Artificial Intelligence

Contents

1 Definition 5
2 ProLog 6
2.1 Functions 7
3 Complexity 9
4 Intelligent Agents 9
5 Problem Solving and Search 15
5.1 Uninformed Search Strategies 17
5.1.1 Breadth-first search 17
5.1.2 Uniform-cost search 17
5.1.3 Depth-first search 17
5.1.4 Iterative deepening search 18
5.2 Informed Search Strategies 18
5.2.1 Best-first search 18
5.2.2 Heuristics 18
5.2.3 Greedy Search 19
5.2.4 \mathbf{A}^{*} Search 19
5.3 Local search 20
5.3.1 Hill-climbing (Gradient ascent/descent) 20
5.3.2 Simulated Annealing 20
5.3.3 Local Beam Search 21
5.3.4 Genetic Algorithms 21
6 Adversarial Search for Game Playing 21
6.1 Minimax Search 22
6.2 Evaluation Functions 23
6.3 Quiescence 23
6.4 Alpha-Beta Search 23
6.5 Monte-Carlo Tree Search 24
7 Constraint Satisfaction Problems 25
7.1 Waltz Algorithm 28
7.2 CSP as Search 28
8 Constraint Propagation 29
8.1 Inference 29
8.1.1 Backtracking with Inference 30
8.2 Forward Checking 30
8.3 Arc Consistency 31
8.3.1 Arc Consistency for one pair of variables 32
8.3.2 AC-1 32
8.3.3 AC-3 33
8.4 Decomposition 33
8.5 Constraint Graphs 33
8.5.1 Disconnected Constraint Graphs 34
8.5.2 Acyclic Constraint Graphs 34
8.6 Cutset Conditioning 35
8.7 Constraint Propagation with Local Search 35
9 Knowledge and Inference 36
9.1 Propositional Reasoning 36
9.2 Propositional Logic $\left(P L^{0}\right)$ 37
9.2.1 Syntax 37
9.2.2 Semantics 38
9.3 Formal Systems 39
9.4 Propositional Natural Deduction Calculus $\left(\mathcal{N D}^{0}\right)$ 40
9.5 Machine-Oriented Calculi for Propositional Logic 41
9.5.1 Analytic Tableaux 41
9.5.2 Resolution 43
9.6 SAT Solver 44
9.6.1 DPLL 44
9.7 First Order Predicate Logic $P L^{1}$ 46
9.7.1 Natural Deduction $\mathcal{N} \mathcal{D}^{1}$ 47
9.7.2 First-Order Logic with Equality 48
9.8 First Order Inference 48
9.8.1 Tableau 48
9.8.2 Resolution 49
9.8.3 Unification 49
9.9 Logic Programming as Resolution Theorem Proving 50
10 Planning \& Acting 50
10.1 STRIPS 51
10.2 PDDL 52
10.3 Planning Complexity 52
10.3.1 Satisficing planning 52
10.3.2 Optimal planning 52
10.3.3 PlanEx 53
10.3.4 PlanLen 53
10.3.5 PolyPlanLen 53
10.4 Relaxing in planning 53
10.4.1 Delete Relaxation 54
10.4.2 h^{+}heuristic 54

1 Definition

Artificial Intelligence studies how we can make the computer do things that humans can still do better at the moment
$\rightarrow \mathrm{AI}$ is decreasing
Aspects:

- Ability to learn
- Inference (drawing conclusions)
- Perception (Wahrnehmung der Umwelt)
- Language understanding (as communication in general)
- Emotion

Analysis			
Deep	Knowledge-based	Not there yet	
Shallow	No-one wants this	Statistical Methods	
	Narrow	Wide	Coverage

Precision 100%	Producer Task		
50%		Consumer Tasks	
	$10^{3 \pm 1}$	$10^{6 \pm 1}$	Coverage

Narrow / weak AI = study or accomplish specific problem solving or reasoning tasks
Strong AI / AGI (Artificial general intelligence) $=$ software performing at the full range of human cognitive abilities

Problems requiring strong AI to solve are called AI complete.

2 ProLog

Constants \rightarrow lower-case
Variables \rightarrow upper-case or underscore (never-used variable)
Functions and predicates
\rightarrow lower-case, applied to terms
\rightarrow Parameters have no unique direction "in" or "out"
Program:

- Facts $\rightarrow t$.
- Rules
$\rightarrow h:-b_{1}, \ldots, b_{n}$. with h the head literal and b_{i} the body literals $\Rightarrow h$ if b_{1}, \ldots, b_{n}.

Knowledge base \rightarrow set of facts that can be derived of the program Query \rightarrow ? $-A_{1}, \ldots, A_{n}$. with A_{i} terms called goals
Backchaining \rightarrow Testing whether query is true or false
Search procedure:

- Top-down
- Left-right
- Depth-first: Backtracking

Internal arithmetic: ?- D is e.
$\rightarrow e$ is a ground arithmetic expression that binds D to the result of
evaluating e

Lists

$\rightarrow[a, b, c, \ldots]$
$\rightarrow[\mathrm{F} \mid \mathrm{R}]$ with F the first element and R the rest list

2.1 Functions

\% remove duplicates function delete (_, [],[]).
delete ($\bar{X},[\mathrm{X} \mid \mathrm{T}], \mathrm{R})$:- $\operatorname{delete}(\mathrm{X}, \mathrm{T}, \mathrm{R})$.
delete $(X,[H \mid T],[H \mid R]):-\operatorname{not}(X=H)$, delete (X, T, R).
removeDuplicates([],[]).
removeDuplicates([H|T],[H|R]) :- delete(H,T,S), removeDuplicates(S,R).
$\%$ reverse function
preReverse([],X,X).
preReverse($[\mathrm{X} \mid \mathrm{Y}], \mathrm{Z}, \mathrm{W}):-\operatorname{preReverse}(\mathrm{Y},[\mathrm{X} \mid \mathrm{Z}], \mathrm{W})$.
myReverse(A,R) :- preReverse(A,[],R).
\% permute function
takeout (X,[X|T],T).
takeout $(\mathrm{X},[\mathrm{H} \mid \mathrm{T} 1],[\mathrm{H} \mid \mathrm{T} 2])$:- takeout $(\mathrm{X}, \mathrm{T} 1, \mathrm{~T} 2)$.
myPermutations([],[]).
myPermutations $([\mathrm{X} \mid \mathrm{Y}], \mathrm{Z})$:- myPermutations (Y, W), takeout $(\mathrm{X}, \mathrm{Z}, \mathrm{W})$.

```
%zip
zip([L],[],[[L]]).
zip([],[L],[[L]]).
zip([A],[B],[[A,B]]).
zip([H1|T1],[H2|T2],L) :- zip(T1,T2,T), append([[H1,H2]],T,L).
```

```
add(X,nil,tree(X,nil,nil)).
add(X,tree(Root,L,R),tree(Root,L1,R)) :- X @< Root, add(X,L,L1).
add(X,tree(Root,L,R),tree(Root,L,R1)) :- X @> Root, add(X,R,R1).
construct(L,T) :- construct(L,T,nil).
construct([],T,T).
construct([N| |s ],T,T0) :- add(N,T0,T1), construct(Ns,T,T1).
count_leaves(nil,0).
count_leaves(tree(_,nil,nil),1) :- !.
count_leaves(tree(_,L,R),N) :- count_leaves(L,NL), count_leaves(R,NR), I
symmetric(nil).
symmetric(t(_,L,R)) :- mirror(L,R).
mirror(nil,nil).
mirror(t(_,L1,R1),t(_,L2,R2)) :- mirror(L1,R2), mirror(R1,L2).
```


DFS:

```
\% dfs (SearchedValue, Tree, Path, Cost)
dfs (GoalValue, tree (GoalValue, _) , GoalValue, 0) .
dfs (GoalValue, \(\operatorname{tree}(\) Value, \([(\) Cost,\(T) \mid\) Rest \(])\), Path, FinalCost):T = tree (IV, , ), write (IV ),
dfs (GoalValue , T, P, C) ,
string_concat(Value, P, Path),
FinalCost is C+Cost; \% go down one depth level dfs (GoalValue, tree (Value, Rest), Path, FinalCost).
\% next child
```


BFS:

```
% helper method to build up a fringe - it takes the Children
%of a tree, inserts the path to its parent into the touple
%and sums up the cost
insert(-, , [],[]).
insert(Path, Cost,[(C,T)|Rest],[(T, Path,NC)|NewRest]) :-
    NC is Cost+C,
    insert(Path, Cost,Rest,NewRest).
```

\% bfs(SearchedValue, Fringe, Path, Cost),
\% where Fringe is a list of touples (Node,PathToNodesParent, TotalCostToNode)
bfs (GoalValue, [(tree (GoalValue, $)$), OldPath, FinalCost)| -], FinalPath, FinalCost):-
string_concat (OldPath, GoalValue, FinalPath),
write(GoalValue).

```
bfs(GoalValue,[(tree(Value, Children),Path, Cost)|Fringe ], FinalPath, FinalCost):-
    write(Value),
    string_concat(Path, Value,NewPath),
    insert(NewPath, Cost, Children, NewChildren),
    append(Fringe,NewChildren,NewFringe),
    %btw. changing Fringe and NewChildren here would make this into dfs
    bfs(GoalValue,NewFringe, FinalPath, FinalCost).
bfs(GoalValue,Tree, Path , Cost) :-
    istree(Tree),
    bfs(GoalValue,[(Tree,"" ,0)],Path, Cost ).
```


3 Complexity

\rightarrow Worst-case time/space complexity

- Constant: $\mathcal{O}(1)$
- Logarithmic: $\mathcal{O}(\ln (n))$
- Linear: $\mathcal{O}(n)$
- Quadratic: $\mathcal{O}\left(n^{2}\right)$
- Polynomial: $\mathcal{O}\left(n^{k}\right)$
- Exponential: $\mathcal{O}\left(k^{n}\right)$
$P=$ alle Probleme, die deterministisch in Polynomialzeit lösbar sind
$N P=$ alle Probleme, die von nicht-deterministischen Turingmaschinen in Polynomialzeit lösbar sind
$P \subset N P$
$P=N P ? ? ?$

4 Intelligent Agents

AI definitions:

1. Acting humanly
\rightarrow Turing test
2. Thinking humanly
\rightarrow Cognitive Science and Cognitive Neuroscience
3. Thinking rationally
\rightarrow Aristotle
4. Acting rationally
\rightarrow Acting so that you would expect to maximize your goal achievement + thinking involved

An agent a $\left(f_{a}: \mathcal{P}^{*} \rightarrow \mathcal{A}\right)$ perceives his environment via sensors (\mathcal{P}) and acts on it (\mathcal{A}) with actuators

An agent function

- specifies the input-output relation (outside view)
- takes the full sequence of percepts as arguments

An agent program

- implements the function (inside view)
- uses the internal state to avoid the full sequence of percepts
- there are either none or infinitely many programs for a function

A performance measure is a function that evaluates a sequence of environments

An agent is called rational if it chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date

- Rational \neq hellsichtig \rightarrow only maximize expected value
- Rational \neq allwissend \rightarrow percepts may not supply all relevant data
\rightarrow but try to explore best
- Rational \neq successful \rightarrow but try to learn best

Rational $=$ exploration, learning, autonomy

An agent is called autonomous if it does not rely on the prior knowledge of the designer

Describing the tasks environment:

- Performance measure
- Environment
- Actuators
- Sensors

Environment types

- Fully observable \leftrightarrow partially observable
- Deterministic \leftrightarrow stochastic
- Episodic \leftrightarrow sequential (state depends on previous state)
- Dynamic \leftrightarrow semidynamic (only performance measure changes) \leftrightarrow static (nothing changes without the agent doing something)
- Discrete (states, actions are countable) \leftrightarrow continuous
- Single-agent \leftrightarrow multi-agent

Agent types

- Simple reflex agent
\rightarrow actions only base on the last percept

- Reflex agent with states

- Goal-based agent
\rightarrow is a stateful reflex agent with a goal

- Utility-based agent
\rightarrow A utility-based agent uses a worldmodel along with a utility function that influences its preferences among the states of that world. It chooses the action that leads to the best expected utility, which is computed by averaging over all possible outcome states, weighted by the probability of the outcome

- Learning agent (All the above + learning)
\rightarrow ameliorates the performance measure
- Learning element \rightarrow improving the agent's knowledge
- Critic \rightarrow gives feedback on learning element based on external performance standard
- Problem generator \rightarrow suggests action leading to new, informative experiences
- Performance element $=$ Agents without learning

Domain-Specific Agent \leftrightarrow General Agent

State Representation:

- Atomic \rightarrow No internal structure
- Factored \rightarrow Each state is characterized by attributes and their values
- Structured \rightarrow State includes objects and their relations

5 Problem Solving and Search

Problem $=$ States + Actions
Offline problem solving \leftrightarrow Online problem solving

Problem formulation:

- Search problem: $\mathcal{P}:=\langle\mathcal{S}, \mathcal{O}, \mathcal{I}, \mathcal{G}\rangle$
- States: \mathcal{S}
- Operators: $\mathcal{O} \subseteq \mathcal{S} \times \mathcal{S}$
- Goal States: $\mathcal{G} \subseteq \mathcal{S}$
- Initial State: \mathcal{I}
- Cost function: $c: \mathcal{O} \rightarrow \mathbb{R}_{0}^{+}$
- Step cost: $c(o) \quad o \in \mathcal{O}$
- Actions (Operator application): $s \rightarrow^{o} s^{\prime}$, if $o=\left(s, s^{\prime}\right) \in \mathcal{O}$ with s^{\prime} the successor of s
- Goal test
- Solution: Sequence of operators that bring us from \mathcal{I} to \mathcal{G}

Problem description:

- Blackbox description \rightarrow Algorithm has no information about the problem
- Declarative description \rightarrow describes the problem itself (problem description language)

Problem types:

- Single-state problems
\rightarrow Observable, deterministic, static, discrete
- Multiple-state problems
\rightarrow Initial state not observable or partially observable, deterministic, static, discrete
- Contingency problems
\rightarrow non-deterministic, unknown state space

Tree Search Algorithms

\rightarrow Make a tree out of the graph
\rightarrow Offline algorithm
\rightarrow Search strategy $=$ function that picks a node from the fringe of a search tree

Properties of Strategies:
\rightarrow Completeness $=$ does it always find a solution?
\rightarrow Time complexity $=$ number of nodes expanded
\rightarrow Space complexity $=$ number of nodes in memory
\rightarrow Optimality $=$ does it always find a least-cost solution?
$\mathrm{b}=$ maximum branching factor
$\mathrm{d}=$ minimal depth of a solution
$\mathrm{m}=$ maximum depth of the search tree

5.1 Uninformed Search Strategies

5.1.1 Breadth-first search

\rightarrow Fringe is a FIFO queue

- Complete (if b is finite)
- Time $\mathcal{O}\left(b^{d+1}\right)$
- Space $\mathcal{O}\left(b^{d+1}\right)$ (keeps all nodes in memory)
- Optimal if cost $=1$ per step

5.1.2 Uniform-cost search

\rightarrow Fringe is queue ordered by increasing path cost (if equal cost FIFO)
\rightarrow Add paths costs from the precessor node to the path cost of the current node

- Complete (if step costs >0)
- Time: \# nodes with path-cost less than that of optimal solution
- Space: \# nodes with path-cost less than that of optimal solution
- Optimal

5.1.3 Depth-first search

\rightarrow Fringe is a LIFO queue

- Complete if state space is finite (no loops or infinite paths)
- Time $\mathcal{O}\left(b^{m}\right)$
- Space $\mathcal{O}(b \cdot m)$ (keeps all nodes in memory)
- Not optimal

5.1.4 Iterative deepening search

for $($ depthLimit $=0 ;$ depthLimit $<$ TreeHeight;
depthLimit ++)\{
depthFirstSearch(TreeCutByDepthLimit) \}
\rightarrow Always starts again from the root

- Complete
- Time $\mathcal{O}\left(b^{d+1}\right)$
- Space $\mathcal{O}(b \cdot d)$ (keeps all nodes in memory)
- Optimal if step cost $=1$

5.2 Informed Search Strategies

\rightarrow introduce information from outside the problem

5.2.1 Best-first search

Sort the fringe by an evaluation function
\rightarrow expanding the most desirable node first
\rightarrow Examples: Greedy Search, A^{*} Search

5.2.2 Heuristics

\rightarrow Function that estimates the cost from the current node to the nearest goal state

- $h: S \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$ so that $h(s)=0$ with s a goal state
- Goal distance function: $h^{*}: S \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$ where $h^{*}(s)$ is the cost of a cheapest path from s to a goal state or ∞ if no such path exists

Properties:

- Admissible: $h(s) \leq h^{*}(s)$ for all $s \in S$
- Consistent: $h(s)-h\left(s^{\prime}\right) \leq c\left(o_{s, s^{\prime}}\right)$ for all $s \in S$ and $o \in O$
- Consistency implies Admissibility
h_{2} dominates h_{1} if $h_{2}(n) \geq h_{1}(n)$ for all n
\rightarrow If h_{2} dominates h_{1}, then h_{2} is better for search than h_{1}
\Rightarrow Find a heuristic for a relaxed problem $\left(\mathcal{P}^{r}:=\left\langle\mathcal{S}, \mathcal{O}^{r}, \mathcal{I}^{r}, \mathcal{G}^{r}\right\rangle\right.$ with $\left.\mathcal{O}^{r} \subseteq \mathcal{O}, \mathcal{I}^{r} \subseteq \mathcal{I}, \mathcal{G}^{r} \subseteq \mathcal{G}\right)$
\rightarrow Every solution for \mathcal{P} is one for \mathcal{P}^{r}
\rightarrow The optimal solution cost of a relaxed problem is not greater than the optimal solution cost of the real problem

5.2.3 Greedy Search

\rightarrow Uses a heuristic as evaluation function

- Not complete (only if finite space with repeated state checking)
- Time $\mathcal{O}\left(b^{m}\right)$
- Space $\mathcal{O}\left(b^{m}\right)$
- Not optimal

5.2.4 A* Search

\rightarrow Evaluation function: $f(n)=g(n)+h(n)$
$\rightarrow g(n)$ the path cost function, $h(n)$ the heuristic

- Complete if there are not infinitely many nodes with $f(n) \leq$ $f(0)$
- Time: exponential in relative ErrorInH \times lengthOfSolution
- Space: exponential in relativeErrorIn $H \times$ lengthOf Solution
- Optimal with admissible heuristic

5.3 Local search

\rightarrow Options aren't searched systematically
\rightarrow operates on a single state (current state)

- Traveling Salesman:

Find shortest trip through set of cities such that each city is only visited once
\rightarrow Start with any complete tour, perform pairwise exchanges

- n-queens problem

Put n queens on a $n \times n$ board such that no two queens are in the same row, column, or diagonal
\rightarrow Move a queen to reduce number of conflicts

5.3.1 Hill-climbing (Gradient ascent/descent)

\rightarrow Starting anywhere + doing depth-first search with heuristic
\rightarrow only if solutions are dense and local maxima can be escaped

5.3.2 Simulated Annealing

\rightarrow Escape local maxima by allowing some "bad" moves, but gradually decrease their size and frequency
\rightarrow Shaking ping-pong ball on a bumpy surface
\rightarrow Ridges are ascending successions of maxima

5.3.3 Local Beam Search

\rightarrow Keep k states instead of one
\rightarrow Choose top k of all successors

5.3.4 Genetic Algorithms

\rightarrow States encoded as strings with substrings as meaningful components
\rightarrow Local beam search with random modifications of states, crossovers between pairs of states and optimizing fitness functions

6 Adversarial Search for Game Playing

\rightarrow Discrete game states, finite number of game states, finite number of possible moves, fully observable game states, outcome of moves deterministic, two players, turn-taking, terminal states have utility, zero-sum utility (min tries to get opposite of max)

- Game state space: $\Theta:=\left\langle\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{I}, \mathcal{S}^{T}, u\right\rangle$

States: $\mathcal{S}=\mathcal{S}^{T} \cup \mathcal{S}^{M a x} \cup \mathcal{S}^{\text {Min }}$
Actions: \mathcal{A}
Transition relation: \mathcal{T}
Initial state: \mathcal{I}
Terminal states: \mathcal{S}^{T}
Utility function: $u: \mathcal{S}^{T} \rightarrow \mathbb{R}$

- Position $=$ State, End State $=$ Terminal State, Move $=$ Action
- Strategy: $\sigma^{X}: \mathcal{S}^{X} \rightarrow \mathcal{A}^{X}$ with $X \in\{$ Max, Min $\}$
\rightarrow optimal if it yields best possible utility for X assuming perfect opponent play

Game descriptions:

- Explicit
- Blackbox
\rightarrow with human knowledge
- Declarative (General Game Playing)
\rightarrow only given the rules

6.1 Minimax Search

\rightarrow We are Max and our opponent is Min
\rightarrow Max tries to maximize $u(s)$
\rightarrow Min tries to minimize $u(s)$
\rightarrow Computation alternates between Min and Max

1. Depth-first search in game tree with Max in the root
2. Apply utility function to terminal positions
3. Bottom-up compute $u(n)$:

- Max's turn: $u(n)=$ maximum of utilities of n 's successor nodes
- Min's turn: $u(n)=$ minimum of utilities of n 's successor nodes

4. Choose move that leads to successor node with maximal utility !Infeasible \rightarrow use search depth limits and evaluation functions!

6.2 Evaluation Functions

$\rightarrow f(s) \rightarrow$ estimate of $u(s)$
\rightarrow If cut-off states are terminal states use u instead of f

- Weighted linear function: $f=w_{1} f_{1}+w_{2} f_{2}+\ldots+w_{n} f_{n}$ with w_{i} weights and f_{i} features
w_{i} can be learned automatically
f_{i} have to be assigned by humans
f_{i} in chess: Material, Mobility, King Safety...

6.3 Quiescence

\rightarrow Iterative deepening with dynamically adapted depth
\rightarrow Search more in positions where value f changes a lot in neighbouring positions

6.4 Alpha-Beta Search

- $\alpha=$ the highest Max-node utility that search has encountered on its path from the root to n
- $\beta=$ the lowest Min-node utility that search has encountered on its path from the root to n
- α-Pruning: In a Min node n, if one successor already has utility $\leq \alpha$, then stop considering n
- β-Pruning: In a Max node n, if one successor already has utility $\geq \beta$, then stop considering n

14
\rightarrow Don't look at nodes, where $\alpha>\beta$
\rightarrow If best moves are always chosen first: $\mathcal{O}\left(b^{\frac{d}{2}}\right)$
b : Branching factor, d : depth limit

6.5 Monte-Carlo Tree Search

1. Try random paths from current state s
2. Take for each child of s the average of found utilities
3. Decide for child with biggest average
\rightarrow Better in runtime and memory
\rightarrow Needs good guidance for selecting and sampling

Sample-balancing:

- Exploitation: Prefer moves with high average
- Exploration: Prefer moves that have not been tried a lot
\rightarrow Upper Confidence bounds applied to Trees (UCT) (formula defining balance)

With Tree building:
keep track of your average utilities also in children

7 Constraint Satisfaction Problems

Constraint Satisfaction problem:

- Search problem
- States:

Variables: $V=\left\{X_{1}, \ldots, X_{n}\right\}$
Domains: $\left\{D_{v} \mid v \in V\right\}$

- Goal Test:

Constraints: Allowable combinations of values for subsets of variables

Complexity:

* n discrete variables
- Finite domains with size $d: \mathcal{O}\left(d^{n}\right)$
- Infinite domains

With linear constraints solvable
With nonlinear constraints undecidable

* Continuous variables
- Linear constraints: solvable in poly time by linear programming
- Nonlinear constraints: Not solvable
\Rightarrow NP-complete to decide if solvable or not
\rightarrow at most n^{2} constraints, each of size at most $d^{2} \rightarrow \mathcal{O}\left(n^{2} k^{2}\right)$

Types of Constraints:

- Unary: only one variable involved
- Binary: pairs of variables involved
- Higher-order: more variables involved
- Preferences: constraints with costs (when broken)

Constraint network $\langle V, D, C\rangle$

- Finite set of variables: $V=\left\{X_{1}, \ldots, X_{n}\right\}$
- Set of variables' domains: $D=\left\{D_{v} \mid v \in V\right\}$
- $C=\left\{C_{u v} \mid u, v \in V\right.$ and $\left.u \neq v\right\}$, where a binary constraint $C_{u v}$ is a relation $\left(C_{u v} \subseteq D_{u} \times D_{v}\right)$ and $C_{u v}=C_{v u}$
\rightarrow Binary Constraint Satisfaction Problems can be reformulated as constrained networks

Partial assignment:
partial function $a: V \rightarrow \bigcup_{u \in V} D_{u}$ with $a(v) \in D_{v}$ for all $v \in$ $\operatorname{dom}(V)$ mit $\operatorname{dom}(x)=$ Wertebereich von x

Inconsistency:
A partial assignment is called inconsistent, if there are variables $u, v \in$ $\operatorname{dom}(a)$ and $C_{u v} \in C$, but $(a(u), a(v)) \notin C_{u v}$
\rightarrow empty assignment is consistent
Extension:
partial assignment f extends partial assignment g, if $\operatorname{dom}(g) \subseteq \operatorname{dom}(f)$ and $\left.f\right|_{\operatorname{dom}(g)}=g$

Solution:
γ is a constraint satisfaction problem, then a consistent total assignment is a solution and γ is solvable.

7．1 Waltz Algorithm

－Problem：Interpret line drawings of solid polyhedra．Are inter－ sections concave or convex？
－Assumptions：
No shadows，cracks
only three－faced vertices
no junctions change with small movements of the eye
－Each line is either
$>$ with right hand of arrow $=$ space， with left hand of arrow $=$ solid
or + interior convex edge
or－interior concave edge
－Constraints：

ぬム \downarrow に K

7．2 CSP as Search

－Initial State：empty assignment
－Successor function：assign value to unassigned variable that pro－ duce no conflict
－fail if no legal assignments

- Goal test: current assignment is complete
\rightarrow Same fo all CSPs
\rightarrow Every solution is at depth n

Backtracking search

\rightarrow Depth-first search for CSPs with single-variable assignments
\rightarrow Reihenfolge der Belegung muss egal sein

Heuristic: Minimum Remaining Values

\rightarrow Choose most constrained variable first

Degree Heuristic

\rightarrow Choose variable with most constraints on remaining variables first
Commonly used strategy combination:
\rightarrow From set of most constrained variables choose the most constraining one

Least Constraining Value Heuristic

\rightarrow Given a variable, choose the least constraining value

8 Constraint Propagation

8.1 Inference

\rightarrow find additional constraints, that follow from the already known constraints
\rightarrow Replace γ by an equivalent and strictly tighter constraint network γ^{\prime}

Equivalent Constraint Networks

γ and γ^{\prime} (have the same set of variables) are equivalent (\equiv), if they have the same solutions.

Tightness

γ^{\prime} is tighter (\sqsubseteq) than γ, if:

- For all $v \in V: D_{v}^{\prime} \subseteq D_{v}$
- For all $u \neq v \in V$: either $C_{u v} \notin C$ or $C_{u v}^{\prime} \subseteq C_{u v}$
γ^{\prime} is strictly tighter (\sqsubset) than γ, if at least one of these inclusions is strict

Inference

$\equiv+\sqsubset=$ Inference
$\gamma^{\prime} \equiv \gamma$ and $\gamma^{\prime} \sqsubset \gamma$ then γ^{\prime} has the same solutions as γ, but fewer consistent partial assignments
$\rightarrow \gamma^{\prime}$ is a better encoding of the underlying problem

8.1.1 Backtracking with Inference

- Inference at every recursive call of backtracking
- Search vs. Inference: The more complex the inference, the smaller the number of search nodes, but the larger the runtime needed at each node.
- Encode partial assignment as unary constraints (i.e., for $a(v)=$ d, set the unary constraint $D_{v}=\{d\}$), so that inference reasons about the network restricted to the commitments already made.

8.2 Forward Checking

\rightarrow Inference
function ForwardChecking (γ, a) returns modified γ
for each v where $a(v)=d^{\prime}$ is defined do
for each u where $a(u)$ is undefined and $C_{u v} \in C$ do

$$
D_{u}=\left\{d \in D_{u} \mid\left(d, d^{\prime}\right) \in C_{u v}\right\}
$$

return γ
\rightarrow Forward Checking is sound: Tightening does not rule out solutions

8.3 Arc Consistency

\rightarrow Inference

- A variable $u \in V$ is arc consistent relative to another variable $v \in V$ if either $C_{u v} \notin C$, or for every value $d \in D_{u}$ there exists a value $d^{\prime} \in D_{v}$ such that $\left(d, d^{\prime}\right) \in C_{u v}$.
\rightarrow arc consistency is directed/asymmetric
- The network γ is arc consistent if every variable $u \in V$ is arc consistent relative to every other variable $v \in V$.
\rightarrow Arc Consistency is sound: Guarantees to deliver an equivalent network
\rightarrow Arc Consistency subsumes forward checking:

$$
A C(\gamma) \sqsubseteq \text { ForwardChecking }(\gamma)
$$

8.3.1 Arc Consistency for one pair of variables

function Revise (γ, u, v) returns modified γ
for each $d \in D_{u}$ do
if there is no $d^{\prime} \in D_{v}$ with $\left(d, d^{\prime}\right) \in C_{u v}$ then $D_{i}:=$ $D_{u} \backslash\{d\}$
return γ
$\rightarrow \mathcal{O}\left(k^{2}\right)$ with k the maximal domain size

8.3.2 AC-1

function $A C-1(\gamma)$ returns modified γ
repeat
changesMade $:=$ False
for each constraint $C_{u v}$ do
Revise $(\gamma, u, v) /^{*}$ if D_{u} reduces, set changesMade $:=$ True */
Revise $(\gamma, v, u) /^{*}$ if D_{v} reduces, set changesMade $:=$ True */
until changesMade $=$ False return γ
$\rightarrow \mathcal{O}\left(m k^{2} n k\right)$ with n variables, m constraints, k maximal domain size
\rightarrow Redundant computations

8.3.3 AC-3

$$
\begin{aligned}
& \text { function } A C-3(\gamma) \text { returns modified } \gamma \\
& \qquad \begin{array}{l}
M:=\emptyset \\
\text { for each constraint } C_{u v} \in C \text { do } \\
M:=M \cup\{(u, v),(v, u)\} \\
\text { while } M \neq \emptyset \text { do } \\
\text { remove any element }(u, v) \text { from } M \\
\text { Revise }(\gamma, u, v) \\
\text { if } D_{u} \text { has changed in the call to Revise then } \\
\text { for each constraint } C_{w u} \in C \text { where } w \neq v \text { do } \\
M:=M \cup\{(w, u)\}
\end{array}
\end{aligned}
$$

return γ
$\rightarrow \mathcal{O}\left(m k^{3}\right)$ with m constraints, k maximal domain size

8.4 Decomposition

\rightarrow Often, we can exploit the structure of a network to decompose it into smaller parts that are easier to solve

8.5 Constraint Graphs

\rightarrow Decomposition

8.5.1 Disconnected Constraint Graphs

Let $\gamma=\langle V, D, C\rangle$ be a constraint network. Let a_{i} be a solution to each connected component V_{i} of the constraint graph of γ. Then $a:=\bigcup_{i} a_{i}$ is a solution to γ.
\rightarrow Reduction of worst-case

8.5.2 Acyclic Constraint Graphs

Let $\gamma=\langle V, D, C\rangle$ be a constraint network with n variables and maximal domain size k, whose constraint graph is acyclic. Then we can find a solution for γ, or prove γ to be inconsistent, in time $\mathcal{O}\left(n k^{2}\right)$.

AcyclicCG (γ)

1. Obtain a directed tree from γ 's constraint graph, picking an arbitrary variable v as the root, and directing arcs outwards
2. Order the variables topologically, i.e., such that each vertex is ordered before its children; denote that order by v_{1}, \ldots, v_{n}
3. for $i:=n, n-1, \ldots, 2$ do
$\operatorname{Revise}\left(\gamma, v_{\text {parent }(i)}, v_{i}\right)$
if $D_{v_{\text {parent }(i)}}=\emptyset$ then return "inconsistent"
\rightarrow Every variable is arc consistent relative to its children
4. Run BacktrackingWithInference with forward checking, using the variable order v_{1}, \ldots, v_{n}
\Rightarrow This algorithm will find a solution without ever having to backtrack!

8.6 Cutset Conditioning

\rightarrow Decomposition

1. Recursive call of backtracking on a, the sub-graph of the constraint graph induced by $\{v \in V \mid a(v)$ is undefined $\}$ is acyclic.
\rightarrow use AcyclicCG() for sub-graph
2. Choose the variable order so that removing the first d variables renders the constraint graph acyclic
\Rightarrow Runtime exponential in \# of variables in the sub-graph not the whole graph
\Rightarrow Finding optimal cutsets is NP-hard

8.7 Constraint Propagation with Local Search

- Allow states with unsatisfied constraint operators to reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection: by min-conflicts heuristic: choose value that violates the fewest constraints

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

9 Knowledge and Inference

A Logic is decidable, when its satisfiability problem can be decided in finite time

9.1 Propositional Reasoning

Representing Knowledge

- Syntax

What are legal statements (formulas) \mathbf{A} in the logic

- Semantics

Which formulas \mathbf{A} are true under which assignment ϕ written $\phi \models \mathbf{A}$

Reasoning about Knowledge

- Entailment

Which \mathbf{B} are entailed by \mathbf{A}
written $\mathbf{A} \models \mathbf{B}$
meaning for all ϕ with $\phi \models \mathbf{A}$, we have $\phi \models \mathbf{B}$

- Deduction

Which statements \mathbf{B} can be derived from \mathbf{A} using a set \mathcal{C} of inference rules (a calculus) written $\mathbf{A} \vdash_{\mathcal{C}} \mathbf{B}$

Properties of Deduction:

- Calculus soundness
\rightarrow whenever $\mathbf{A} \vdash_{\mathcal{C}} \mathbf{B}$, we also have $\mathbf{A} \models \mathbf{B}$
\rightarrow I don't pretend to know, if I don't know
\rightarrow A calculus is correct if any derivable(provable) formula is also a valid formula
- Calculus completeness
\rightarrow whenever $\mathbf{A} \models \mathbf{B}$, we also have $\mathbf{A} \vdash_{\mathcal{C}} \mathbf{B}$
\rightarrow When I have enough knowledge, I can also deduce it
\rightarrow A calculus is complete if any valid formula can also be derived(proven)

9.2 Propositional Logic ($P L^{0}$)

9.2.1 Syntax

$=$ atomic propositions

- Propositional variables: \mathcal{V}_{o}
- Connectives: $\Sigma_{o}:=\{T, F, \neg, \wedge, \vee, \Longrightarrow, \Longleftrightarrow, \ldots\}$
- Well-formed propositional formulas: $w f f_{o}\left(\mathcal{V}_{o}\right)$

Negation $\neg \mathbf{A}$

Conjunction $\mathbf{A} \wedge \mathbf{B}$
Disjunction $\mathbf{A} \vee \mathbf{B}$
Implication $\mathbf{A} \Longrightarrow \mathbf{B}$
Equivalences/Biimplication $\mathbf{A} \Longleftrightarrow \mathbf{B}$
\rightarrow with $\mathbf{A}, \mathbf{B} \in w f f_{o}\left(\mathcal{V}_{o}\right)$

- propositional formulae without connectives are called atomic (or atoms) and complex otherwise

9.2.2 Semantics

$=$ Assign value to every proposition

- Model $\mathcal{M}:=\left\langle\mathcal{D}_{o}, \mathcal{I}\right\rangle$
- Universe $\mathcal{D}_{o}=\{T, F\}$
- Interpretation \mathcal{I} assigns values to connectives

$$
\begin{aligned}
& \mathcal{I}(\neg)=\mathcal{D}_{o} \rightarrow \mathcal{D}_{o} ; \quad T \mapsto F, F \mapsto T \\
& \mathcal{I}(\wedge)=\mathcal{D}_{o} \times \mathcal{D}_{o} \rightarrow \mathcal{D}_{o} ; \quad\langle\alpha, \beta\rangle \mapsto T, \text { if } \alpha=\beta=T
\end{aligned}
$$

\rightarrow other connectives can be represented by these two

- Variable assignment $\phi: \mathcal{V}_{o} \rightarrow \mathcal{D}_{o}$
\rightarrow assigns values to propositional variables
- Value function $\mathcal{I}_{\phi}: w f f_{o}\left(\mathcal{V}_{o}\right) \rightarrow \mathcal{D}_{o}$ or $\llbracket \mathbf{A} \rrbracket_{\phi}^{\mathcal{M}}$
\rightarrow assigns values to formulae
$\mathcal{I}_{\phi}(P)=\phi(P)$
$\mathcal{I}_{\phi}(\neg \mathbf{A})=\mathcal{I}(\neg)\left(\mathcal{I}_{\phi}(\mathbf{A})\right)$
$\mathcal{I}_{\phi}(\mathbf{A} \wedge \mathbf{B})=\mathcal{I}(\wedge)\left(\mathcal{I}_{\phi}(\mathbf{A}), \mathcal{I}_{\phi}(\mathbf{B})\right)$

Definitions:

- \mathbf{A} is true under $\phi(\phi$ satisfies $\mathbf{A})$ in \mathcal{M} if $\mathcal{I}_{\phi}(\mathbf{A})=T$
- A is false under $\phi(\phi$ falsifies $\mathbf{A})$ in \mathcal{M} if $\mathcal{I}_{\phi}(\mathbf{A})=F$
- A is satisfiable in \mathcal{M}
if $\mathcal{I}_{\phi}(\mathbf{A})=T$ for some assignments ϕ
- \mathbf{A} is valid in $\boldsymbol{\mathcal { M }}$
if $\mathcal{M} \models^{\phi} \mathbf{A}$ for all assignments ϕ
- \mathbf{A} is falsifiable in \mathcal{M}
if $\mathcal{I}_{\phi}(\mathbf{A})=F$ for some assignments ϕ
- \mathbf{A} is unsatisfiable in \mathcal{M}
if $\mathcal{I}_{\phi}(\mathbf{A})=F$ for all assignments ϕ
- A entails $\mathbf{B}(\mathbf{A} \models \mathbf{B})$
if $\mathcal{I}_{\phi}(\mathbf{B})=T$ for all ϕ with $\mathcal{I}_{\phi}(\mathbf{A})=T$

9.3 Formal Systems

A logical system is a triple $\mathcal{S}:=\langle\mathcal{L}, \mathcal{K}, \models\rangle$ where \mathcal{L} is a formal language, \mathcal{K} is a set and $\models \subseteq:=\mathcal{K} \times \mathcal{L}$. Members of \mathcal{L} are called formulae of \mathcal{S}, members of \mathcal{K} models for \mathcal{S}, and \models the satisfaction relation.

Let $\mathcal{S}:=\langle\mathcal{L}, \mathcal{K}, \models\rangle$ be a logical system, then we call a relation $\vdash \subseteq \mathcal{P}(\mathcal{L}) \times \mathcal{L}$ a derivation relation for \mathcal{S}, if it:

- is proof-reflexive $\mathcal{H} \vdash \mathbf{A}$, if $\mathbf{A} \in \mathcal{A}$
- is proof-transitive $\mathcal{H} \vdash \mathbf{A}$ and $\mathcal{H}^{\prime} \cup\{\mathbf{A}\} \vdash \mathcal{B}$, then $\mathcal{H} \cup \mathcal{H}^{\prime} \vdash \mathcal{B}$
- monotonic $\mathcal{H} \vdash \mathbf{A}$ and $\mathcal{H} \subseteq \mathcal{H}^{\prime}$ imply $\mathcal{H}^{\prime} \vdash \mathbf{A}$

We call $\langle\mathcal{L}, \mathcal{K}, \models, \vdash\rangle$ a formal system, iff $\mathcal{S}:=\langle\mathcal{L}, \mathcal{K}, \models\rangle$ is a logical system, and \vdash a derivation relation for \mathcal{S}

Let \mathcal{L} be a formal language, then an inference rule over \mathcal{L}

$$
\frac{\mathbf{A}_{1} \cdots \mathbf{A}_{n}}{\mathrm{C}} \mathcal{N}
$$

where A_{1}, \ldots, A_{n} and C are formula schemata for \mathcal{L} and \mathcal{N} is a name. The A_{i} are called assumptions, and C is called conclusion

An inference rule without assumptions is called an axiom (schema).
Let $\mathcal{S}:=\langle\mathcal{L}, \mathcal{K}, \models\rangle$ be a logical system, then we call a set \mathcal{C} of inference rules over \mathcal{L} a calculus for \mathcal{S}

We call $\langle\mathcal{L}, \mathcal{K}, \models, \mathcal{C}\rangle$ a formal system, iff $\mathcal{S}:=\langle\mathcal{L}, \mathcal{K}, \models\rangle$ is a logical system, and \mathcal{C} a calculus for \mathcal{S}.

A derivation $\emptyset \vdash_{\mathcal{C}} \mathbf{A}$ is called a proof of \mathbf{A} and if one exists (write $\left.\vdash_{\mathcal{C}} \mathbf{A}\right)$ then \mathbf{A} is called a \mathcal{C}-theorem.

9.4 Propositional Natural Deduction Calculus $\left(\mathcal{N} \mathcal{D}^{0}\right)$

$$
\begin{aligned}
& \frac{\mathbf{A} \mathbf{B}}{\mathbf{A} \wedge \mathbf{B}} \wedge I \quad \frac{\mathbf{A} \wedge \mathbf{B}}{\mathbf{A}} \wedge E_{I} \quad \frac{\mathbf{A} \wedge \mathbf{B}}{\mathbf{B}} \wedge E_{r} \\
& {[\mathrm{~A}]^{1}} \\
& \frac{B}{A \Rightarrow B} \Rightarrow I^{1} \\
& \frac{\mathbf{A} \Rightarrow \mathbf{B} \mathbf{A}}{\mathbf{B}} \Rightarrow E \\
& \text { used onlv in classiral losir (otherwise ronstructive/intuitionistis }
\end{aligned}
$$

$[\mathrm{A}]^{1} \quad[\mathrm{~B}]^{1}$

$$
\begin{aligned}
& \frac{\mathbf{A}}{\mathbf{A} \vee \mathbf{B}} \vee I_{l} \frac{\mathbf{B}}{\mathbf{A} \vee \mathbf{B}} \vee I_{r} \quad \begin{array}{c}
\mathbf{A} \vee \mathbf{B} \quad \vdots \\
\\
\\
\mathbf{C} \\
\mathbf{C} \\
\hline
\end{array} E^{1} \\
& {[A]^{1}} \\
& \frac{\dot{F}}{\neg \mathbf{A}} \neg I^{1} \quad \frac{\neg \neg \mathbf{A}}{\mathbf{A}} \neg E \\
& \frac{\neg \mathbf{A} \mathbf{A}}{F} F I \quad \frac{F}{\mathbf{A}} F E
\end{aligned}
$$

$\mathcal{H}, \mathbf{A} \vdash_{\mathcal{N D}} \mathbf{B}$, iff $\mathcal{H} \vdash_{\mathcal{N D}} \mathbf{A} \Longrightarrow \mathbf{B}$

9.5 Machine-Oriented Calculi for Propositional Logic

Unsatisfiability Theorem: Iff $\mathcal{H} \cup\{\neg \mathbf{A}\}, \mathcal{H} \models \mathbf{A}$ is unsatisfiable

- Conjunctive Normal Form (CNF): $\bigwedge_{i=1}^{n} \bigvee_{j=1}^{m_{i}} I_{i, j}$
- Disjunctive Normal Form (DNF): $\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m_{i}} I_{i, j}$

9.5.1 Analytic Tableaux

We call a formula atomic, or an atom, iff it does not contain connectives. We call a formula complex, iff it is not atomic.
We call a pair \mathbf{A}^{α} labeled formula, if $\alpha \in\{T, F\}$. A labeled atom is called literal.
\Rightarrow Instead of showing $\emptyset \vdash T h$, show $\neg T h \vdash \perp$

- formula is analyzed in a tree to determine satisfiability
\rightarrow Satisfiable, iff there are open branches
- Use rules exhaustively as long as they contribute new material:

$$
\left.\left.\frac{\mathbf{A} \wedge \mathbf{B}^{\top}}{\mathbf{A}^{\top}} \mathcal{T}_{0} \wedge \quad \frac{\mathbf{A} \wedge \mathbf{B}^{\mathrm{F}}}{\mathbf{B}^{\top}} \mathcal{T}_{0} \vee \quad \frac{\neg \mathbf{A}^{\top}}{\mathbf{A}^{\boldsymbol{F}} \mid \mathbf{B}^{\boldsymbol{F}}} \mathcal{T}_{0}\right\urcorner \frac{\neg \mathbf{A}^{\mathrm{F}}}{\mathbf{A}^{\top}} \mathcal{T}_{0}^{\mathrm{F}}\right\urcorner \quad \frac{\mathbf{A}^{\alpha} \quad \alpha \neq \beta}{\perp} \mathcal{A}_{0} \text { cut }
$$

\rightarrow Call a tableau saturated, iff no rule applies, and a branch closed, iff it ends in \perp, else open
$\rightarrow \mathrm{A}$ is a \mathcal{T}_{0}-theorem $\left(\vdash_{\mathcal{T}_{0}} \mathbf{A}\right)$, iff there is a closed tableau with \mathbf{A}^{F} at the root
$\rightarrow \phi \subseteq w f f_{o}\left(\mathcal{V}_{o}\right)$ derives \mathbf{A} in $\mathcal{T}_{o}\left(\phi \vdash_{\mathcal{T}_{o}} \mathbf{A}\right)$, iff there is a closed tableau starting with \mathbf{A}^{F} and ϕ^{T}
\rightarrow Terminating tableaux are a tableau calculus with the property that any of its derivations terminates after finitely many steps

- Derived rules:

$$
\begin{aligned}
& \begin{array}{c|cc}
\mathbf{A} \Rightarrow \mathbf{B}^{\top} \\
\hline \mathbf{A}^{\mathrm{F}} & \mathbf{B}^{\top} & \frac{A \Rightarrow B^{\mathrm{F}}}{\mathbf{A}^{\top}} \\
\mathbf{B}^{\mathrm{F}}
\end{array} \quad \begin{array}{c}
\mathbf{A}^{\top} \Rightarrow \mathbf{B}^{\top}
\end{array}
\end{aligned}
$$

9.5.2 Resolution

\rightarrow The proof goal is transformed in CNF and then (dis) proved through resolution refutation
$\rightarrow\{A, \neg B\},\{\neg A, B\} \Rightarrow\{A, \neg A\},\{\neg B, B\}$

- Resolution Calculus:

$$
\frac{P^{\top} \vee \mathbf{A} P^{\mathrm{F}} \vee \mathbf{B}}{\mathbf{A} \vee \mathbf{B}}
$$

- Resolution Refutation:
$\mathcal{D}: S \vdash_{\mathcal{R}} \square$ with derivation \mathcal{R} and clause set S
- Resolution Proof:

We call a resolution refutation of $C N F^{0}\left(A^{F}\right)$ a resolution proof for $A \in w f f_{o}\left(\mathcal{V}_{o}\right)$

- Clause $=$ disjunction of literals $(\square=$ empty disjunction $)$
- Clause Normal Transformation:

$$
\frac{\mathbf{C} \vee(\mathbf{A} \vee \mathbf{B})^{\top}}{\mathbf{C} \vee \mathbf{A}^{\top} \vee \mathbf{B}^{\top}} \quad \frac{\mathbf{C} \vee(\mathbf{A} \vee \mathbf{B})^{\mathrm{F}}}{\mathbf{C} \vee \mathbf{A}^{\mathrm{F}} ; \mathbf{C} \vee \mathbf{B}^{\mathrm{F}}} \quad \frac{\mathbf{C} \vee \neg \mathbf{A}^{\top}}{\mathbf{C} \vee \mathbf{A}^{\mathrm{F}}} \quad \frac{\mathbf{C} \vee \neg \mathbf{A}^{\mathrm{F}}}{\mathbf{C} \vee \mathbf{A}^{\top}}
$$

- Derived rules of inference:
a rule $\begin{array}{lll}\frac{\mathbf{A}_{1}}{} \ldots \mathbf{A}_{n} \\ \mathbf{C}\end{array}$ is a derived inference rule in the calculus \mathcal{C}, iff there is a \mathcal{C}-proof of $A_{1}, \ldots, A_{n} \vdash C$

$$
\frac{\mathbf{C} \vee(\mathbf{A} \Rightarrow \mathbf{B})^{\top}}{\mathbf{C} \vee \mathbf{A}^{\mathrm{F}} \vee \mathbf{B}^{\top}} \quad \frac{\mathbf{C} \vee(\mathbf{A} \Rightarrow \mathbf{B})^{F}}{\mathbf{C} \vee \mathbf{A}^{\top} ; \mathbf{C} \vee \mathbf{B}^{\mathrm{F}}} \quad \frac{\mathbf{C} \vee \mathbf{A} \wedge \mathbf{B}^{\top}}{\mathbf{C} \vee \mathbf{A}^{\top} ; \mathbf{C} \vee \mathbf{B}^{\top}} \quad \frac{\mathbf{C} \vee \mathbf{A} \wedge \mathbf{B}^{\mathrm{F}}}{\mathbf{C} \vee \mathbf{A}^{\mathrm{F}} \vee \mathbf{B}^{\mathrm{F}}}
$$

9.6 SAT Solver

SAT solvers decide satisfiability of CNF (Conjunctive Normal Form) formulas
The SAT problem consists in deciding whether a propositional formula is satisfiable. The problem's worst case complexity is NP-complete

Around a clause-to-variable ratio of (4.3) the SAT-problem becomes intractable. This is known as phase transition.

Clause Normal Form $=$ A propositional logic formula consisting of conjunctions of disjunctions of literals

Any SAT problem can be viewed as a CSP-problem and any CSPproblem can be transformed into a SAT-problem in polynomial time.

9.6.1 DPLL

DPLL $=$ backtracking with inference performed by unit propagation (UP), which iteratively instantiates unit clauses and simplifies the formula

The DPLL algorithm uses the unit propagation rule and the split rule.
DPLL with clause learning is equivalent to resolution
\rightarrow can be exponentially long

1. solange unit clause enthalten, wende unit propagation an
2. wenn \square erhalten \rightarrow unsatisfiable
3. nehme eine random Proposition P und versuche DPLL mit einmal $\mathrm{P}=$ True und einmal $\mathrm{P}=$ False (gehe zu 1)
4. wenn für P^{F} und P^{T} kein unsatisfiable gefunden, dann haben wir eine partielle interpretation gefunden (alle bereits gesetzten propositions müssen diese Belegung haben, bei den nicht gesetzten ist die Belegung egal)

Unit Resolution:
$\frac{C \vee P^{F} P^{\top}}{C}$

Unit propagation $=$ Resolution restricted to the case where one of the parent clauses is unit

9.7 First Order Predicate Logic $P L^{1}$

Syntax:

- Individual variables \mathcal{V} 七
- Truth values o
- Individuals ι
- Connectives Σ^{o}
\rightarrow on truth values
- Function constants $\Sigma_{k}^{f}=\{f, g, h, \ldots\}$
\rightarrow on individuals
- Predicate constants $\Sigma_{k}^{p}=\{p, q, r, \ldots\}$
- Skolem constants $\Sigma_{k}^{s k}=\left\{f_{1}^{k}, f_{2}^{k}, \ldots\right\}$
- $\Sigma_{\iota}=\Sigma^{f} \cup \Sigma^{p} \cup \Sigma^{s k}$
- $\Sigma=\Sigma_{\iota} \cup \Sigma^{o}$
- Formulae
- Terms
\rightarrow denote individuals
- Propositions
\rightarrow denote truth values
- Fixed truth values Universe $\mathcal{D}_{o}=\{T, F\}$
- Individuals Universe $\mathcal{D}_{\iota} \neq \emptyset$
- Model $\mathcal{M}=\left\langle\mathcal{D}_{\iota}, \mathcal{I}\right\rangle$

Semantics:

- As for propositional logic +
- $\mathcal{I}_{\phi}\left(f\left(A_{1}, \ldots, A_{k}\right)\right)=\mathcal{I}(f)\left(\mathcal{I}_{\phi}\left(A_{1}\right), \ldots, \mathcal{I}_{\phi}\left(A_{k}\right)\right)$
- $\mathcal{I}_{\phi}\left(p\left(A^{1}, \ldots, A^{k}\right)\right)=\mathrm{T}$, iff $\left\langle\mathcal{I}_{\phi}\left(A^{1}\right), \ldots, \mathcal{I}_{\phi}\left(A^{k}\right)\right\rangle \in \mathcal{I}(p)$
- $\mathcal{I}_{\phi}(\forall X . A)=\mathrm{T}$, iff $\mathcal{I}_{\phi,[a / X]}(A)=\mathrm{T}$ for all $a \in \mathcal{D}_{\iota}$
\rightarrow variable capture $=$ An (unsound) operation that turns a free variable into a bound variable

A variable X is bound in a formula if and only if it occurs in the scope of either a universal or an existential quantifier binding X.

9.7.1 Natural Deduction $\mathcal{N} \mathcal{D}^{1}$

$\mathcal{N D}{ }^{0}+$

$$
\begin{array}{cc}
\frac{\mathbf{A}}{\forall X \cdot \mathbf{A}} \forall I^{*} & \frac{\forall X \cdot \mathbf{A}}{[\mathbf{B} / X](\mathbf{A})} \forall E \\
& {[[c / X](\mathbf{A})]^{1}} \\
\frac{[\mathbf{B} / X](\mathbf{A})}{\exists X \cdot \mathbf{A}} \exists I & \frac{\exists X \cdot \mathbf{A} \quad}{\vdots} \\
& \mathbf{C} \\
\mathbf{C}
\end{array} E^{1}
$$

* means that A does not depend on any hypothesis in which X is free.

$$
\overline{\mathbf{A} \Leftrightarrow \mathbf{A}} \Leftrightarrow I \quad \frac{\mathbf{A} \Leftrightarrow \mathbf{B} \mathbf{C}[\mathbf{A}]_{p}}{[\mathbf{B} / p] \mathbf{C}} \Leftrightarrow=E
$$

9.7.2 First-Order Logic with Equality

$$
\overline{\mathbf{A}=\mathbf{A}}=1 \quad \frac{\mathbf{A}=\mathbf{B ~ C ~}[\mathbf{A}]_{p}}{[\mathbf{B} / p] \mathbf{C}}=E
$$

9.8 First Order Inference

9.8.1 Tableau

\rightarrow There is no terminating tableaux calculus for first order logic
$\mathcal{T}_{0}+$

$$
\frac{\forall X . \mathbf{A}^{\top} \mathbf{C} \in \operatorname{cwff}_{\iota}\left(\Sigma_{l}\right)}{[\mathbf{C} / X](\mathbf{A})^{\top}} \mathcal{T}_{1}: \forall \quad \frac{\forall X \cdot \mathbf{A}^{\mathrm{F}} c \in\left(\Sigma_{0}^{s k} \backslash \mathcal{H}\right)}{[c / X](\mathbf{A})^{\mathrm{F}}} \mathcal{T}_{1}: \exists
$$

\rightarrow have to guess in $\mathcal{T}_{1}: \forall$
\Rightarrow Free Variable Tableau \mathcal{T}_{0}^{f} :

$$
\frac{\forall X \cdot \mathbf{A}^{\top} Y \text { new }}{[Y / X](\mathbf{A})^{\top}} \mathcal{T}_{1}^{f}: \forall \quad \frac{\forall X \cdot \mathbf{A}^{\mathrm{F}} \text { free }(\forall X \cdot \mathbf{A})=\left\{X^{1}, \ldots, X^{k}\right\} f \in \sum_{k}^{s^{k}} \mathcal{T}_{1}^{f}: \exists}{\left[f\left(X^{1}, \ldots, X^{k}\right) / X\right](\mathbf{A})^{F}}
$$

$$
\begin{gathered}
\begin{array}{c}
\mathbf{A}^{\alpha} \\
\mathbf{B}^{\beta}
\end{array} \quad \alpha \neq \beta \sigma(\mathbf{A})=\sigma(\mathbf{B}) \\
\perp: \sigma
\end{gathered} \mathcal{T}_{1}^{f}: \perp
$$

9.8.2 Resolution

CNF:

$$
\begin{gathered}
\frac{(\forall X . \mathbf{A})^{\top} \vee \mathbf{C} Z \notin(\operatorname{free}(\mathbf{A}) \cup \operatorname{free}(\mathbf{C}))}{[Z / X](\mathbf{A})^{\mathrm{T}} \vee \mathbf{C}} \\
\frac{(\forall X . \mathbf{A})^{\mathrm{F}} \vee \mathbf{C}\left\{X_{1}, \ldots, X_{k}\right\}=\operatorname{free}(\forall X . \mathbf{A})}{\left[f_{n}^{k}\left(X^{1}, \ldots, X^{k}\right) / X\right](\mathbf{A})^{\mathrm{F}} \vee \mathbf{C}}
\end{gathered}
$$

Calculus:

$$
\frac{\mathbf{A}^{\top} \vee \mathbf{C} \mathbf{B}^{\mathbf{F}} \vee \mathbf{D} \sigma=\mathbf{m g u}(\mathbf{A}, \mathbf{B})}{\sigma(\mathbf{C}) \vee \sigma(\mathbf{D})} \quad \frac{\mathbf{A}^{\alpha} \vee \mathbf{B}^{\alpha} \vee \mathbf{C} \sigma=\mathbf{m g u}(\mathbf{A}, \mathbf{B})}{\sigma(\mathbf{A}) \vee \sigma(\mathbf{C})}
$$

9.8.3 Unification

$$
\begin{gathered}
\frac{\mathcal{E} \wedge f\left(\mathbf{A}^{1}, \ldots, \mathbf{A}^{n}\right)=? f\left(\mathbf{B}^{1}, \ldots, \mathbf{B}^{n}\right)}{\mathcal{E} \wedge \mathbf{A}^{1}={ }^{?} \mathbf{B}^{1} \wedge \ldots \wedge \mathbf{A}^{n}=? \mathbf{B}^{n}} \mathcal{U} \text { dec } \quad \frac{\mathcal{E} \wedge \mathbf{A}={ }^{?} \mathbf{A}}{\mathcal{E}} \mathcal{U} \text { triv } \\
\frac{\mathcal{E} \wedge X=? \mathbf{A} X \notin \text { free }(\mathbf{A}) X \in \text { free }(\mathcal{E})}{[\mathbf{A} / X](\mathcal{E}) \wedge X={ }^{?} \mathbf{A}} \mathcal{U} \text { elim }
\end{gathered}
$$

- correct
- complete
- confluent \rightarrow order of derivations does not matter

9.9 Logic Programming as Resolution Theorem Proving

- Deduction

$$
\frac{\text { rains } \Rightarrow \text { wet_street rains }}{\text { wet_street }} D
$$

- Abduction

$$
\frac{\text { rains } \Rightarrow \text { wet_street wet_street }}{\text { rains }} A
$$

- Learning rules

$$
\frac{\text { wet_street rains }}{\text { rains } \Rightarrow \text { wet_street }} \text { I }
$$

Semantic Web $=$ project of extending the internet by annotating content on the internet using logic to render it machine-readable

10 Planning \& Acting

\rightarrow Write one program that can solve all classical search problems

Planning Language:

- States
- Initial State I
- Goal Condition G
- Actions A
- Preconditions
- Effects
- Solution \rightarrow Plan (Sequence of actions)

10.1 STRIPS

\rightarrow Stanford Research Institute Problem Solver
\rightarrow the simplest possible (reasonably expressive) logics-based planning language
\rightarrow only Boolean variables

$$
\Pi=\langle P, A, I, G\rangle
$$

- P finite set of facts/Propositions
- A finite set of actions $A=\left\langle p r e_{a}, a d d_{a}, d e l_{a}\right\rangle$
- Preconditions pre ${ }_{a}$
- Add List adda
- Delete List del ${ }_{a}$ $a d d_{a} \cap d e l_{a}=\emptyset$
- Initial State $I \subseteq P$
- Goal $G \subseteq P$

10.2 PDDL

\rightarrow Planning Domain Description Language

- Domain file

```
(define (domain blocksworld)
(:predicates (clear ?x) (holding ?x) (on ?x ?y)
                                    (on-table ?x) (arm-empty))
(:action stack
    :parameters (?x ?y)
    :precondition (and (clear ?y) (holding ?x))
    :effect (and (arm-empty) (on ?x ?y)
                                    (not (clear ?y)) (not (holding ?x)))
)
```

- Problem file

```
(define (problem bw-abcde)
(:domain blocksworld)
(:objects a b c d e)
(:init (on-table a) (clear a)
    (on-table b) (clear b)
    (on-table e) (clear e)
    (on-table c) (on d c) (clear d)
    (arm-empty))
(:goal (and (on e c) (on c a) (on b d))))
```


10.3 Planning Complexity

10.3.1 Satisficing planning

\rightarrow find a plan for Π or "unsolvable"

10.3.2 Optimal planning

\rightarrow find an optimal plan for Π or "unsolvable"
\rightarrow

10.3.3 PlanEx

\rightarrow problem of deciding, whether or not there exists a plan
\rightarrow PSPACE-complete $=$ PSPACE-hard + in PSPACE

10.3.4 PlanLen

\rightarrow problem of deciding, whether or not there exists a plan of at most length X
\rightarrow PSPACE-complete

10.3.5 PolyPlanLen

\rightarrow problem of deciding, whether or not there exists a plan of at most length X , whereas X is bounded by a polynomial in the size of Π
\rightarrow NP-complete

10.4 Relaxing in planning

- Problem class P with heuristic h_{P}
- Transformation R that transforms P to P^{\prime}
- Simpler problem class P^{\prime} with optimal heuristic $h_{P^{\prime}}^{*}$
$\rightarrow h_{P}=h_{P^{\prime}}^{*}$

10.4.1 Delete Relaxation

R : When the world changes, its previous state remains true as well \Rightarrow Delete list of P^{\prime} is empty

PlanEx ${ }^{+}$(deciding whether or not there exists a relaxed plan) is a member of P

10.4.2 h^{+}heuristic

$h^{+} \rightarrow$ ideal delete-relaxation heuristic
h^{+}is admissible
h^{+}is NP-hard to compute

