
t groups that share a 
ertain geometry (e.g.tables), partitioned by single obje
ts, partitioned by obje
t parts, partitionedby primitives. This hierar
hy is 
alled s
ene tree. When fo
using on sharedgeometri
 properties, we speak of s
ene graphs rather than trees.131



10.6.2 S
ene Des
riptionA s
ene 
onsists out of: Camera, Light, Ba
kground, Materials and Obje
ts.We des
ribe ea
h of them separately.10.6.3 Class Hierar
hyA kind of obje
t oriented approa
h. For example a possible super 
lass isObje
t3D. This super 
lass is inherited by Sphere, Cylinder, Plane, Triangleor Group.

Figure 95: Organization tree using a 
lass hierar
hyUsing su
h a 
lass hierar
hy, we 
an des
ribe the s
ene as a tree of groups.In this approa
h we 
an de�ne materials inside of group 
lasses for ea
h groupmember.
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S
ene Transformations

Figure 96: S
ene TransformationsAdding a transformation 
lass as Obje
t3D, we 
an also des
ribe transforma-tions within the s
ene.Add a 
lass Transformation as an Obje
t3D. By making TransformationObje
t 3D we 
an logi
ally pla
e them in the organization tree and order alla�e
ted real obje
t groups below it.10.6.4 S
enegraph APIOpenGL is powerful, but we have to 
reate obje
ts from the bottom by linesof 
ode, and have little assistan
e in pi
king and transforming obje
ts duringthe 
reation. Furthermore OpenGL is more hardware than user oriented and thepro
ess of 
reation is imperative rather than des
riptive (whi
h would be moreintuitive). Now s
enegraph APIs are usually based on OpenGL and thereforeshare it's advantages (e.g. hardware independent), yet they o�er the abovementioned features making the pro
ess of 
reating easier and more intuitive.A typi
al s
enegraph API 
overs
• s
ene des
ription: geometry and attributes (hierar
hi
al modeling)
• reutilization: leads to DAGs
• validity and propagation attributes
• a GUI for easy modeling and arranging of obje
ts
• typi
al basi
 elements/nodes: 
amera, light sour
es, ba
kground, shape,group, geometry, transformation, root133



Some popular APIs are:
• OpenInventor (SGI)
• Java 3D
• OpenS
enegraph10.7 Level Of Detail (LOD)Representing a model in detail may not always be good, espe
ially if we lookfor speed. For example imagine a 
ar 
lose to the far plane, very distant tothe viewer. To model this 
ar taking up so few pixels, a really simple modelis su�
ient. However if the 
ar is right before the user, we need it with everydetail, we 
an get. Now the idea of LOD is to provide obje
ts and texturesin a di�erent level of detail resp. resolution, de
ide whi
h LOD is best for theobje
ts in the s
ene and provide a way to swit
h between di�erent LODs forintera
tivity.Also note the LOD rendering is 
ompletely solved by 
urves, NURBS et
.(see previous se
tions), sin
e they provide di�erent LODs in their geometri
des
ription.10.7.1 LOD CreationFirst of all to sele
t and swit
h between LODs, we need di�erent LODs per se.Handmade the most straightforward method is to provide them yourself. Ad-vantage is that they will be asjusted to the appli
ation and 
an be tested tolook good. On the other hand this takes time and makes them appli
ationdependent.Edge Collapse move two verti
es forming an edge to one point making anedge 
ollapse. One 
ollapse removed two triangles, three edges and onevertex. Supplying a history of 
ollapses, we 
an lostless reprodu
e thehigher LOD and don't have to save di�erent LODs per se.Contra
tion a generalization of edge 
ollapse allowing edges and triangles to
ollapse as well. Also very important is to avoid 
riti
al 
ontra
tions atany 
ost (
riti
al in the sense of hugely deforming the obje
t), howeverthose 
an be easily dete
ted by the dire
tion 
hange of a�e
ted surfa
enormals.Bump Maps a 
urious idea is to turn a
tual geometry information into a bumpmap and render the obje
t �at (just take the normals and put them intoa normal map).A
tually �maintaining surfa
e properties�, like avoiding dire
tion 
hangesof surfa
e normals, has proven to be a good 
ost fun
tion. Another good 
ost134



fun
tion is based on the �least per
eptible 
hange� in the resulting image.It is measured by a simple distan
e 
omparison between the images resultingfrom both LODs, however simple it is expensive to 
ompute.10.7.2 LOD Swit
hingLOD Swit
hing is quite important, be
ause without a proper strategy a signif-i
ant blopping between LODs will be visible. In the worst 
ase the levels willrapidly swit
h for and ba
k resulting in blopping and �i
kering.Blending doing a blend over two LODs over a short period of time. For exam-ple by rendering the old LOD opaque and the new with in
reasing α-value(- blending is very expensive).Alpha α-LODs a
tually use only a single model, but this model's αvalue in-
reases with distan
e to the viewer disappearing at some point all together.After this disappearing a signi�
ant speed up will happen, but in 
ontrastto the speed idea of LOD this method will result in no e�
ien
y gain,while the obje
t is still visible.CLOD standing for Continuous Level Of Detail. The idea is to provide one
omplex model and su

essively derive less 
omplex models from it (e.g. 2pixels less 
omplex per stage). The idea is to su

essively shrink all edgesuntil both endpoints meet and the edge will entirely disappear. Ea
h�model� must thus 
ontain a pointer to the next LOD (some LODS willlook ugly, the obje
t always appear to be 
hanging).10.7.3 LOD Sele
tionRange The most forward way is to pla
e the de
ision on the distan
e to theviewer.Proje
ted Area In this method the bounding volume of the obje
t is proje
tedonto the s
reen and the number of pixels is 
ounted to determine the LOD(requires approximation of solid angles).Proje
ted Pixel Another possibility is to proje
t a pixel onto a asso
iatedtexture map (if given) and measure the number of textures in�uen
ing it.This is espe
ially useful for �nding the right Mip Mapping (see 11.5.2)LOD resp. resolution. E.g. by using the longer edge of the parallelogramformed by the pixel's 
ell as a measure.Obje
t Type E.g. a 
lo
k on the wall is less important than a wall.Fo
us The viewer's fo
us determines the LOD. E.g. during a so

er game thearea around the ball needs a high LOD, whereas the other playground 
anbe rendered at a low LOD. 135



Sin
e almost the only value of using LODs is a gain in speed, in general anobje
tive fun
tion 
an be approa
hed and used as a metri
 for sele
tion:# obje
ts
∑ Bene�t (O,L)Cost (O,L)where O is the obje
t rendered and L the asso
iated level of detail. This 
anbe espe
ially useful when we want to guarantee a minimum frame rate.11 Texture Mapping

Figure 97: A s
ene with and without texture mappingThe problem of the te
hniques we introdu
ed so far, is that if we really wanta detailed surfa
e on an obje
t, the means various di�erent materials, heightdi�eren
es, 
olors and other features, the modeling pro
ess would be
ome re-ally 
omplex and ine�
ient. Therefore Ed Catmun and Jim Blinn thought ofsomething else that works mu
h like wallpapers on walls. Instead of really mod-eling the outward appearan
e we de�ne a 2D image and wrap it around theobje
t (1D and 3D �images� are also possible). This is 
alled texture mapping.E�e
tively we have to �nd a 
oordinate mapping from the image 
oordinatesto our obje
t 
oordinates. We di�erentiate stati
 textures (raster images) or136



pro
edural textures that are 
omputed on the �y:
T : R

2 → RBG (A)texel a pixel in the texture (from texture element)Properties+ adds visual 
omplexity to obje
ts in a simple way+ great performan
e 
ompared to �real� modeling+ 
an even be used for re�e
tan
e properties (see environment maps)- dependent on the rasterization method (ray tra
ing, s
anline deliver di�erentresults). Solution: Do Perspe
tive Interpolation 11.211.1 Noise TexturesNoise Textures are an example for pro
edural textures. We randomly assign
olor values of a 
ertain range to get something like a TV stati
. This is also
alled white noise, be
ause it's following an uniform distribution. For a moresmooth noise we 
an use a te
hnique 
alled Perlin Noise. Key features ofPerlin Noise is to use a latti
e and 
olor ve
tors rather than 
olor values andinterpolate between them using weighting fun
tion ω.
n (x, y, z) =

⌊x⌋+1
∑

i=⌊x⌋

⌊y⌋+1
∑

j=⌊y⌋

⌊z⌋+1
∑

k=⌊z⌋
Ωijk (x− i, y − j, z − k)

Ωijk (u, v, w) = ω (u)ω (v)ω (w) (Γijk · (u, v, w))

ω (t) =

{

2 |t|3 + 3 |t|2 + 1 if |t| < 1

0 otherwisewhere Γ 
ontains a hash fun
tion φ for a

essing pre
omputed unit ve
tors inan array G:
Γijk = G (φ (i+ φ (j + φ (k))))11.2 2D Texture MappingWe are given a texture image of size (nx, ny) and have texture 
oordinates u, vto a

ess texels on the texture. Often 2D texture mapping is done by �rstmapping texels to every vertex and then interpolating between them.1. Normalization: First we see that we limit the texture range to [0; 1], valuesoutside of this range 
an for example be 
omputed by a periodi
 extensionof the texture or by 
lamping (both dis
ussed later on 11.7).137



2. Interpolation: A pixel value usually does not dire
tly 
orrespond to onesingle texture value, but lies e.g. 
lose to the 
enter of four neighbouredpixel. In su
h a 
ase we 
an apply a interpolation te
hnique like: NearestNeighbour, Bilinear or Trilinear Interpolation.(a) Nearest Neighbour: Take the texture value 
losest to the pixel
Figure 98: Nearest Neighbour Interpolation(b) Bilinear Interpolation: Interpolate between neighbouring textures
lose to the pixel

Figure 99: Bilinear Interpolation(
) Trilinear Interpolation: The same as bilinear interpolation for tex-tures 
lose to the pixel in three dire
tions (3D)Texture CoordinatesThe texture 
oordinates u, v 
an be gotten by:
• delivered by model dataThe u, v 
oordinates are generated during the modeling phase (e.g. para-metri
 surfa
es) and stored in a se
ond list next to the vertex list. Thismeans every vertex in the list has both x, y, z 
oordinates as well as u, v
oordinates. This also means that we 
an easily add additional featuresto verti
es. 138



• run time 
omputation (parametrization)This is trivial for geometri
 primitives like spheres or 
ubes. For otherobje
ts, we 
an en
lose them into a geometri
 primitive and proje
t fromthis en
losing primitive onto the obje
t. Of 
ourse the results vary forea
h method, therefore it is appli
ation dependent whi
h to 
hoose. Theeasiest way is to use planar proje
tion (see �gure).Possible are: parallel (planar) proje
tion, 
ubi
al, 
ylindri
al or spheri
alproje
tion

Figure 100: Planar Proje
tion
• automati
 generation from vertex 
oordinatesThis is what OpenGL does (glTexGen()). Think of it as a dia/beamerproje
tion (see �gure). We do this by giving a �xed rule how to map
oordinates for all obje
ts by de�ning a linear fun
tion, i.e. a matrix. Nowby this matrix we 
an de�ne an arbitrary proje
tion, e.g. an orthographi
one, using only the linear 3×3 part or a perspe
tive making use of the lastrow of the whole 4 × 4 matrix. With the latter one we 
an e.g. performa dia proje
tion from the light sour
e. Using vertex shader, we 
an geteven more sophisti
ated proje
tions by de�ning rules how to transformverti
es.One advantage of this method is that we 
an manipulate the texture 
oor-dinates by this 4×4 texture matrix (whi
h has its own texture sta
k). Notthat we don't have dire
t a

ess to world 
oordinates, therefore we needto apply the obje
t's 
oordinates �rst to the ModelView matrix before we
an throw them into the texture matrix.

ptexture = MtextureMModelViewpobje
t
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Figure 101: Dia Proje
tionUsage With this method you 
an for example go out into the RealWorld 
©take a pi
ture with a digi
am and use it as dia-texture. However themost used appli
ation are shadow maps.Example: Sphere / Runtime Computation1. Get polar 
oordinates for the vertex (x, y, z) on a sphere with 
enter
(xc, yc, zc) and radius r:

x = xc + r · cosφ sin θ

y = yc + r · sinφ sin θ

z = zc + r · cos θ

φ = arctan 2 (y − yc, x− xc)

θ = arccos

(

z − zc

r

)2. Now we 
an easily get 2D surfa
e 
oordinated for this polar 
oordinatesby dividing by the spheri
al 
omponent π:
u =

φ+ π

2π

v =
π − θ

πCurrent graphi
s 
ard allow for loading the 
omputation 
ode for rather thanthe texture 
oordinates itself to the 
ard. These are 
alled vertex programs.
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Rasterization: Perspe
tive InterpolationA problem is that the texturing method is 
urrently rasterization dependent ands
anline interpolation will even distort our textures, sin
e the used bary
entri

oordinates do not respe
t the distortion of the perspe
tive transformation ofthe texture. The solution is pretty straightforward and the idea is alreadyknow from 
lipping in homogeneous 
oordinates: We do the interpolation in theperspe
tive spa
e.
Figure 102: Perspe
tive InterpolationOn the �gure you 
an see above, the pro
ess is illustrated. s is the texture
oordinate in world spa
e, and t in s
reen spa
e. As you 
an guess, the inter-polation in both spa
es is not the same, therefore we look for a mapping t→ sthat allows for a 
orre
t interpolation.
(

x
z

)

=

(

x0

z0

)

+ s

(

x1 − x0

z1 − z0

)

Figure 103: So instead of the standard rasterization we now interpolate withthe values returned by the mapping to the perspe
tive spa
e.11.3 1D Texture Mapping1D texture maps are often used for visualization. E.g. for s
alar �elds (
olor
oding). 141



11.4 3D Texture Mapping
Figure 104: A 3D map to model the inside of a human headEspe
ially for visualization. For example medi
al modeling of organs or systemsof the human body or for te
hni
al modeling of ma
hines.With 3D maps volumee�e
ts 
an be obtained.11.5 Texture AntialiasingOften the obje
t we want to wrap out texture around is larger or smaller thanthe texture. In this 
ase we need a larger or smaller form of or texture gottenby expanding or shrinking it's resolution. However this easily leads to visualartifa
ts (
alled Aliasing). be
ause the sampling theorem is hurt:11.5.1 Sampling TheoremNyquist on
e stated an important theorem about the sampling of a signal. Thesampling frequen
y fs must be at least twi
e as high than the highest frequen
yo

urring in the signal fo, else the signal's representation will not be a

urate:

fs ≥ 2 · foIn our 
ase that means the fun
tion's frequen
y sampling the texture must betwi
e as high as the texture's frequen
y.Antialiasing methods and algorithms have been thought of to 
ounter this e�e
tor keep the sampling theorem valid.
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11.5.2 Mip Mapping9
Figure 105: Mip-MappingThe idea of Mip Mapping is to provide the same texture in several di�erent res-olutions (
orrespond to di�erent frequen
ies). Than when it 
omes to samplingwe 
hoose the texture, whose frequen
y is most �tting the sampling frequen
y(e.g. by taking the highest absolute value of the following di�erentials mea-suring how mu
h texels 
ontribute to one pixel proje
ted to the texture map:

{

∂u
∂x
, ∂v

∂y
, ∂u

∂y
, ∂v

∂x

} as a measure, for more sele
tion methods, refer to the se
tionon Level Of Detail Sele
tion 10.7.3).
Figure 106: Trilinear Interpolation with Mip-MappingMip Mapping also provides an interesting possibility for doing trilinear interpo-lation using 2D textures. In a �rst step we do bilinear interpolation betweentwo su

eeding textures of the Mip Mapping hierar
hy and then linear interpo-late between the two resulting values. The result is a three dimensional lookingimage.+ takes a 
onstant amount of time no matter the resolution- only squared areas 
an be retrieved, this leads to overblurring of re
tangulars
enes, if they minimized/maximized too mu
h9MIP = multum in parvo (Latin: many things in a small pla
e)143



11.5.3 RipmappingThe ripmapping te
hnique tries to avoid the overblurring appearing with mipmapping. The idea is simple, we extend mip mapping as to in
lude down sam-pled re
tangular areas as subtextures that 
an be a

essed. Two more param-eters are used to a

ess this rip map, but they 
an be 
omputed on the �y byusing the pixel 
ell's u and v extents on the texture.+ no overblurring- very memory intensive11.5.4 Summed-Area TableThe �Table� is referring to an underlying array, having the size of the texturebut more bits. Now on every position in the array all pixels in
luded by there
tangle having lower left point [0, 0] and the position as upper right point aresummed, divided by their number and stored in this position. By that we 
an
ompute the average of any arbitrary re
tangle within the texture (by simplesubtra
tions).+ less overblurring than mip mapping (only at the diagonals)- memory intensive11.6 Blending Fun
tionsWhen we found the texture 
oordinates we want to have at a 
ertain point onour obje
t, we have several possibilities how to pro
eed further. These in
luderepla
e simply repla
e the underlying obje
t point with the texture valuede
al like repla
e, but apply α-blendingmodulate multiply the surfa
e 
olor with the texture value (also 
alled mul-tipli
ative blending)In the �rst 
ase already 
omputed lighting will be overwritten and the obje
twill appear to glow on its own a

ount (glow texture).11.7 Corresponder Fun
tionsCorresponder fun
tions des
ribe what is to be done with pixels outside of thenormalized texture range [0; 1[:wrap repeat tile The texture image is repeated a
ross its borders. For ex-ample the value at 1.2 equals the value at 0.2.144



mirrorThe texture image is repeated, but mirrored. For example the value at 1.2equals the value at 0.8.
lampValues outside the range are �
lamped� to the 
losest edge. There is an alter-native 
alled 
lamp to border, where a spe
ial border 
olor is de�ned, where to
ast outside values to.11.8 Bump Maps

Figure 107: Bump Maps adding height featuresAs dis
ussed at the beginning of the 
hapter there are additional features wemight want to add to mere 
olor wallpapers, to make them look more realisti
.One approa
h to do this are bump maps. A bump map is an �image� whi
h
ontains height information for a texture map. So at ea
h point of the texturewe know the depth/height of it.
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Figure 108: Bump Maps 
ontain height informationWe 
an make use of this knowledge by developing a way to alter the surfa
enormal at this position a

ording to the texel's height value. This does not resultinto an a
tual 
hange of shape, yet due to shading being di�erently applied atthis point, it looks like it was. This 
hange in normals 
an be obtained bysampling the bump map and using partial derivatives (gradient) to express the
hanges in height and perturb the normals with them.Emboss Bump Maps
Figure 109: Emboss Bump MapEmboss Bump Maps is an approximation to standard bump mapping, that isfar more e�
ient, sin
e it skips lighting 
al
ulation at ea
h pixel. The idea isto render the bump map as an image, translate the texture towards the lightsour
e, render it again as a subtra
tive texture (see below for multi texturing11.15):

L · T (s) − T (s+ ∆s)
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Gouraud Bump Maps

Figure 110: Gouraud Bump MapIn 
ontrast to Emboss Bump Maps, Gouraud Bump Maps are a 
ompli�
ation.Instead of 
hanging the surfa
e normals, the bump map 
hanges lighting normalper vertex. It requires a high geometri
 resolution and is hardly useful.Per-Pixel Bump Maps / Dot Produ
t Bump Maps

Figure 111: Normal Map used for bump mappingInstead of height, the bump texture 
ontains normals (x, y, z 
oded in RGB). Sowe read the normal from the texture ~n, interpolate ~v and ~l and normalize themand �nally 
ompute lighting with ~n,~l, ~v. However in a �rst step we still need pervertex operations to map world spa
e 
oordinates to the texture 
oordinates.
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Parallax Bump Maps
Figure 112: Left: standard bump map, Right: parallax bump mapParallax is the apparent shift of an obje
t against a ba
kground 
aused by a
hange in observer position. Standard bump mapping does not 
over this visuale�e
t, but they 
an be elegantly extended to provide this e�e
t. We estimatethe parallax due to the bump texture and apply the e�e
t by adding a o�set totexture 
oordinates.

Figure 113: Computation of the parallax o�set
T 0 the a
tual point the eye would see without bump mapping
A the point T0 o�seted a

ording to the bump map
T n 
orre
ted point
B what the eye would see, if the bump was real (by o�setting the 
orre
ted Tn)

Tn = T0 +H · exey

ezwhere H is the height a

ording to the bump map.Limit the o�set for grazing angles
Tn = T0 +H · exey

Tn 
orresponds to the gradient and 
an be found by for example using NewtonIteration. 148



Properties+ e�
ient: simple geometry stage,+ visually 
omplex- no 
hange in geometry: shadows are not a�e
ted by the bumps, silhouettesare una�e
ted- looks still �at, when viewed from the side11.9 Displa
ement Maps

Figure 114: Displa
ement MapsIn 
ontrast to bump maps, displa
ement maps really do 
hange the geometryof obje
ts. Surfa
e points are displa
ed a

ording to a displa
ement map 
om-monly towards the surfa
e normal.11.10 Environment MapsEnvironment Maps are textures that allow for a mirroring of the ba
kground.They 
an be implemented as 
ube maps (6 textures), sphere maps (1 texture)or paraboloid maps (2 textures).
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Cube Maps

Figure 115: Environment Map with a 
ubeWe think of a 
ube surrounding the whole s
ene having one texture on ea
h side.We a

ess the 
ube's textures by 
asting a ray from the 
enter of the s
ene.1. 
ompute re�e
tion ray ~r for the surfa
e point (where the eye ve
tor wouldbe re�e
ted to)
~r = 2 (~e · ~n)~n− ~e2. �nd the 
orresponding 
ube sub-texture: Choose the highest absolute10value among the three 
oordinates and determine the sub-texture by it'ssignE.g. ~r = (−8, 2, 1) has highest absolute 
oordinate |−8|, the sign is −resulting in the left sub-texture3. get the texture 
oordinates (u, v) by the interse
tion of ray and sub-texture. This 
an easily be obtained by dividing the other two 
oordinatesby the absolute value of the one 
hosen in 2. and s
aling the unit 
uberange [−1; 1] to the texture range [0; 1] by adding 1 and dividing by 2.E.g. ~r = (−8, 2, 1) results in 2

|−8| and 1
|−8| and after s
aling the range:

u =
2

|−8|
+1

2 and v =
1

|−8|
+1

2+ uniform sampling 
hara
teristi
s (no ex
essive number of pixels at a pole,like spheri
al ones)+ the six fa
es are easy to 
ompute+ view independent10If two 
oordinates have equal absolute values, we are on a border between two 
ube mapsand 
an 
hoose any of them. This however will seldom happen, be
ause of hardware pre
isionfailures. However we 
an a

ount for it, by putting these border lines into both neighbouringtextures. 150



Spheri
al Maps
Figure 116: Environment Map on a sphereWe make some assumptions to make this pro
ess more e�
ient:

• parallel 
amera rays (uniform dire
tion e0)
• environment map is in�nitely far away (
olor depends only on the dire
tionof re�e
tion ~r)

~r = 2 (~e · ~n)~n− ~eWith these assumptions made, our environment map odes only need to storeone 
olor value for every dire
tion of re�e
tion. After ~r has been normalized,texture 
oordinates 
an be gotten by
u =

rx + 1

2

v =
ry + 1

2The sphere texture image is 
reated/re
orded by pla
ing a perfe
tly mirroringsphere in the middle of the s
ene and save the re�e
tion (also 
alled �probe�, seeimage above).OpenGL glTexGenfv(GL_S,GL_SPHERE_MAP,0)+ no seam at the border of the texture- irregular sampling at the boundary, be
ause many pixels are mapped 
loselyon the sphere's poles (use other environment maps, e.g. 
ube maps orparaboli
 maps)- moving between two points is not linear (no linear interpolation possible)- only valid for one viewing dire
tion (no environment rotation)151



Paraboli
 Maps

Figure 117: Paraboli
 Environment MapParaboli
 Maps are very similar to spheri
al environment maps, yet they use twotextures and mirror the environment at two paraboloids rather than a perfe
tsphere. All re�e
tion rays share the same origin and viewing rays are parallelto the z-axis. The paraboloid is given by:
f (x, y) =

1

2
− 1

2

(

x2 + y2
)The we get the texture 
oordinates from the re�e
tion ve
tor:

u =
rx

1 + rz

v =
ry

1 + rzThis works espe
ially well if the hardware allows to re�e
tion ve
tor to texture
oordinates.+ view independent+ uniform sampling (linear interpolation) even better as with 
ube maps- very hard to 
reateProperties of Environment Maps+ supported by hardware- for planar obje
ts (�at obje
ts) the 
olor be
omes unrealisti
ally 
onstant(worst for orthographi
 proje
tion)- the 
olor of a point on the re�e
ting surfa
e does not only depend on there�e
tion ve
tor ~r but rather on the area of a 
one having it's peak in thepoint (use pre�ltered environment maps a

ounting for this).152



11.11 Environment Bump Maps

Figure 118: Environment Bump Map with normal texture, environment map(+light sour
e) and a bump mapThere exists an interesting 
ombination of bump and environment maps, thatwill be presented here. The �rst aspe
t is that we will perform lighting via atexture:lighting via texturea 2D texture that maps surfa
e normals ~n to 
olor L~nThus we result in having three texture maps: standard texture, environmentmap + light sour
e, bump map (see pi
ture). The bump map returns an o�setfor a

essing the environment map (
hanging the normal):
L = L~n · Brightness (environment) + bump o�set11.12 Intera
tive Horizon MapsThe disadvantage of bump maps is that although the bumps look good, theyprovide no real geometri
al bumps and therefore those bumps do not 
ast shad-ows. Horizon Maps try to 
ounter this by storing the horizon around a pointin texture maps, enabling to de
ide whether a point lies in shadow or not. Theheight of the horizon simply depends on the dire
tion (i.e. the angle), so thedire
tion will give us a

ess to the map. If the light sour
e lies below the horizonwe are in shadow.Following this idea we pre
ompute horizon heights for ea
h pixel in at leasteight dire
tions (N, NE, E, SE, S, SW, W, NW). Then during lighting 
al
ulationwe 
ompute the height angle of the light sour
e and 
he
k whether the heightof the horizon surpasses the light sour
e's height.
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Figure 119: Does the light ray lie above the horizon?By this eight dire
tions we sample the horizon en
losing our point in 8 points.Now having a point we 
ould simply interpolate the two involved samples, how-ever the results are very bad. Therefore we rather use the samples as 
oe�
ientsof basis fun
tions (stored in textures, one for ea
h dire
tion) and use them toevaluate the height in between two dire
tions with weighted interpolation (
o-e�
ients = weights).Sin
e the horizon height samples are 1D �oat values, we will be able to storethem in merely two textures, storing four samples in one texture's RGBα-
hannels.
Figure 120: North basis fun
tion texture and the resulting horizon map usingonly this basis textureIn the �gure on the left we see the basis fun
tion for the dire
tion north. If wehave a point and a

ess a dire
tion in�uen
ed by the north basis fun
tion, wewill result in a horizon map like the �gure on the right. The bright 
ir
les aretotally lit and not o

luded by horizons in the north. The 
loser we go northfrom su
h a 
ir
le the 
loser we will get to a northern horizon and the more wewill be in shadow.For example we assume the position to be the blue point on the left �gure.Then the horizon height will depend on something about 20% on the northernhorizon sample point and about 80% on the north western one. All other samples
ontribute 0% to the interpolated height.11.13 Shadow MapsThe idea of shadow maps is to store a map, whi
h we 
an a

ess, if we want toknow whether a point is lit or not. This 
an be done by rendering the s
ene with154



the eye at the light sour
e, then naturally every position not lit, lies in shadow,sin
e the light 
annot rea
h it. We then store this result in a pi
ture we 
an useas a shadow map. These kind of texture maps are ex
essively dis
ussed in the
hapter about shadows on page 8.5.3.11.14 Illumination In TexturesAnother di�erent way of making use of textures is to use them for lighting
al
ulation. This of 
ourse is limited to s
enes where the light remains the samefrom any angle, (e.g. a 
hamber with one light sour
e on the 
eiling). Usingtextures we 
an e�
iently realize the Torran
e-Sparrow Light Model (see 8.3.3).Remember the 
olor was given by
L = IIn · F (~l · ~h)G(~n · ~v, ~n ·~l

)

D
(

~n · ~h
)

Π(~n · ~v)
(

~n ·~l
)we reorder the formulated

L = F
(

~l · ~h
)

D
(

~n · ~h
) G

(

~n · ~v, ~n ·~l
)

Π(~n · ~v)
(

~n ·~l
) · IInand then store the fun
tions F (~l · ~h)D (~n · ~h

) in a �rst texture with u = ~l · ~hand v = ~n · ~h as texture 
oordinates and G(~n·~v,~n·~l)
Π(~n·~v)(~n·~l)

in a se
ond one (for 
olor),where we use s = ~n · ~v and t = ~n ·~l as texture 
oordinates.Algorithm 17 Illumination In Textures1. set vertex 
olor to IIn2. turn on texture #13. use u, v as texture 
oordinates4. render the s
ene5. set vertex 
olor to 1 (white)6. turn on texture #27. use s, t as texture 
oordinates8. render the s
ene with multipli
ative blending (multi texturing, see above11.6)Due to the resulting gain in e�
ien
y Phong Shading 
an be used.155



OptimizationIf we simplify the physi
al model again by assuming parallel light, ~l be
omes
onstant. If we further assume a parallel viewer ~v be
omes 
onstant. Assumingboth even ~h be
omes 
onstant. If light and viewer are indeed far from the obje
tthis assumption is justi�ed.In this 
ase we use simply the normal ~n as texture 
oordinates and generate
u, v, s, t automati
ally by having stored ~l, ~v in a texture matrix. This furtherallows us to use OpenGL display lists (see 14).If we are still not 
ontent we 
an even store the di�use re�e
tion (1 − ~f

)in the texture. The α-
hannels of both textures are not used yet, so we 
anstore the di�use re�e
tion in the α-
hannel of the �rst texture. In this 
asehowever, we must add a third render pass at the end of the algorithm for di�useillumination and blending:
L = α (destination) · L (sour
e) + 1 · destination (sour
e)where α (destination) 
orresponds to 1 − ~f , L (sour
e) + 1 
orresponds to thedi�use fra
tion and destination (sour
e)to the spe
ular fra
tion.+ if 
hanges in ~l, ~v are required from time to time, the optimization 
an stillbe used, simply the texture matrix has to be re
omputed- two/three passes required11.15 Multi TexturingMulti Texturing des
ribes a method to apply multiple textures in a single ren-dering pass for one obje
t. Today's graphi
s hardware supports this. It de�nesoperations to add, subtra
t, multiply, et
. textures with/from ea
h other. Theadvantage against simply applying multipli
ative blending (see 11.6) is thatinstead of rendering multiple texture one after another, we get the texturesrendered in one single pass.Note To avoid visual quantization artifa
ts, 
hoose an appropriate 
olor model(24bit, 32bit)+ supported by modern boards+ only one rendering required11.16 Texture Ca
heA s
ene might 
ontain a high number of textures, whi
h are 
onsequently a
-
essed. Therefore most graphi
s hardware o�ers a 
a
he for textures. Usuallythe textures should be kept small. An ex
eption is to 
ombine small textures ina mosai
 like pattern on a larger textures. In this 
ase we have impli
it smallertextures, but save the overhead for swit
hing textures.156



Last Re
ently Used (LRU)Now to make good use of the texture 
a
he, ea
h texture is assigned a timestamp. Every time a texture is 
alled, it gets a new time stamp assigned. If the
a
he is full the texture with the oldest time stamp will be dropped. In 
ase ofa draw OpenGL and Dire
tX o�er additional priority assignments.Most Re
ently Used (MRU)MRU 
he
ks the texture 
urrently being swapped out of the texture 
a
he,whether it has been used in the 
urrent frame. If it was, it is kept. While beingin one frame MRU should be preferred to LRU, sin
e otherwise every singletexture of the frame would �rst be swapped in. Leaving a frame, we swit
hba
k to LRU.Prefet
hingAs the name suggests prefet
hing loads the textures into the texture 
a
he,before they are needed or required. By that a lot of laten
y 
an be hidden.Of 
ourse this te
hnique requires a good pre
omputation of whi
h textures arerequired at a future time.11.17 Texture CompressionTextures are images and images 
an be 
ompressed by e.g. JPEG or PNG
ompression. Now this would allow a faster loading and a better usage of thetexture 
a
he, however the de
oding algorithms for JPEG and PNG are to
omplex to put them in hardware. Therefore SGI has 
reated a spe
ial textureimage 
ompression format that is espe
ially easy to de
ompose: S3TC (S3Texture Compression). The main disadvantage is that this format is lossy,i.e. it 
annot be re
reated without information loss. If a texture image showsespe
ial 
olor depth at a 
ertain region, this will be lost. Furthermore S3TCshould never be used when dealing with normal maps used for bump maps.
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12 BRDF (Bidire
tional Re�e
tion DistributionFun
tion)

Figure 121: From physi
al radian
e to BRDFs and other lighting/shading meth-ods12.1 Maxims
• plausible (obey energy 
onservation, re
ipro
ity)
• anisotropy
• intuitive parameters (like in Phong Lighting)
• Fresnel behaviour (for pe
uliarity)
• non-Lambertian di�use term (for a di�use term with energy 
onservationfor the Fresnel term)
• Monte Carlo support (to support Ray Tra
ing)A BRDF whi
h manages to �t all these maxims is 
alled: Fresnel-weightedPhong-style anisotropi
 
osine lobe model.158



12.2 TheoryBidire
tional Re�e
tion Distribution Fun
tions des
ribe how light is re�e
tedfrom a surfa
e. To des
ribe this a BRDF 
overs:
• material properties
• in
oming/outgoing azimuth and elevation angles
• in
oming light's wavelength
• surfa
e areaYou 
an see BRDFs as giving the probability that an in
oming photon will leavein a parti
ular dire
tion. So they relate in
oming and outgoing radian
e, butthey do not des
ribe physi
al material light intera
tions. It makes another sim-pli�
ation by negle
ting s
attering of light within a surfa
e, and only takes intoa

ount light 
oming from above and being re�e
ted at one spe
i�
 point (Afun
tion type modeling surfa
e s
attering are Bidire
tional Surfa
e S
at-tering Re�e
tan
e Distribution Fun
tion (BSSRDF) whi
h will not bedis
ussed).The outgoing radian
e for a given point x and light Lin in
oming at angle

ωin is
L (x, ωout) =

∫

Ω

f (x, ωin, ωout)Lin (x, ωin) (ωin · ~nx) dωinwhere f is the BRDF. It returns for some in
oming light dire
tion ωin whatper
entage of light leaves at some exitant dire
tion ωout. The se
ond termdenotes the radian
e arriving at point x from dire
tion ωin. The last term isjust the appli
ation of Lambert's 
osine law for di�use surfa
es: cos (ωin) =
(ωin · ~nx). Sin
e we are interested only in the light that will turn out on point
x we integrate over all in
oming and outgoing light angles ∫

Ω
.If the surfa
e is di�use, the BRDF f be
omes 
onstant (f (x, ωin, ωout) =

ρ (x), with ρ (x) ∈ ]0; 1[ where 0 means perfe
t re�e
tan
e and 1 no re�e
tan
e)
L (x, ωout) = ρ (x)

∫

Ω

Lin (x, ωin) cos (ωin) dωinIf we are dealing with a single point lightsour
e the equation further simpli�esto
L (x, ωout) = ρ (x)Lin (x, ωin) cos (ωin)where cos (ωin) 
an be 
omputed by the surfa
e normal at the 
orrespondingpoint:cos (ωin) = (ωin · ~nx)Having more than one light sour
e we dis
retize the integral to a sum and sumup over all light sour
es.If we for example take the Phong Light Model, (see 8.3.2) the BRDF f be
omes
fphong (x, ωin, ωout) =

ks

(

~n · ~h
)nshiney

~n · ωinin this way other models like the Torran
e-Sparrow Light Model 
an be used.159



Mi
rofa
ets
Figure 122: Surfa
e mi
rofa
ets.a) The surfa
e is assumed to be made of millions of tiny fa
ets. The fa
ets areused to �nd a probability distribution of fa
et normal dire
tions.b) The surfa
e is rendered as a geometri
ally �at surfa
e with the normal dis-tribution used to reprodu
e the shading e�e
ts of the fa
ets.Surfa
es will seldom be ni
e and �at, in fa
t even those whi
h look �at havea mi
ros
opi
 rough stru
ture. We introdu
e the 
on
ept of mi
rofa
ets whi
hmodel this mi
ro stru
ture and thus des
ribe how surfa
es behave. Mi
rofa
etsare tiny mirrors on the surfa
e with random size and angle (see �gure). Insteadof random (uniform), a Gaussian distribution of sizes and angles is assumed,be
ause they are better to work with.Mi
rofa
ets 
over:

• spe
ular re�e
tion (by dire
t re�e
tion)
• di�use re�e
tion (inter re�e
tion or s
attering)
• self shadowing (fa
ets shadow ea
h other)
• refra
tion (use Fresnel Re�e
tan
e for diele
tri
s F 11)Properties- BRDF do not 
over anisotropy12They 
ould if we would add a se
ond type of angle (φin, φout) to the BRDF.However this 
an hardly be 
overed with graphi
s hardware and methods.12.3 Praxis (Implementation)A �rst idea is to evaluate BRDF on every vertex in the s
ene. However asusual this leads to Gouraud artifa
ts, when 
hanges are either smeared away oroveremphasized. As dis
ussed earlier this 
an be 
ountered by �ne stru
turing,however then we have a bottlene
k and la
k performan
e (using vertex shaders,the performan
e goes slightly up).11F des
ribes the re�e
tan
e of a surfa
e at various angles12the property of being dire
tionally dependent160



A se
ond 
ommon idea is to pre
ompute as mu
h as possible and store it ina texture map. For isotropi
 surfa
es the BRDF needs three variables, so wewould be able to store everything in a three dimensional texture map. Againthe usual la
ks of this method are sampling problems, noise, gaps and memory-intensiveness.12.3.1 Fa
torizationA more sophisti
ated implementation uses fa
torizations of the BRDF basisfun
tions into a sum of two term produ
ts. The idea is to fa
torize the fourdimensional (four variables) BRDF into two texture maps. Then we multiplythe two values from both maps and sum them up:
f (x, ωin, ωout) ≈

n
∑

j=1

pj (ωin) · qj (ωout)where p and q denote a

ess fun
tions to the two texture maps. Looking atthe term 
losely, we see that fa
torizations tries to separate the BRDF into afun
tion 
overing the in
oming light and one 
overing the exitant light. The tex-ture maps itself are a

essed like environment maps (
ube, paraboli
 or sphere(best)), whi
h 
over a similar task (re�e
tion).Properties- rendering artifa
ts from using texture maps and interpolation (minor)- two texture a

esses for every light sour
e- limited to point and dire
tional light sour
es12.3.2 Environment Map FilteringEnvironment Map Filtering extends the environment map 
on
ept (see 11.10)from mirror like re�e
tion to glossy and di�use re�e
tion. The idea is to �lter theresult of the environment map a

ess. For example by blurring it the spe
ularre�e
tion will appear rougher.Now either we hope for the forgivingness of the eye and blur the whole mapuniformly/linearly or we use a equation 
alled Phong Spe
ular Equation to�lter it non-linearly. This equation determines a weight for ea
h light dire
tiondepending how mu
h every texel 
ontributes relative to the dire
tion. So thelight 
olor is given by the ambient light and the di�use light resulting from anenvironment map 
overing the radian
e of an environment (light + re�e
tedlights with 
ontributions falling o� a

ording to Lambert's Cosine Law, 8.3.2).This kind of environment map is also 
alled Irradian
e Map.
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Figure 123: The three major 
omponents of PRTThe �rst sphere is the environment map 
overing lighting Lin (p, s)The se
ond sphere 
overs visibility (shadows) V (p, s)The third sphere 
overs Lambert's 
osine law for re�e
tion cos (s) = (s · ~n)Properties- wrongly assumes the same spe
ular lobe for all viewing/surfa
e dire
tionsyielding the same re�e
tion dire
tion (this is only valid for perfe
t mirrors)This assumption is ne
essary to be able to restri
t to one single environ-ment map. A

ordingly this problem 
an be 
overed by using multipleEnvironment Maps. In fa
t interpolation and blending between 20 spheremaps already draw high quality results.- view dependen
y: by storing every information in a single sphere map, wealso have view dependent spe
ular re�e
tion storeduse two sphere maps instead and use one for view-dependent and one forview-independent radian
e information- environment maps assume light sour
es and obje
ts to be distant- the dynami
 range of light is limited to 8 bits per 
olor 
hannel, yet dire
tlighting from a light sour
e is hundreds of times brighter than indire
tillumination. So 8 bits do not su�
e to 
over the full range of in
identillumination (as it is needed in the environment map).12.4 Pre
omputed Radian
e Transfer (PRT)Pre
omputed Radian
e Transfer is a global illumination te
hnique 
overingBRDFs (with pre
omputed environment maps), soft shadows and inter re�e
-tion. The key feature of PRT are spheri
al harmoni
s that make up the environ-ment map. Advantages in 
omparison with previous BRDF te
hniques 
overedso far are:
• PRT is fast and simple (
an be done in a vertex shader)162



• intera
tive: the environment 
an be 
hanged dynami
allyFurthermore PRT allows for arbitrary illumination (dire
t, indire
t, 
austi
s)and for any kind of light transportation. Be
ause of the environment map
overing lighting, illumination 
an 
ome from any dire
tion. However obje
tsneed to be stati
 (environment map) and intera
tions between obje
ts is verylimited (e.g. 
olor bleeding).Spheri
al Harmoni
s

Figure 124: Spheri
al Harmoni
s
l is 
alled band and m is bound by −l ≤ m ≤ lSpheri
al Harmoni
s are a set of basis fun
tions with a spheri
al domain. They
an be used to represent spheri
al fun
tions with a set of 
oe�
ients:

f (θ, φ) =
n
∑

i=1

fiYi (θ, φ)where f is a spheri
al fun
tion, angles (θ, φ) parametrize the spheri
al domainand Yi are 
omplex basis fun
tions with 
oe�
ients fi.
Y m

l (θ, φ) = Km
l e

ℑ(φ)P
|m|
l cos (θ)

Pm
l are Legendre Polynomials (see 2.7) and normalization 
oe�
ients Km

l are
Km

l =

√

(2l+ 1) (l − |m|)!
4π · (l − |m|)!The higher the number of basis fun
tions n, the more pre
ise the out
ome(typi
al are about 25). 163



Now we want a real values basis fun
tion and thus di�erentiate:
ym

l =











√
2ℜ
(

Y l
l

)

m > 0√
2ℑ
(

Y l
l

)

m < 0

Y 0
l m = 0Sin
e ym

l build an orthonormal basis, we 
an easily �nd the 
oe�
ients fi byusing the fun
tion s
alar produ
t
f ◦ g =

∫ 1

0

f (x) g (x) dx

fi = fm
l ◦ ym

lComputation: In
ident/Exitant LightSo what we do is to approximate the lighting fun
tion with a polynomial usingSpheri
al Harmoni
s as basis fun
tions and the environment map as 
oe�
ients.We 
ompute the in
ident light Lin as
Lin =

1

n

n
∑

j=1

Lj
in (θ) yj (φ)where (θ, φ) are used as indi
es for a

essing the environment map. The envi-ronment is split up like in environment map �ltering. Where Lj

inis a BRDF.Often Lin is 
onstant for a whole obje
t. If it isn't we 
an take some samplesof the obje
t and interpolate them.Next we 
he
k the exitant light Lout for every vertex p and texture mapa

ess s = (θ, φ) :
Lout (p) = ρ (p)

1

n

n
∑

j=1

Lj
in (p, s)Hj (p, s)whereH (p, s) = s·~np transformed to the spheri
al domain: H (p, s) =

∑n
i=1Hiyi (p, s)ShadowsHaving this formula we 
an easily in
lude shadow by an additional term V (p, s)

Lout (p) = ρ (p)

∫

Ω

Lin (p, s)V (p, s) (s · ~np) dswhere V (p, s) = 1 if the point p sees the environment in dire
tion s, and 0 ifnot.
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Inter Re�e
tions

Figure 125: PRT with inter re�e
tionsFrom the point p dire
tion s does not return environment map texels, thereforwe use the exitant light of qIn 
ase p does not see the environment in dire
tion s (V (p, s) = 0), it mightsee it's own surfa
e point q (see �gure). In this 
ase we use the exitant light of
q to model the interre�e
tion between those two points. We 
an 
ompute thisvalue by assuming Linto be the same at p and q. Then we just apply a globalillumination methods like ray tra
ing and 
ompute the di�use 
olor for p.Shadows 
ombined with inter re�e
tions result in having soft shadows!Properties+ extension: translu
ent obje
ts+ extension: all-frequen
y lighting (wavelet basis instead of spheri
al harmon-i
s)- glossy re�e
tion: exitant radian
e depends on viewing dire
tion- the more spe
ular the surfa
e, the more basis fun
tions are needed- very bad for high frequen
y light: High frequen
y light is an euphemismand has nothing to do with wavelength. Every real lightsour
e lites thearea perpendi
ular and 
losest to it more than the surrounding one build-ing a light dis
 of intensity on it. This dis
 is brightest in the 
enter.Transforming this dis
 into a frequen
y diagram we will en
ounter a peakat the 
enter. If this peak if very high, we talk about high frequen
y light,if it's low and broad about low frequen
y light. For example a point lightsour
e will have a Dira
 peak/impulse. Now to model su
h a peak we'dneed spheri
al harmoni
s or wavelets of a very high degree. Apart fromthat that �a very high degree� per se is a problem, spheri
al harmoni
s ofa high degree are very similar and show almost no di�eren
es.165



Alternative ComputationAn alternative algorithm that is faster, be
ause the BRDF is 
omputed with
Lin in SH basis1. transform in
ident light Lin to transferred light L′

in ignoring the obje
tat pthis gives the lo
al in
ident light for p, as well as self shadowing and interre�e
tion (Lin, L
′
in in SH basis)2. now apply BRDF for every vertex using L′

in13 Rendering PipelineA s
ene is des
ribed by geometry, material properties, viewing and lighting. Butthe question is in what order should or rather 
an we perform these steps and
onvert the 3D s
ene des
ription to a 2D raster image.Pipeline 1 (Single Stages)Step A
tions Variables CoordinatesAppli
ation intera
tivity, 
ollision dete
tion pixel/
olor s
reen 
oordinatesModel Transforms translation, rotation, . . . verti
es/normals model 
oordinates: (u, v, w)World Transforms translation, rotation, . . . verti
es/normals world 
oordinates: (x, y, z)Viewing Transforms perspe
tive proje
tion verti
es/normals viewing 
oordinates: (e, g, t)Illumination lighting verti
es/
olor world 
oordinatesProje
tion normalizing transforms verti
es/
olor normalized 
oordinatesWindow Mapping ? ? ?Clipping Z-Buffer fragments, depth/
olor normalized devi
e 
oordinatesRasterization shading pixel/
olor s
reen 
oordinatesTexturing texture mapping texel texture 
oordinatesFramebuffer window to view port pixel/
olor s
reen 
oordinatesPipeline 2 (Culling/Clipping)ba
kfa
e 
ulling → modeling transforms→ 
lipping → homogeneous divide →shading, lighting → rasterizationPipeline 3 (Vertex, Primitives, Fragments)1. Appli
ation: Custom Operations(a) 
ollision Dete
tion(b) Intera
tivity (e.g. drag & drop)166



Figure 126: From verti
es to fragments2. Geometry: Vertex Operations(a) A�ne Transformations (transformation matri
es)(b) Illumination (lo
al Illumination at the verti
es)(
) Primitive Assembly (lines, triangles)(d) Proje
tion (Normalizing Transform, Unit Cube, Z-Values)3. Rasterization: Operations on Primitives(a) Polygon Rasterization (de
ompose primitives to pixel fragments)(b) Shading (with the fragments)(
) Texture Generation (Interpolation of texture 
oordinates / texturevalues)(d) Texture Mapping (Proje
tion unto the obje
t)4. Fragment Operations: Operations of Fragments and Pixels(a) α Test (reje
t fragments above a 
ertain α-value)(b) Sten
il Test (reje
t fragments with sten
il bu�er enabled)(
) Depth Test (reje
t fragments where the depth test fails)(d) α Blending (
ombine values of 
olor fragments)(e) Fog (a fragment is blended with a fog 
olor)Runtime ConsiderationsThe speed of a single data pa
ket is determined by the sum of all stages onthe Pipeline, but the overall throughput is determined by the slowest stage,referred to as bottle ne
k (e.g. if there are two stages under 2 minutes andone requiring 3 minutes for assembling a 
ar, one 
ar 
an be 
ompleted every 3minutes). The event if the whole pro
ess is stand to wait for a 
ertain stage, is
alled stalling. Optimizations in
lude167



Sequentiation Partition the the bottle ne
k into two sequential stagesParallelization Insert parallel pipelines at vertex and pixel operations stepSorting Sort polygons by material (render 1 . . .X with the same texture, mu
hfaster than per triangle)Potential bottle ne
ks in
ludeAppli
ation data generation, data transfer
→ this stage is done in software, so optimize the 
ode. a good 
ode here
an also fasten the next two stages. furthermore you might be able tomake use of parallel pro
essors.Geometry lighting 
omputation, number of light sour
es, number of triangles,
omplex per vertex 
omputationsRasterization degree of o

lusion (e.g. leaves on a tree), mutlitexturing, 
om-plex per pixel 
omputation14 OpenGLOpenGL is a hardware independent version of GL (Graphi
s Library) fromSili
on Graphi
s. A review board out of 
onsortium of graphi
s 
ompanies ismaintaining the language. OpenGL is spe
ialized but not limited to 3D s
enery.Properties

• hardware abstra
tion: API (appli
ation programmer interfa
e)
• low level hardware optimized
• hardware independent
• boundless extensions
• high level modeling: s
ene graphs
• window system interfa
es: GLUT, GLX, AGL, WGLSyntaxfun
tions gl-Pre�x: glClear, glPolygonMode
onstants in CAPITAL LETTERS: GL_POLYGON, GL_RGBdatatypes GL-Pre�x: GLbyte, GLdouble, GLfloat
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Libraries
• GLU:pre�x glu
ontent advan
ed routines, B-splines, 
omplex obje
ts
• OpenInventor
ontent obje
t oriented toolkit, s
ene graphs
• Graphi
s Display: GLUT (glut) OS independent, GLX (glx) X-WindowSystem, AGL (agl) Apple, WGL (wgl) WindowsMatrix Sta
ksSin
e the matri
es needed for transformations will be used more than one time,we should store them in a kind of sta
k push(Matrix m) and re-a

ess them weneeded pop().With this sta
k we 
an easily in
lude a rendering 
ommand.Group::render()push(Matrix transformation);forall 
hildren 
 : 
.render();pop();push matrix dupli
ate 
urrent matrix m→ m′. apply m′ to the matrix on topof the sta
k m̄→ m∗.

m∗ m̄ · · · · · ·We have a matrix history: the last step is always multiplied with the newest to
reate the sta
k entry.pop matrix remove the top matrix from the sta
k.OpenGL di�erentiates between two di�erent types of matrix ea
h having it'sown matrix sta
k:GL_PROJECTION normalization (gluPerspe
tive())GL_MODELVIEW 
amera, modeling (gluLookAt(), glTranslate(), glS
ale(),glRotate(),. . .)By the 
ommand glMatrixMode() we may 
hoose on whi
h kind of matrix we
urrently want to work.
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GL_TEXTURE In fa
t there is a third kind of matrix assigned a third sep-arate sta
k of it's own. The texture matrix. This matrix is used for pro-je
ting textures onto obje
ts. It 
an be de�ned by: glTexCoords4f(s,t, r, q)Output PrimitivesThe de�nition of primitives always starts with glBegin(Primitive Type) andend with glEnd(). Single vertex 
oordinates 
an be set by vertex position(glVertex(position)). Primitives are:points (GL_POINTS), straight lines (GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP),
ir
les, other 
oni
 se
tions, quadrati
 surfa
es, spline 
urves and surfa
es, poly-gon 
olor areas, 
hara
ter strings.Additionally size and 
olor 
an be set.Display ListDisplay Lists are rendering ma
ros (e.g. for rendering a 
hair) that are dire
tlyloaded unto the graphi
s 
ard and 
an easily be re
alled multiple times. Thisgives a speed improvement by a fa
tor of 10.glNewList(1, glCompile); . . . glEndList(); . . . glCallList(1);Cartesian Referen
e FrameThe 
oordinate frame for s
reen display 
an be set by gluOrtho2D(xmin, xmax,ymin, ymax);15 Programmable Graphi
s HardwareCon�guration matri
es, lighting parameters (Phong), texture mapsProblems portability, short innovation 
y
le, vendor dependent, too many ex-tensions (OpenGL)Uni�
ation Upload per-vertex and per-pixel 
ode dire
tly to the graphi
sdevi
e. Vertex and Pixel stages on the pipeline are repla
ed by pro-grammable units.+ vendor independent+ e�e
t librariesHaving several fragments per pixels, whi
h 
an even be shared by multiple pixels,we 
an do antialiasing. If we'd simply say fragment = pixel, we would en
ounterugly aliasing e�e
ts. 170



Pixel average value of multiple fragments that is displayed.Fragment one sample of a high resolution image.Antialiasing By rendering the image at a higher resolution and s
aling it down.Vertex Unit (Vertex Shader)The vertex unit deals with all per-vertex operations like transformations andlighting per vertex (see 13, Pipeline 3). Per-Vertex operations are required everythen, when data is 
hanging slowly enough to only 
hange the verti
es (and riskminor artifa
ts). A vertex program is built out of three 
omponents:Input glVertex(), glNormal(), glColor(), glTexCoord()Parameters 
onstants like light dire
tion ~l, materialOutput normalized 3D s
reen position, 
olor, se
ondary 
olors (glossy), texture
oordinates, . . .Currently a 
reation of new verti
es or removal of existing ones is not possible(added in 2006/2007, XBox 360◦). There is no su
h thing as an early returnstatement or �ow 
ontrol statements13, that means the hardware will need ex-a
tly the same time for ea
h vertex. Also, small vertex programs run faster.Vertex shaders 
an be used for
• shadow volume 
reation (see 8.5.4)
• lens e�e
ts (e.g. underwater)
• obje
t de�nition (making a mesh only on
e)
• obje
t twist, bend, taper operations
• pro
edural deformations (�ag, 
loth movement)
• primitive 
reation (send degenerated meshes)
• page 
urls, heat haze, water ripplesFragment Unit (Fragment Shader, Pixel Shader)The fragment unit deals with per-fragment or per-pixel operations like textur-ing or phong-shading (see 13, Pipeline 3). Per-Pixel/Fragment operations areneeded to a

urately 
apture rapidly varying 
hanges. A fragment program isalso built of three 
omponents:Input interpolated 
olor, interpolated depth, interpolated texture 
oordinates,textures13Of 
ourse those 
an be simulated by register swaps as in Assembler171



Parameters 
onstants like light dire
tion ~l, material, . . .Output 
olor, depthThe light dire
tion is given in the eye-spa
e, be
ause of the OpenGL ModelViewmatrix (we 
an only work in the eye-spa
e).
⇒also transform the normals into eye-spa
e before passing them to theshaderLike Vertex Shaders �ow 
ontrol and early return is not possible without tri
ks.Pixel Shader use an API instead of free programming 
ode, resulting in hardwaredependent optimized 
ode.Possibilities in
lude
• 
ustomized texture mapping (bump mapping, environment mapping)
• a

essing multiple textures (environment bump mapping)
• texture proje
tion
• killing whole fragments (not rendering them)
• 
lipping with arbitrary �planes�, e.g. a sphere
• multiple passes before rendering (allows for 
omplex rendering te
hniques)
• rendering to a texture (e.g. to store multipass results, if no multi passingis available)
• Torran
e-Sparrow Lighting using the S
hli
k approximationPrograms

Figure 127: OpenGL Shading LanguageARB_VERTEX_PROGRAM assembler like vertex shader172



ARB_FRAGMENT_PROGRAM assembler like fragment shaderThe program itself is passed as string: glProgramStringARB(enum target,enum format, size len, 
onst ubyte* program)And bound by: glBindProgramARB(enum target, uint program)Shading Language mainly ma
ros for the ARB_PROGRAMSOpenGL Shading Language (GLSL) C-like language, global state/variablesfor the passing of parameters (e.g. state.material, state.light), re-sult parameters (result.
olor, result.depth), �ow 
ontrol (loops, bran
hes,
onditionals)vertex shader glPosition = glModelViewProje
jtionMatrix * gl_Vertex;fragment shader glFragColor = ve
4(1,0,0,1);These shaders 
an be in
luded into OpenGL 
ode by: shader = glCreateShaderObje
t(),glShaderSour
e(shader, 
har* sour
e), glCompileShader(shader)Variable Quali�ersattribute appli
ation de�ned vertex attribute (vertex shader input)uniform appli
ation de�ned global variable (vertex/fragment shader input)varying 
omputed by vertex shader, interpolated by rasterization step, sent tofragment shader (vertex shader output, fragment shader input)
onst 
onstant variables (e.g. π)16 HistorySome Numbersfps 
omplex global illumination (1 frame per day), movies (1 frame per 8 min-utes), intera
tivity (5 fps), games (50 fps)throughput 106 pixel with 20 fps:
• pro
essing 20 · 106 pixels per se
ond
• 50 
y
les per pixel (1 GHZ CPU)
• 3 bytes per pixel (~60 MB)triangles games: 100.000 triangles, 
ave: 40.000 triangles (20 fps), reality:

80 · 106 trianglesper triangle we have three vertex 
oordinates, material properties, a tex-ture 173



rendering perspe
tive proje
tion to s
reen, o

lusion 
omputation, rasteriza-tion, illumination, texturingGPU speed doubles every 6-12 months (CPU 18 month), denser, more tran-sistors and FLOPS than CPU (CPU are more �exible)Today: 600 · 106 verti
es / se
ond, 6.4 · 109 pixels / se
ond, 6 parallelvertex stages, 16 parallel pixel stagesHistorySin
lair ZX81 (1982) 
omplete pipeline is performed by the CPUCommodore 64 (1982) graphi
 
hips generates video signal (after CPU haswritten to the framebu�er)Atari ST (1985) GPU deals with 2D graphi
s operationsSGI Indy (1993) GPU does rasterization stepSGI O2 (1996) GPU does transformations and rasterizationSGI Onyx,Nvidia,ATI GPU does the entire pipelineToday programmable stages17 Virtual RealityVirtual Reality in general is a 
omputer generated world, that 
an be manipu-lated by the user. It's all about immersion, the feeling that what surrounds youis really real. For rea
hing immersion not only vision, should be 
onsidered, VRtries to 
apture other senses as well:Senses
• vision: real time graphi
s, stereo vision
• sound: surround sound
• hapti
s: for
e feedba
k, input resistors
• smell
• taste (not yet given)InputThe manipulation 
an be a
hieved with 3D mouses, spa
eballs, data gloves,tra
king devi
es or whole data suits. Another goal for data input is that the
amera or eye 
an be moved by the user by moving the head. Even more di�
ultis eye tra
king. Furthermore the ability to move obje
ts and grab and drop arefavorable immersion boosts. 174



Output (Stereo Vision)

Figure 128: CAVEAn output system 
alled CAVE for an example for a great level of immersion.Graphi
s are often displayed by spe
ial Head-Mounted Devi
es (HMD),spe
ial beamer te
hnology or whole rooms. The spe
ial is referring to givingthe possibility of stereo vision, whi
h means to separate images for the left andfor the right eye. The �rst devi
e, the HMD, a
hieves this by supplying oneLCD s
reens for ea
h eye. HMD 
an easily 
ombined with sound output andposition tra
king input. However they are very heavy and un
omfortable andthus redu
e immersion. A softer version of head glasses are Shutter Glasses.They alternately bla
ken the left and the right eye, thus providing the rightframes, simulate spatial viewing. However apart from them still being somewhatun
omfortable, the images appear darkened syn
hronization must be assured.Talking about beamers we 
an use two separate beamers proje
ting theirimages through proje
tion �lters. Polarization �lters let pass light only in onedire
tion. Supplying the user with glasses whi
h have two proje
tion �lters withthe 
orresponding dire
tions, the images 
an be separated for stereo view again.This is what 3D 
inemas usually do. This is usually done by front proje
tion,however then often the user shadows the proje
tion by his geometri
al physi
alform. Using a mirror we 
an use ba
k proje
tion as well, avoiding this problem.However then we need some room behind the s
reen.A third alternative are work ben
hes. The s
reen is like a drawing deskwhere upon the image is proje
ted. The user's position is tra
ked and the imageis adjusted a

ordingly to provide 3D vision.Finally we 
an use a whole room or 
hamber to maximize the level of im-175



mersion. This is 
alled Cave Automati
al Virtual Environment (CAVE).This is one of the most expensive VR ar
hite
tures, sin
e we need six (twelve forpassive stereovision) beamers for every wall of the 
hamber in
luding a beamerfor the bottom �oor underneath the room. Furthermore the 
omputation andsyn
hronization takes the power of graphi
s 
lusters.Stereo Proje
tion

Figure 129: Stereo Proje
tionAssuming we know the position of the viewer, resp. her eyes, how 
an we
al
ulate the right stereo images?A straightforward method is to pla
e the 
amera su

essively onto the leftand the right eye and render the image towards the 
enter of the �s
reen�.However this method fails when the viewer is not 
entered and looks at thes
reen at a di�erent angle.Another method is 
alls sheared perspe
tive. The proje
tion s
reen isthe image plane and we allow the eye point to be anywhere. This means ourviewing frustum be
omes sheared. OpenGL o�ers a sheared viewing frustums
alled glFrustum.
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