
Yet another Artificial Intelligence 2 Summary

Written by Philip K.∗

Last updated for the Summer Semester 2021

6 Probability Theory

Def. 86 (Probability Model 〈Ω,P〉). consists of a countable
sample space Ω and a probability function P : Ω→ [0;1], s.t.∑
ω∈ΩP(ω)=1

Def. 87 (Event). When a random variable X takes on a value
x.

Def. 88 (Conditional/Posterior Probability). The probability

P(a |b)=
P(a∧b)
P(b)

,

i.e. the chance that event “a” takes place, given the event “b”.

Def. 89 (Conditional Independence). Two events a and b are
conditionally independent, if P(a∧b |c)=P(a |c)P(b |c).

Def. 90 (Probability Distribution). A vector for P(X) relating
each element of the sample space to a probability:

〈P(ω1),...,P(ωn)〉.
Related concepts:

Joint PD Given Z ⊆ {X1, ... ,Xn}, results in a array the
probabilities of all events.

Full joint PD Joint PD for all random variables.
Conditional PD Given X and Y , results in a table for every

probability P(X |Y ).

Def. 91 (Product Rule). P(a∧b)=P(a |b)P(b)

Def. 92 (Chain Rule). Extension of the product rule,

P(X1,...,Xn)=P(Xn |Xn−1,...,X1)...P(X2|X1)P(X1)

Def. 93 (Marginalisation). P(X)=
∑
y∈YP(X,y)

Def. 94 (Normalisation). Given P(X |e), and a normalization
constant

α=
1

P(x1 |e)+···+P(xn |e)
,

normalization scales each element of the probability distribution
s.t.

∑
αP(X |e)=1

Def. 95 (Bayes’ Rule). Given two propositions a and b,

P(a |b)=
P(b |a)P(a)

P(b)
,

where P(a) 6=0 and P(b) 6=0.

Def. 96 (Naive Bayes’ Model). In this model, the full joint
probability distribution is

P(c |e1,...,en)=P(c)
∏
i

P(ei |c),

i.e. a single cause c influences a number of cond. independent
effects ei.

∗https://gitlab.cs.fau.de/oj14ozun/ai2-summary, the source for
this document should be accessible as a PDF attachment. The document
and the source is distributed under CC BY-SA 4.0.

6.1 Bayesian Networks

Def. 97 (Bayesian Network). A directed, acyclic graph, where
each node corresponds to a random variable, connected by
links designating “parent” variables.

A “diagnostic” link points from cause to effect, a “causal”
from effect to cause.

Def. 98 (Conditional Probability Table). A table specifying
the probability for each node of a Bayesian network given the
values of the parent variables.

Def. 99 (Constructing Bayesian Network). Given any fixed or-
der of variablesX1,...,Xn a Bayesian network can be constructed
by iteratively finding a minimal set Parent(Xi)⊆{X1,...,Xi}
s.t. P(Xi | Xi−1, ... ,X1) = P(Xi | Parent(Xi)), linking Xi
with every Xj ∈ Parent(Xi) and associating a conditional
probability table with Xi corresponding to P(Xi |Parent(Xi)).

Def. 100 (Probabilistic Inference Task). Given a Bayesian
network B, calculating P(X |e), where X is a set of “query
variables” and E is a set of “evidence variables” assigned by an
event e. The remaining variables Y are referred to as “hidden”.

This problem can by solved using “Inference by Enumer-
ation”:

1. Normalize and marginalize:

P(X|e)=α

{
P(X,e) if Y=∅∑

y∈YP(X,e,y) otherwise

2. Chain rule, by ordering X1,...,Xn to be consistent with B:
P(X1,...,Xn)=P(Xn |Xn−1,...,X1)···P(X2 |X1)P(X1)

3. Exploit conditional independence:
P(Xi |Xi−1,...,X1)=P(Xi |Parents(Xi))

Alternative methods such as “Variable Elimination” avoid
redundant computations by using dynamic programming.

7 Making Simple Decisions Rationally

Def. 101 (Expected Utility). Given a state-evaluation function
U :S 7→R+, the expected utility of an action a given evidence e is

EU (a |e)=
∑
s′∈S

P(R(a)=s′ |a,e)U(s′),

that rational agents attempt to maximize, where R(a) is the
result of the action a.

Def. 102 (Preference). Given two states, one can say that
an agent prefers A over B (A�B), is indifferent (A∼B) or
does not prefer B over A (A�B).

A preference is rational if orderability, transitivity, continuity,
substitutability, monotonicity and decomposability all hold for
the relation. If given, there must by a utility function U with

U(A)≥U(B)⇐⇒A�B
and

U([p1,S1;...;pn,Sn])=
∑
i

piU(Si),

for states Si and probabilities pi (Ramsey’s Theorem).

Def. 103 (Micromort). A unit of utility, describing a 1/10−6

chance of death.

Def. 104 (Decision Network). A Bayesian network with “action”
and “utility” nodes, to aid with rational decisions. An example
(here “umbrella” is an action and “utility” is an utility node):

1

https://gitlab.cs.fau.de/oj14ozun/ai2-summary
https://creativecommons.org/licenses/by-sa/4.0/


forecast

weather umbrella

utility

To decide, maximize the expected utility for the utility nodes
by comparing every value for action nodes.

Def. 105 (Value of perfect Information). For a random
variable F over D, the VPI given evidence E is

VPIE(F):=

∑
f∈D

P(F=f |E)EU (αf |E,F=f)

−EU (α |E),

where

EU (α |E)=max
a∈A

(∑
s∈Sa

U(s)P(s |E,a)

)
,

EU (αf |E,F=f)=max
a∈A

(∑
s∈Sa

U(s)P(s |E,a,F=f)

)
,

αf =argmax
a∈A

EU (a |E,F=f).

8 Temporal Models

Def. 106 (Markov Property). The variable Xt only depends
on a subset X1, ... ,Xt−1 (X0:t−1). The nth-order Markov
Property is given when P(Xt |X0:t−1)=P(Xt|Xt−n:t−1).

Def. 107 (Markov Process). A sequence of random variables
with the Markov Property. The variables can be divided into
“state variables” Xt and “evidence variables” Et.

Given the initial prior probability P(X0), the full joint
probability distribution can be computed as

P(X0:t,E1:t)=P(X0)

t∏
i=0

P(Xi |Xi−1)P(Ei |Xi).

Def. 108 (Transition Model). A transition model of a Markov
Process is given by P(Xt |Xt−1). If P(Xt |Xt−1) is the same
for all t, the process is said to be “stationary”, making the
model finite in size.

Def. 109 (Sensor Model). A sensor model of a Markov Process
predicts the influence of percepts on the belief state. It the
“sensor Markov property” iff P(Et |X0:t,E1:t−1)=P(Et |Xt)

Def. 110 (Filtering). Computing the belief state from prior
experience by dividing up the evidence (1), using Bayes’ rule
(2) and applying the sensor Markov property (3),

P(Xt |e1:t)=P(Xt |e1:t−1,et) (1)

=αP(et |Xt,e1:t−1)P(Xt |e1:t−1) (2)

=α P(et |Xt)︸ ︷︷ ︸
transit. model

P(Xt |e1:t−1)︸ ︷︷ ︸
recursion

(3)

Def. 111 (Prediction). Computing a future state distribution,
ie. filtering without new evidence:

P(Xt+k+1 |e1:t)=
∑
xt+k

P(Xt+k+1 |xt+k)P(xt+k |e1:t)︸ ︷︷ ︸
recursion

,

where 0<k.

Def. 112 (Smoothing). Improving a past belief state, using
Bayes’ rule (1) and cond. independence (2),

P(Xk |e1:t)=P(Xk |e1:k,ek+1:t)

=αP(Xk |e1:k)P(Xk+1 |Xk,e1:k) (1)

=αP(Xk |e1:k)P(Xk+1 |Xk)︸ ︷︷ ︸
recursion

(2)

where 0≤k<t.

Def. 113 (Most likely Explanation). Used to explain the
what is the most probable sequence of events, that caused the
perceived evidence maxx1,...,xn

P(x1,...,xn,Xt+1 | e1:t+1), by
calculating:

P(et+1 |Xt+1)max
xt

(
P(Xt+1 |xt) max

x1,...,xn

P(x1,...,xt−1,xt |e1:t)

)
.

Def. 114 (Hidden Markov Model). A Markov model with a
single state variable Xt∈{1,...,S} and a single evidence variable.

Using a transition matrix Tij = P(Xt = j |Xt−1 = i) and
Otii=P(et |Xt=i) one can reinterpret Markov inference:

HMM filtering equation f1:t+1 =α(Ot+1T
>f1:t)

HMM smoothing equation bk+1:t=TOk+1bk+2:t

Def. 115 (Dynamic Bayesian Network). A Bayesian network
with random variables indexed by a time structure, and can
therefore be seen as a network with an infinite number of
variables.

9 Making Complex Decisions Rationally

Def. 116 (Sequential Decisiton Problem). The agent’s utility
depends on a sequence of decisions, incorporating utilities,
uncertainty and sensing.

Def. 117 (Markov Decision Problem). A sequential decision
problem consisting of a set S of states, A of actions, a transition
model P(s′ | s,a) and a reward function R : S 7→ R, in a
fully observable, stochastic environment. The goal is to find an
optimal policy π :S 7→A, mapping every state to the best action.

Def. 118 (Stationary Preferences). Preferences are called
“stationary” iff

[r,r0,r1,...]� [r,r′0,r
′
1,...]⇐⇒ [r0,r1,...]� [r′0,r

′
1,...]

The only ways to combine these over time is

additive U([s0,s1,...])=
∑
iR(si)

discounted U([s0, s1, ... ]) =
∑
i γ
iR(si), where γ is called

“discount factor”.

Def. 119 (Utility of States). The optimal policy
π∗ = π∗s = maxπ U

π(s) where for a given policy π and
st being the state an agent reaches at time t

Uπ(s):=E

[ ∞∑
t=0

γtR(st)

]
,

the utility U(s) of a state s is Uπ
∗
(s).

Def. 120 (Bellman Equation). The utilities of states is given
by the solution to the equation

U(s)=R(s)+γ max
a∈A(s)

(∑
s′

U(s′)P(s′ |s,a)

)

Def. 121 (Value Iteration Algorithm). A method to find the
fix-point of the Bellman equation:

Algo. 1 ValueIteration(mdp,ε) returns a utility fn.

Input mdp a MDP (S, A(s), P(s′ | s, a), R(s), γ), the
maximum permitted error ε

1: repeat
2: U :=U ′,δ :=0
3: for each state s in S do
4: U ′[s] :=R(s)+γmaxa

∑
s′U [s′]P(s′ |s,a)

5: δ :=max{|U ′[s]−U [s]|,δ}
6: until δ<ε(1−γ)/γ

2



Def. 122 (Policy Iteration Algorithm). Algorithm for
iteratively evaluating and improving policies until no changes
are made:

Algo. 2 PolicyIteration(mdp) returns a policy

Input mdp a MDP (S, A(s), P(s′ |s,a), R(s), γ)

1: repeat
2: U :=PolicyEvaluation(π,U,mdp)
3: unchanged:=true
4: for each state s in S do
5: a∗ :=argmaxa∈A(s)(

∑
s′P(s′ |s,a)U(s′))

6: best:=
∑
s′P(s′ |s,a∗)U(s′)

7: if best>
∑
s′P(s′ |s,π[s′])U(s′) then

8: π[s] :=a∗,unchanged:=false

9: until unchanged . U satisfies Bellman equation

Def. 123 (Partially Observable MDP). A MDP with a sensor
model O that is stationary (O(s,e)=P(e |s)), i.e. the agent
does not know in what state it is. To update the belief state
the agent calculates

b′(s′)=αP(e |s′)
∑
s

P(s′ |s,a)b(s)

where a is the action taken. An agent searches through the
belief state by executing the best assumed action, and updating
the belief state based on the percept e.

Def. 124 (Dynamic Decision Network). The extension of a
DBN by action and utility nodes.

10 Machine Learning

Def. 125 (Inductive Learning). Learning by examples of the
form (x,y), where x is an “input sample and y a “classification”.
The set of examples S is called consistent if a function.

An inductive learning problem P=〈H,f〉 attempts to find a
hypothesis h∈H for a consistent training set f (f'h|dom(f)).

Def. 126 (Decision Tree). A tree that given examples described
by attribute (“attribute-based representation”), labels non-leaf
nodes with attribute-choices and leafs with classifications.

Having more “significant” attributes closer to the root helps
generate a compact tree. The act of trying to find a smaller
tree is called “decision tree learning”.

Def. 127 (Entropy of the Prior). The information of an
answer to the prior probabilities 〈p1,...,pn〉 is

I(〈p1,...,pn〉)=−
n∑
i=1

pilog2(pi).

Def. 128 (Information Gain). Said for testing an attribute A,

Gain(A)=I(P(C))−
∑
a

P(A=a)I(P(C |A=a)),

and given previous results B1 =b1,...,Bn=bn is

Gain(A |b)=I(P(C |b))−
∑
a

P(A=a |b)I(P(C |a,b)),

where C is a classification with an estimate of the probability
distribution, e.g.

P(C)=

〈
p

p+n
,
n

p+n

〉
,

for p positive and n negative examples.

Def. 129 (Learning Curve). Percentage of correct test results
as a function of the training set size. May encounter difficulties,
if the to be approximated function is not in the hypothesis space.

Def. 130 (Overfitting). When a hypothesis h assumes an
error is significant part of the underlying data. Conversely,
“underfitting” occurs when h cannot capture the underlying
trend of the data.

Def. 131 (Decision Tree Pruning). For learned decision trees:
Repetitively finding test nodes and replacing it with leaf nodes
if it has a low information gain, as determined by a statistical
significance test.

Def. 132 (Generalization). Given a set of examples E and
a prior probability P(X,Y ) the Generalized Loss is

GenLossL(h):=
∑

(x,y)∈E

L(y,h(x))P(x,y),

where L is a loss function, quantifying the lost utility by a
hypothesis h such as
absolute value L1(y,ŷ)= |y−ŷ|
squared error L2(y,ŷ)=(y−ŷ)2

0/1 L0/1(y,ŷ)=0 if y= ŷ otherwise, 1

Def. 133 (PAC learning). Any algorithm that returns a
probably approximatly correct hypothesis, ie. that after a
sufficiently large training set, it is unlikely to be seriously
wrong. The “error rate” function

error(h):=GenLossL0/1
(h)

describes the probability that h will misclassifying a new
example.

Def. 134 (Decision List). A sequence of literal conjunctions
each specifying the value to be returned if satisfied, or
continuing on to the next test otherwise.

Def. 135 (Classification and Regression). An inductive
learning problem 〈H, f〉 is a classification problem, iff
codom(f) is discrete and regression otherwise.

Def. 136 (Linear Regression). Given a weight vector
w = (w0,w1) and hw(x) =w1x+w0, the task of finding the
best w for a set of examples is called linear regression. The
space of weight combinations is called the weight space.

Def. 137 (Gradient Descent). An algorithm for finding the min-
imum of a continuous function f by hill climbing in the direction
of steepest descent. For each vector component the calculation

wi←wi−α
∂

∂wi
f(w)

until w converges, where α is called the “learning rate”.

Def. 138 (Perceptron Learning Rule). A learning rule given
an example (x,y) updating

wi←wi+α(y−hw(x))xi

Def. 139 (Logistic Regression). Using a “softer” learning rule,
linear regression can be replaced by using a logistic function

hw(x)=
1

1+e−wx
.

10.1 Artificial Neuronal Networks

Def. 140 (Neuronal Network). A directed graph, propagating
activations ai from unit i to unit j via links with weights wi,j.

If the network has cycles, it is called “recurrent”, otherwise
“feed-forward” and it is said to have layers {L0,...,Ln}

Def. 141 (McCulloc-Pitts unit). A unit model where each
activation is computed by

ai=g

∑
j

wj,iaj

,
given a activation function g. If g is a threshold function (e.g.
logistic function) the unit is called a “perceptron unit”.

3



Def. 142 (Perceptron Network). A feed-forward network of
perceptron units. Units not part of the input or output layer
are called “hidden”.

Def. 143 (Backpropagation). Learn in a perceptron network
is implemented by updating weights

wk,j←wk,j+αak∆j

where

∆j←g′

∑
j

wj,iaj

∑
i

wj,i∆i.

Def. 144 (Backpropagation Algorithm). Given a network
and a set of examples, the algorithm propagates the example
input through the network, then propagates deltas backwards
towards the input layer and then updates every weight using
the calculated delta values.

10.2 Statistical Learning

Def. 145 (Bayesian Learning). Calculating the probabilities
of each hypothesis, and acting upon these predictions

P(d |hi)=αP(d |hi)P(hi),
where P(d |hi) is the likelihood to observe data d∈D given
a hypothesis, and P(hi) is the “hypothesis prior”.

To predict a unknown quantity X, one uses

P(X |d)=
∑
i

P(X |hi)P(hi |d).

Def. 146 (Naive Bayes’ Models for Learning). Using a naive
Bayes’ model, a single “class” variable C is predicted given
“attribute” variables Xi:

P(C |X1,...,Xn)=αP(C)
∏
i

P(xi |C),

whereafter the most likely class is chosen.

11 Natural Language Processing

Def. 147 (Natural Language Processing). The intersection
between computer science, artificial intelligence and linguistics,
attempting to understand and generate natural language.

Def. 148 (Linguistically Realized). When a piece of informa-
tion i can be traced back to a fragment of an utterance U .

Def. 149 (Language Model). A probability distribution of
a sequence of characters or words.

Def. 150 (Text Corpus). A large, structured set of texts, used
for statistical analysis.

Def. 151 (n-gram model). A n−1’th order Markov chain,
that generates a character/word sequence (n-gram) of the
length n. The probability of a character sequence c1:N is

P(c1:N)=

N∏
i=1

P(ci |c1:i−1).

This can be used for genre classification, named entity
recognition, language generation, among other things.

For language identification, the most probable language `∗

of a text corpus can be approximated by applying Bayes’ rule
(1) and the Markov property (2):

`∗=argmax
`

(P(` |c1:N))

=argmax
`

(P(`)P(c1:N |`)) (1)

=argmax
`

(
P(`)

N∏
i=1

P(ci |ci−n:i−1)

)
, (2)

given the, if necessary estimated, prior probabilities for P(`).

Def. 152 (Term Frequency). The number of times a word
t occurs in a document d (tf(t,d)).

Def. 153 (Inverse document frequency). Calculated for a
document collection D={d1,...,dn}:

idf(t,D)=log10

(
n

|{d∈D|t∈d}|

)
Def. 154 (Term Frequency/Inferse Document Frequency).
Combining term frequency and inverse document frequency into

tfidf(t,d,D)=tf(t,d)idf(t,D).

Def. 155 (Word Embeddings). A mapping of words into a
Rn vector space. For if-idf it is given by

e :t 7→〈tfidf(t,d1,D),...,tfidf(t,d#(D),D)〉.

Def. 156 (Cosine Similarity). Calculated for two vectors A
and B, and the angle θ between them,

cosθ=
A·B

‖A‖2‖B‖2
holds. Used by word embeddings for information retrieval.

Def. 157 (Grammar). A tuple 〈N,Σ,P,S〉 where
N is a finite set of non-terminal symbols,
Σ is a finite set of terminal symbols,
P is a set of production rules,
S is a distinguished “start symbol”
These can be categorized as “context-sensitive”, “context-free”,
“regular”, etc.

Def. 158 ((Formal) Language). A set of sentences that can
be generated by a grammar, written L(G).

Def. 159 (Ambiguity). Real languages pose issues for natural
language processing, such as ambiguity, anaphora, indexicality,
vagueness, discourse structure, metonymy, metaphor and
noncompositionality.

4


	Probability Theory
	Bayesian Networks

	Making Simple Decisions Rationally
	Temporal Models
	Making Complex Decisions Rationally
	Machine Learning
	Artificial Neuronal Networks
	Statistical Learning

	Natural Language Processing

