Artificial Intelligence

Contents
1 Definition

2 Prolog

2.1 Functions
3 Complexity
4 Intelligent Agents

5 Problem Solving and Search
5.1 Uninformed Search Strategies
5.1.1 Breadth-first search
5.1.2 Uniform-cost search
5.1.3 Depth-first search
5.1.4 Iterative deepening search
5.2 Informed Search Strategies.
5.2.1 Best-first search
5.2.2 Heuristics
5.2.3 Greedy Search
524 A" Search
5.3 Localsearch
5.3.1 Hill-climbing (Gradient ascent/descent)
5.3.2 Simulated Annealing
5.3.3 Local Beam Search
5.34 Genetic Algorithms

6 Adversarial Search for Game Playing
6.1 Minimax Search
6.2 Evaluation Functions.
6.3 Quiescence
6.4 Alpha-Beta Search
6.5 Monte-Carlo Tree Search

7 Constraint Satisfaction Problems
7.1 Waltz Algorithm

15
17
17
17
17
18
18
18
18
19
19
20
20
20
21
21

21
22
23
23
23
24

25

72 CSP as Search,

Constraint Propagation
8.1 Inference
8.1.1 DBacktracking with Inference
8.2 Forward Checking
8.3 Arc Consistency
8.3.1 Arc Consistency for one pair of variables
832 AC-1
833 AC-3
8.4 Decomposition
8.5 Constraint Graphs
8.5.1 Disconnected Constraint Graphs.
8.5.2 Acyclic Constraint Graphs
8.6 Cutset Conditioning
8.7 Constraint Propagation with Local Search

Knowledge and Inference
9.1 Propositional Reasoning
9.2 Propositional Logic (PL%)
9.2.1 Syntax
9.2.2 Semantics
9.3 Formal Systems
9.4 Propositional Natural Deduction Calculus (ND%) . . .
9.5 Machine-Oriented Calculi for Propositional Logic
9.5.1 Analytic Tableaux
9.5.2 Resolution
9.6 SAT Solver
96.1 DPLL.
9.7 First Order Predicate Logic PL*
9.7.1 Natural Deduction ND'
9.7.2 First-Order Logic with Equality
9.8 First Order Inference
98.1 Tableau L.
98.2 Resolution,
9.8.3 Unification

9.9 Logic Programming as Resolution Theorem Proving . . 50

10 Planning & Acting 50
10.1 STRIPS 51
10.2 PDDL 52
10.3 Planning Complexity 52

10.3.1 Satisficing planning 52
10.3.2 Optimal planning 52
10.3.3 PlanEx 53
10.34 PlanLen 53
10.3.5 PolyPlanLen 53
10.4 Relaxing in planning 53
10.4.1 Delete Relaxation 54
10.4.2 A" heuristic., 54

1 Definition

Artificial Intelligence studies how we can make the computer do
things that humans can still do better at the moment

— Al is decreasing

Aspects:

Ability to learn

Inference (drawing conclusions)
e Perception (Wahrnehmung der Umwelt)

e Language understanding (as communication in general)

e [imotion
Analysis
Deep Knowledge-based Not there yet

Shallow No-one wants this Statistical Methods

Narrow Wide Coverage
Precision
100% Producer Task
50% Consumer Tasks

103+ 100+t Coverage

Narrow / weak AI = study or accomplish specific problem solving
or reasoning tasks

Strong Al / AGI (Artificial general intelligence) = software
performing at the full range of human cognitive abilities

Problems requiring strong Al to solve are called AI complete.

2 Prolog

Constants — lower-case

Variables — upper-case or underscore (never-used variable)
Functions and predicates

— lower-case, applied to terms

— Parameters have no unique direction "in” or ”out”

Program:
o Facts — t.
e Rules
— h : —by, ..., b,. with h the head literal and b; the body literals
= hif by,..., b,.

Knowledge base — set of facts that can be derived of the program
Query — 7 — Ay, ..., A,. with A; terms called goals
Backchaining — Testing whether query is true or false

Search procedure:
e Top-down
o Left-right
e Depth-first: Backtracking

Internal arithmetic: 7- D is e.
— e is a ground arithmetic expression that binds D to the result of

evaluating e

Lists
— [a, b, ¢, ..]

— [F|R] with F the first element and R the rest list

2.1 Functions

delete(_,[L.[])-
delete(X,[X|T],R) :— delete(X,T,R).

delete(X,[H|T],[H|R]) :— not(X=H), delete(X,T,R).
removeDuplicates([],[]).
removeDuplicates([H|T],[H|R]) :— delete(H,T,S), removeDuplicates(S,R).

preReverse([],X,X).
preReverse([X|Y],Z,W) :— preReverse(Y,[X|Z],W).
myReverse(A,R) :— preReverse(A,[],R).

takeout(X,[X|T],T).

takeout(X,[H|T1],[H|T2]) :— takeout(X,T1,T2).
myPermutations([],[]).

myPermutations([X|Y],Z) :— myPermutations(Y,W), takeout(X,Z,W).

r— p—

).
[BI.[[A.BI).

T1],[H2|T2],L) :— zip(T1,T2,T), append([[H1,H2]], T,L).

——— p—

1

add(X,nil,tree(X,nil,nil)).
add(X,tree(Root,L,R),tree(Root,L1,R)) :— X @< Root, add(X,L,L1).
add(X,tree(Root,L,R),tree(Root,L,R1)) :— X @> Root, add(X,R,R1).

construct(L,T) :— construct(L, T,nil).

construct([],T,T).
construct([N|Ns],T,T0) :— add(N,T0,T1), construct(Ns, T, T1).

count_leaves(nil,0).
count leaves(tree(,nil,nil),1) :— 1.
count leaves(tree(,L,R),N) :— count leaves(L,NL), count leaves(R,NR), |

symmetric(nil).
symmetric(t(_,L,R)) :— mirror(L,R).

mirror(nil,nil).
mirror(t(_,L1,R1),t(,L2,R2)) :— mirror(L1,R2), mirror(R1,L2).

DFS:

dfs (GoalValue , tree (GoalValue, _),GoalValue ,0).

dfs (GoalValue, tree (Value ,[(Cost,T)|Rest]) ,Path, FinalCost):—
T = tree(IV,_), write(IV),
dfs (GoalValue ,T,P,C),
string _concat (Value ,P,Path),
FinalCost is C+Cost;
dfs (GoalValue, tree (Value,Rest),Path,FinalCost).

BF'S:

insert (-,-,[],[])-

insert (Path,Cost ,[(C,T)|Rest],[(T,Path ,NC)|NewRest]) :—
NC is Cost+C,
insert (Path, Cost ,Rest ,NewRest).

bfs (GoalValue ,[(tree (GoalValue,_),0OldPath, FinalCost)| _]|,FinalPath ,FinalCost):—
string_concat (OldPath , GoalValue , FinalPath),
write (GoalValue).

bfs (GoalValue ,[(tree (Value, Children),Path,Cost)| Fringe|,FinalPath ,FinalCost):—
write (Value),
string_concat (Path, Value , NewPath) ,
insert (NewPath, Cost, Children , NewChildren) ,
append (Fringe , NewChildren , NewFringe),

bfs (GoalValue ,NewFringe , FinalPath , FinalCost).
bfs (GoalValue , Tree,Path,Cost) :—

istree (Tree),
bfs (GoalValue ,[(Tree,”” ,0)],Path, Cost).

3 Complexity

— Worst-case time/space complexity

Constant: O(1)
e Logarithmic: O(In(n))

Linear: O(n)
Quadratic: O(n?)

e Polynomial: O(n")
e Exponential: O(k")

P = alle Probleme, die deterministisch in Polynomialzeit 1osbar sind

NP = alle Probleme, die von nicht-deterministischen Turingmaschi-
nen in Polynomialzeit 1osbar sind

PCNP
P=NP??

4 Intelligent Agents

Al definitions:

1. Acting humanly
— Turing test

2. Thinking humanly

— Cognitive Science and Cognitive Neuroscience

3. Thinking rationally
— Aristotle

4. Acting rationally

— Acting so that you would expect to maximize your goal
achievement + thinking involved

An agent a (f, : P* — A) perceives his environment via sensors (P)
and acts on it (A) with actuators

An agent function
e specifies the input-output relation (outside view)

e takes the full sequence of percepts as arguments

An agent program
e implements the function (inside view)
e uses the internal state to avoid the full sequence of percepts

e there are either none or infinitely many programs for a function

A performance measure is a function that evaluates a sequence of en-
vironments

An agent is called rational if it chooses whichever action maximizes
the expected value of the performance measure given the percept se-
quence to date

10

Rational # hellsichtig — only maximize expected value

Rational # allwissend — percepts may not supply all relevant
data

— but try to explore best

Rational # successful

— but try to learn best

Rational = exploration, learning, autonomy

An agent is called autonomous if it does not rely on the prior knowl-
edge of the designer

Describing the tasks environment:

Performance measure
Environment
Actuators

Sensors

Fully observable <+ partially observable
Deterministic <+ stochastic
Episodic <> sequential (state depends on previous state)

Dynamic <> semidynamic (only performance measure changes)
+» static (nothing changes without the agent doing something)

Discrete (states, actions are countable) <+ continuous

Single-agent <> multi-agent

11

Agent types

e Simple reflex agent
— actions only base on the last percept

Widat tha world
iz like roye
Ciendition—action rules ;ﬁgﬁ;gﬂnﬂnlw

e Reflex agent with states

e o Yl aat tha waotld
Huwe the worle eviolves i il rmar

Waat my actions do

Condition—action rules g;gﬁtl;ggnﬂnlw

e Goal-based agent
— is a stateful reflex agent with a goal

12

/ TS S -4
’ ~o . Sensors
> *
What the world

(How the world evolves is like now
(What my actions do Wl;? tI légv ;Etilz)enlﬁ(e

Y
- What action I
Goals should do now

@gent Actuators -

JUQWIUOITAUH

e Utility-based agent
— A utility-based agent uses a worldmodel along with a utility
function that influences its preferences among the states of that
world. It chooses the action that leads to the best expected
utility, which is computed by averaging over all possible outcome
states, weighted by the probability of the outcome

s D

SeEnsors —-.
Siare) |

Q—|ow the worle evolves —m ?:ﬂ,?y:gf orld -
m
- Whet it will ae like =
Wat my actions do it | de action A g
¥ 3
m How happy | will bo a
._, _ - in s 4 state @j
! =
What action | e

should do now

Agent Actualors -

o

e Learning agent (All the above + learning)
— ameliorates the performance measure

— Learning element — improving the agent’s knowledge

— Critic — gives feedback on learning element based on ex-
ternal performance standard

13

— Problem generator — suggests action leading to new, in-
formative experiences

— Performance element = Agents without learning
Perfﬂrmant;e standard

(Critig |— Sen‘surs-l \

feedback
m
-
changes ' =
Learning " Parformance 3
glemeant - edae glameint = |
nowledge 3
learning o
goals | =
Froblem
enerator
Y
Age\nt Actuators

Domain-Specific Agent <+ General Agent

State Representation:

e Atomic — No internal structure

e Factored — Each state is characterized by attributes and their
values

e Structured — State includes objects and their relations

mlnﬂ'iﬂ'i
ﬁHnI-DD

&) Adomic i) Facinrad by Siruciured

14

5 Problem Solving and Search

Problem = States + Actions

Offline problem solving <> Online problem solving

Problem formulation:

Search problem: P := (S, 0,Z,G)
States: S
Operators: O CS x S

Goal States: G C S

[nitial State: Z

Cost function: ¢: O — RJ
Step cost: ¢(o) o€ O

Actions (Operator application): s —° &', if o = (s,5") € O with
s’ the successor of s

Goal test

Solution: Sequence of operators that bring us from Z to G

Problem description:

Blackbox description — Algorithm has no information about
the problem

Declarative description — describes the problem itself (problem
description language)

Problem types:

15

e Single-state problems

— Observable, deterministic, static, discrete

e Multiple-state problems

— Initial state not observable or partially observable, deter-
ministic, static, discrete

e Contingency problems

— mnon-deterministic, unknown state space

Tree Search Algorithms
— Make a tree out of the graph
— Offline algorithm

— Search strategy = function that picks a node from the fringe of
a search tree

Properties of Strategies:
— Completeness = does it always find a solution?
— Time complexity = number of nodes expanded
— Space complexity = number of nodes in memory

— Optimality = does it always find a least-cost solution?

b = maximum branching factor
d = minimal depth of a solution
m = maximum depth of the search tree

16

5.1 Uninformed Search Strategies

5.1.1 Breadth-first search
— Fringe is a FIFO queue

Complete (if b is finite)
Time O(b*)

e Space O(b*™) (keeps all nodes in memory)

e Optimal if cost = 1 per step

5.1.2 Uniform-cost search

— Fringe is queue ordered by increasing path cost (if equal cost FIFO)
— Add paths costs from the precessor node to the path cost of the
current node

e Complete (if step costs > 0)
e Time: # nodes with path-cost less than that of optimal solution
e Space: # nodes with path-cost less than that of optimal solution

e Optimal

5.1.3 Depth-first search
— Fringe is a LIFO queue

e Complete if state space is finite (no loops or infinite paths)
e Time O(b")
e Space O(b-m) (keeps all nodes in memory)

e Not optimal

17

5.1.4 Iterative deepening search

for(depthLimit = 0; depthLimit < TreeHeight;
depthLimit + +){
depthFirstSearch(TreeCut ByDepthLimit)

}

— Always starts again from the root

e Complete

e Time O(b")

e Space O(b - d) (keeps all nodes in memory)
e Optimal if step cost = 1

5.2 Informed Search Strategies

— introduce information from outside the problem

5.2.1 Best-first search

Sort the fringe by an evaluation function
— expanding the most desirable node first
— Examples: Greedy Search, A* Search

5.2.2 Heuristics

— Function that estimates the cost from the current node to the
nearest goal state

o h: S — RjU{oo} sothat h(s) =0 with s a goal state

e Goal distance function: h* : S — RJ U {oo} where h*(s) is the
cost of a cheapest path from s to a goal state or oo if no such
path exists

18

Properties:
e Admissible: h(s) < h*(s) forall s € S
e Consistent: h(s) — h(s') < c(osy) forall s € S and o € O

e Consistency implies Admissibility

hy dominates hy if hy(n) > hi(n) for all n
— If hy dominates hq, then h, is better for search than A,

= Find a heuristic for a relaxed problem (P" = (S, 0", Z", G") with
O'CO.I CI.G CQ)

— Every solution for P is one for P"

— The optimal solution cost of a relaxed problem is not greater than
the optimal solution cost of the real problem

5.2.3 Greedy Search
— Uses a heuristic as evaluation function

e Not complete (only if finite space with repeated state checking)
e Time O(b™)
e Space O(b™)
e Not optimal

5.2.4 A" Search

— Evaluation function: f(n) = g(n) + h(n)
— ¢g(n) the path cost function, h(n) the heuristic

e Complete if there are not infinitely many nodes with f(n) <

f(0)

e Time: exponential in relative ErrorInH xlengthO f Solution

19

Space: exponential in relative ErrorInH xlengthO f Solution

Optimal with admissible heuristic

Local search

Options aren’t searched systematically

operates on a single state (current state)

Traveling Salesman:

Find shortest trip through set of cities such that each city is
only visited once

— Start with any complete tour, perform pairwise exchanges

n-queens problem

Put n queens on a n x n board such that no two queens are
in the same row, column, or diagonal

— Move a queen to reduce number of conflicts

5.3.1 Hill-climbing (Gradient ascent/descent)

— Starting anywhere 4+ doing depth-first search with heuristic

— only if solutions are dense and local maxima can be escaped

5.3.2 Simulated Annealing

— Escape local maxima by allowing some ”bad” moves, but grad-

ually decrease their size and frequency

— Shaking ping-pong ball on a bumpy surface

— Ridges are ascending successions of maxima

20

5.3.3 Local Beam Search

— Keep k states instead of one

— Choose top k of all successors

5.3.4 Genetic Algorithms

— States encoded as strings with substrings as meaningful compo-
nents

— Local beam search with random modifications of states, crossovers
between pairs of states and optimizing fitness functions

6 Adversarial Search for Game Playing

— Discrete game states, finite number of game states, finite number
of possible moves, fully observable game states, outcome of moves
deterministic, two players, turn-taking, terminal states have utility,
zero-sum utility (min tries to get opposite of max)

e Game state space: © .= (S, A, T,Z,S8", u)
States: S = ST U SMar y SMin
Actions: A
Transition relation: T
Initial state: Z
Terminal states: S
Utility function: v : ST — R

e Position = State, End State = Terminal State, Move = Action

o Strategy: o : 8* — A with X € {Maz, Min}

— optimal if it yields best possible utility for X assuming
perfect opponent play

21

Game descriptions:
e Ebixplicit

e Blackbox
— with human knowledge

e Declarative (General Game Playing)

— only given the rules

6.1 Minimax Search

— We are Max and our opponent is Min
— Max tries to maximize u(s)
— Min tries to minimize u(s)

— Computation alternates between Min and Max

1. Depth-first search in game tree with Max in the root
2. Apply utility function to terminal positions

3. Bottom-up compute u(n):

— Max’s turn: u(n) = maximum of utilities of n’s successor
nodes

— Min’s turn: u(n) = minimum of utilities of n’s successor
nodes

4. Choose move that leads to successor node with maximal utility

IInfeasible — use search depth limits and evaluation functions!

22

6.2

Evaluation Functions

— f(s) — estimate of u(s)

— If cut-off states are terminal states use u instead of f

e Weighted linear function: f = wy f; +wsfo+ ... +w,f, with w;

weights and f; features
w; can be learned automatically
f; have to be assigned by humans
f; in chess: Material, Mobility, King Safety:...

Quiescence

[terative deepening with dynamically adapted depth
Search more in positions where value f changes a lot in neigh-

bouring positions

Alpha-Beta Search

a = the highest Max-node utility that search has encoun-
tered on its path from the root to n

£ = the lowest Min-node utility that search has encoun-
tered on its path from the root to n

a—Pruning: In a Min node n, if one successor already has
utility < «, then stop considering n

fS—Pruning: In a Max node n, if one successor already has
utility > (3, then stop considering n

23

3; [3, 0]

Min oxoﬁ] yo 2;[3,2] Min @ 5; 3, 5]
® ® ® ® Max @ 14;[14,5]
3 12 8 2 5 2

— Don’t look at nodes, where o > 3

— If best moves are always chosen first: O(b?)
b: Branching factor, d: depth limit

6.5 Monte-Carlo Tree Search

1. Try random paths from current state s
2. Take for each child of s the average of found utilities

3. Decide for child with biggest average

— Better in runtime and memory

— Needs good guidance for selecting and sampling

24

Sample-balancing:
e Eixploitation: Prefer moves with high average
e Exploration: Prefer moves that have not been tried a lot

— Upper Confidence bounds applied to Trees (UCT) (formula defin-
ing balance)

With Tree building:

keep track of your average utilities also in children

Expansions: 2, 0 Expansions: 2 Expansions: 2, 2, 2
avg. reward: 60, 0 avg. reward: 55 avg. reward: 60, 55, 35
AN
Expansions: 1 Expansions: 2, 0
avg. reward: 10

/

0 avg. reward: 35, 0
N\ |

Expansions: 0, 1

‘ Expansions: 0, 1
avg. reward: 0, 50 \ > - avg. reward: 0, 30

O ‘>

7 Constraint Satisfaction Problems

Constraint Satisfaction problem:

e Scarch problem

e States:
Variables: V = {Xj,..., X,,}
Domains: {D,|v € V'}

25

o (Goal Test:

Constraints: Allowable combinations of values for subsets of
variables

Complexity:

x n discrete variables
— Finite domains with size d: O(d")
— Infinite domains
With linear constraints solvable

With nonlinear constraints undecidable

* Continuous variables

— Linear constraints: solvable in poly time by linear program-
ming

— Nonlinear constraints: Not solvable

= NP-complete to decide if solvable or not

— at most n? constraints, each of size at most d* — O(n?k?)

Types of Constraints:
e Unary: only one variable involved
e Binary: pairs of variables involved
e Higher-order: more variables involved

e Preferences: constraints with costs (when broken)

26

Constraint network (V, D, C)
e Finite set of variables: V = {X,..., X,;}
e Sct of variables” domains: D = {D,|v € V'}

o (' ={C,|u,v €V and u # v}, where a binary constraint C,,,
is a relation (C,, € D, x D,) and C,, = C,,

— Binary Constraint Satisfaction Problems can be reformulated as
constrained networks

Partial assignment:
partial function @ : V. — U,y D. with a(v) € D, forallv €
dom(V') mit dom(x) = Wertebereich von x

Inconsistency:
A partial assignment is called inconsistent, if there are variables u, v €

dom(a) and C,, € C, but (a(u),a(v)) & C,,
— empty assignment 1s consistent

Extension:
partial assignment f extends partial assignment g, if dom(g) C dom/(f)

and f|gom(g) = g
Solution:

~ is a constraint satisfaction problem, then a consistent total assign-
ment is a solution and - is solvable.

27

7.1 Waltz Algorithm

e Problem: Interpret line drawings of solid polyhedra. Are inter-
sections concave or convex?’

e Assumptions:
No shadows, cracks
only three-faced vertices

no junctions change with small movements of the eye

e Fach line is either

> with right hand of arrow = space,
with left hand of arrow = solid

or + interior convex edge

or — interior concave edge

e Constraints:

®E Aor r
N AN K RS
YOy
o
™ g o

7.2 CSP as Search

e Initial State: empty assignment

e Successor function: assign value to unassigned variable that pro-
duces no conflict

e fail if no legal assignments

28

e Goal test: current assignment is complete
— Same fo all CSPs

— Every solution is at depth n

Backtracking search
— Depth-first search for CSPs with single-variable assignments
— Reihenfolge der Belegung muss egal sein

Heuristic: Minimum Remaining Values
— Choose most constrained variable first

Degree Heuristic
— Choose variable with most constraints on remaining variables first

Commonly used strategy combination:
— From set of most constrained variables choose the most constrain-
ing one

Least Constraining Value Heuristic
— Given a variable, choose the least constraining value

8 Constraint Propagation

8.1 Inference

— find additional constraints, that follow from the already known
constraints

— Replace v by an equivalent and strictly tighter constraint net-
work ~/

29

Equivalent Constraint Networks
v and v (have the same set of variables) are equivalent (=), if they
have the same solutions.

Tightness
v is tighter (E) than ~, if:

e forallveV:D) CD,
e Forallu v eV : either Cy, ¢ C or C!, C C,,

v is strictly tighter () than ~, if at least one of these inclusions is
strict

Inference

= + = Inference

v = ~ and 7' C « then 4/ has the same solutions as ~, but fewer
consistent partial assignments

— 7' is a better encoding of the underlying problem

8.1.1 Backtracking with Inference

e Inference at every recursive call of backtracking

e Scarch vs. Inference: The more complex the inference, the
smaller the number of search nodes, but the larger the runtime
needed at each node.

e Encode partial assignment as unary constraints (i.e., for a(v) =
d, set the unary constraint D, = {d}), so that inference reasons
about the network restricted to the commitments already made.

8.2 Forward Checking

— Inference

30

function ForwardChecking(v, a) returns modified -

for each v where a(v) = d' is defined do
for each u where a(u) is undefined and C, € C do
D,={de D,|(d,d) e Cy,}

return -y

— Forward Checking is sound: Tightening does not rule out solutions

8.3 Arc Consistency

— Inference

e A variable u € V is arc consistent relative to another variable
v € V if either C,, ¢ C, or for every value d € D, there exists
a value d' € D, such that (d,d’) € C,,.

— arc consistency is directed /asymmetric

e The network v is arc consistent if every variable u € V is arc
consistent relative to every other variable v € V.

— Arc Consistency is sound: Guarantees to deliver an equivalent
network

— Arc Consistency subsumes forward checking:
AC(v) CE ForwardChecking(~y)

31

8.3.1 Arc Consistency for one pair of variables

function Revise (v, u,v) returns modified ~
for each d € D,, do
if there is no d' € D, with (d,d) € C,, then D; :=
D, \{d}

return

— O(k?) with k the maximal domain size

8.3.2 AC-1
function AC' — 1(7y) returns modified ~

repeat
changesMade := False
for each constraint C,, do

Revise(y,u,v) /*if D, reduces, set changesMade
True */

Revise(y,v,u) /*if D, reduces, set changesMade :
True */

until changesMade = False

return -y

— O(mk*nk) with n variables, m constraints, ¥ maximal domain
size

— Redundant computations

32

8.3.3 AC-3

function AC — 3(y) returns modified
M =1
for each constraint C,, € C' do
M = M U{(u,v), (v,u)}
while M +# () do
remove any element (u, v) from M
Revise(y,u,v)
if D, has changed in the call to Revise then
for each constraint C,,, € C' where w # v do
M :=MU{(w,u)}

return vy

— O(mk?) with m constraints, k¥ maximal domain size

8.4 Decomposition

— Often, we can exploit the structure of a network to decompose it
into smaller parts that are easier to solve

8.5 Constraint Graphs

— Decomposition

33

8.5.1 Disconnected Constraint Graphs

Let v = (V,D,C) be a constraint network. Let a; be a solution
to each connected component V; of the constraint graph of ~. Then
a := |, a; is a solution to 7.

— Reduction of worst-case

8.5.2 Acyclic Constraint Graphs

Let v = (V, D, C) be a constraint network with n variables and max-
imal domain size k, whose constraint graph is acyclic. Then we can
find a solution for 7, or prove v to be inconsistent, in time O(nk?).

AcyclicCG(7)

L.

Obtain a directed tree from +’s constraint graph, picking an
arbitrary variable v as the root, and directing arcs outwards

. Order the variables topologically, i.e., such that each vertex

is ordered before its children; denote that order by vy, ..., v,
for::=n,n—1,....,2do
Rem'se(fy, Uparent(i) s Ui)

if D,

parent(i)

= () then return "inconsistent”
Every variable is arc consistent relative to its children

Run BacktrackingWithiIn ference with forward check-
ing, using the variable order vy, ..., v,

= This algorithm will find a solution without ever having to back-

track!

34

8.6

Cutset Conditioning

— Decomposition

L.

8.7

Recursive call of backtracking on a, the sub-graph of the con-
straint graph induced by {v € V]a(v) is undefined} is acyclic.

use AcyclicCG() for sub-graph

Choose the variable order so that removing the first d variables
renders the constraint graph acyclic

Runtime exponential in # of variables in the sub-graph not the
whole graph

Finding optimal cutsets is NP-hard

Constraint Propagation with Local Search

Allow states with unsatisfied constraint operators to reassign
variable values

Variable selection: randomly select any conflicted variable

Value selection: by min-conflicts heuristic: choose value that
violates the fewest constraints

35

number of constraints

number of variables

CPU
time

.
critical
ratio

9 Knowledge and Inference

A Logic is decidable, when its satisfiability problem can be decided in
finite time

9.1 Propositional Reasoning
Representing Knowledge

e Syntax
What are legal statements (formulas) A in the logic

e Semantics
Which formulas A are true under which assignment ¢

written ¢ = A

Reasoning about Knowledge

e Entailment
Which B are entailed by A
written A = B
meaning for all ¢ with ¢ = A, we have ¢ = B

36

e Deduction
Which statements B can be derived from A
using a set C of inference rules (a calculus)
written A . B

Properties of Deduction:

— Calculus soundness
— whenever A ¢ B, we also have A = B
— [don’t pretend to know, if I don’t know

— A calculus is correct if any derivable(provable) formula
is also a valid formula

— Calculus completeness
— whenever A = B, we also have A . B
— When I have enough knowledge, I can also deduce it

— A calculus is complete if any valid formula can also be
derived(proven)

9.2 Propositional Logic (PL")
9.2.1 Syntax
= atomic propositions
e Propositional variables: V,
e Connectives: 3, :={T, F,—,\,V, = , <, ...}

e Well-formed propositional formulas: w f f,(V,)
Negation —A

37

Conjunction A A B

Disjunction A vV B

Implication A — B
Equivalences/Biimplication A <— B
— with A, B e wff,(V,)

e propositional formulae without connectives are called atomic (or
atoms) and complex otherwise

0.2.2 Semantics

= Assign value to every proposition

e Model M := (D,,T)
— Universe D, = {T, F'}
— Interpretation Z assigns values to connectives
I(-)=D,—7D,, Tw— F,F—T
IN)=D,xD,—D,, (a,B)—T, ifa==T

— other connectives can be represented by these two

e Variable assignment ¢ : V, — D,

— assigns values to propositional variables

e Value function Z, : wf f,(V,) = D, or [[A]W

— assigns values to formulae
Iy(P) = o(P)

Zy(—A) = I(-)(Zy(A))
I,(ANB) =I(N)(Zs(A),Zs(B))

Definitions:

38

— A is true under ¢ (¢ satisfies A) in M

if Z,(A) =T
— A is false under ¢ (¢ falsifies A) in M
if Z,(A) = F

— A is satisfiable in M
if Z,(A) =T for some assignments ¢

— A is valid in M
if M E? A for all assignments ¢

— A is falsifiable in M
if Z,(A) = F for some assignments ¢

— A is unsatisfiable in M
if Z,(A) = F for all assignments ¢

— A entails B (A = B)
if Z,(B) =T for all ¢ with Z,(A) =T

9.3 Formal Systems

A logical system is a triple S := (£, K, =) where £ is a formal
language, I is a set and EC:= K x L. Members of £ are called
formulae of S, members of K models for S, and = the satisfaction
relation.

= (L,K, =) be a logical system, then we call a relation
FC P(L) x L a derivation relation for S, if it:

e is proof-reflexive H - A, if A € A
e is proof-transitive H - A and H' U{A} F B, then HUH' - B

39

e monotonic H F A and H C H imply H' F A

We call (L, K, =, F) a formal system, iff S := (£, IC, |5) is a logi-

cal system, and - a derivation relation for &

Let £ be a formal language, then an inference rule over £

A, --- A,

C N

where Ay, ..., A,, and C are formula schemata for £ and N is a name.
The A; are called assumptions, and C' is called conclusion

An inference rule without assumptions is called an axiom (schema).

Let S := (L, K,) be a logical system, then we call a set C of infer-
ence rules over £ a calculus for §

We call (£,K,}=,C) a formal system, iff S = (L, K,) is a

logical system, and C a calculus for S.

A derivation () ¢ A is called a proof of A and if one exists (write
e A) then A is called a C-theorem.

9.4 Propositional Natural Deduction Calculus

(N'D)

A B AAB ANB

AP AABE 205 .E

ArB A g ND
AV _A

[A]!

B A=B A

—=l E

A>B B

need anlv in flaccical lacic (athenwice canctriictive /intnitianictic

40

A" [B]'

A B AVvB :
C C 1
, —— I, E
AvB" AVB C v
(Al
.y —E
—A A
-A A F
FI “FE
F A

HAFyp B, it HFypo A =— B

9.5 Machine-Oriented Calculi for Propositional
Logic

Unsatisfiability Theorem: Iff H U {—=A}, H = A is unsatisfiable
e Conjunctive Normal Form (CNF): A7, V' I

]:

e Disjunctive Normal Form (DNF): \/i_} AT I

9.5.1 Analytic Tableaux

We call a formula atomic, or an atom, iff it does not contain connec-

tives. We call a formula complex, iff it is not atomic.
We call a pair A® labeled formula, if « € {T, F'}. A labeled atom is
called literal.

41

= Instead of showing () - Th, show =Th L

%

formula is analyzed in a tree to determine satisfiability
Satisfiable, iff there are open branches

Use rules exhaustively as long as they contribute new material:

Aa
[
AABT A A BF ~AT Tt —AF ¢ A’ @
ar " AF‘BF%V e T e
BT

Call a tableau saturated, iff no rule applies, and a branch closed,
iff it ends in L, else open

A is a To-theorem (7 A), iff there is a closed tableau with A"
at the root

¢ Cwff,(V,) derives A in T,(¢ 1 A), iff there is a closed
tableau starting with A and ¢”

Terminating tableaux are a tableau calculus with the property
that any of its derivations terminates after finitely many steps

Derived rules:

AT
A=BT A=BF A=BT
ar BT AT BT
BF
AvBT AvBF A< BT A< BF
AT) BT AF AT AF AT AF
BF BT BF BF BT

42

0.5.2 Resolution

— The proof goal is transformed in CNF and then (dis)proved through
resolution refutation
%

e Resolution Calculus:

PTVA PFVB
AV B

e Resolution Refutation:
D : S kg O with derivation R and clause set S

e Resolution Proof:

We call a resolution refutation of CNF°(A") a resolution

proof for A € wf f,(V,)

e Clause = disjunction of literals (O = empty disjunction)

e (Clause Normal Transformation:
Cv(AvB)T Cv(AvB)f Cv-AT Cv-AF
CvATYvBT CVAF.CvBF CV AF CV AT

e Derived rules of inference:

A, ... A,
a rule C is a derived inference rule in the calculus C,
iff there is a C-proof of Ay, ..., A, F C
Cv(A=B)' CV(A=B)" CVAABT CVAABF
CVAFVBT CVAT;CVBF CVAT,CVBT CVAFVBF

43

0.6 SAT Solver

SAT solvers decide satisfiability of CNF (Conjunctive Normal Form)
formulas

The SAT problem consists in deciding whether a propositional formula
is satisfiable. The problem’s worst case complexity is NP-complete

100

80 |
60 |
40 |

20

2 3 4 5 5] 7
clause/variable ratio

probability of being satisfiable

Around a clause-to-variable ratio of (4.3) the SAT-problem becomes
intractable. This is known as phase transition.

Clause Normal Form = A propositional logic formula consisting of
conjunctions of disjunctions of literals

Any SAT problem can be viewed as a CSP-problem and any CSP-
problem can be transformed into a SAT-problem in polynomial time.

9.6.1 DPLL
DPLL = backtracking with inference performed by unit propagation

(UP), which iteratively instantiates unit clauses and simplifies the for-
mula

The DPLL algorithm uses the unit propagation rule and the split rule.

DPLL with clause learning is equivalent to resolution

44

— can be exponentially long

4000

3500 /\

3000 -

2500

2000

1500

1000

500

recursive calls of DPLL (median)

0

2 3 4 5 3] 7
clause/variable ratio

1. solange unit clause enthalten, wende unit propagation an
2. wenn O erhalten — unsatisfiable

3. nehme eine random Proposition P und versuche DPLL mit ein-
mal P = True und einmal P = False (gehe zu 1)

4. wenn fiir P¥ und PT kein unsatisfiable gefunden, dann haben
wir eine partielle interpretation gefunden (alle bereits gesetzten
propositions missen diese Belegung haben, bei den nicht geset-
zten ist die Belegung egal)

Unit Resolution:
Cv PF PT
C

Unit propagation = Resolution restricted to the case where one of
the parent clauses is unit

45

9.7 First Order Predicate Logic PL!
Syntax:

e Individual variables V,
— Truth values o

— Individuals ¢

e Connectives >.°

— on truth values

e Function constants ¥ = {f, g, h, ...}

— on individuals
e Predicate constants >, = {p,q,r,...}
e Skolem constants X5 = {fF, f5. ...}
e ¥, =X/ UXruUTH
o X =>,UX"

e Formulae
— Terms
— denote individuals
— Propositions

— denote truth values
e Fixed truth values Universe D, = {T', F'}
e Individuals Universe D, # ()
e Model M = (D,,7)

Semantics:

e As for propositional logic +

46

© Ty(f(Ar, ..., Ar)) = Z(f)(Zo(Ar), -, Lo(A))
o T,(p(A ... AF)) =T, iff (Zy(AY),...,Z4(A")) € Z(p)
° Z¢(\V/XA) =T, iff qu’[a/X](A) =T forall a € D,

— variable capture = An (unsound) operation that turns a free vari-
able into a bound variable

A variable X is bound in a formula if and only if it occurs in the
scope of either a universal or an existential quantifier binding X.

9.7.1 Natural Deduction N'D!

ND’ +
A VX.A
VX.AW B /X](A)VE
[[e/X1(A)]!
IX.A :
[B/X](A) C 1
IX.A 3 C -k

x means that A does not depend on any hypothesis in which X is
free.

o A@BCMh@ £
A=A [B/pIC N

47

9.7.2 First-Order Logic with Equality

A=B C[A],
A=A [B/pIC

[B/p]C

0.8 First Order Inference
9.8.1 Tableau

— There is no terminating tableaux calculus for first order logic

To +

VX.AT C € cwff, ()
[C/X](A)T

VX.AF cc (ZF\H)

By [/ XI(AY

T3

— have to guess in Ty : V

= Free Variable Tableau 7y :

VX.AT Ynew . VX.AF free(VX.A):{Xl,...,)lik} fez-zkﬁ:3
[Y/X](A) [F(XL, ..., Xk)/X](A)

48

0.8.2 Resolution
CNF:

(VX.A)T Vv C Z & (free(A) U free(C))
[Z/X](A)T v C

(VX.A)FVC {X1,..., X} = free(VX.A)
[FX(X2, ..., XK)/X](A)" v €

Calculus:

ATV C BFvD o =mgu(A, B) A*VvB*VC o=mgu(A,B)
o(C) Vv o(D) o(A)Vo(C)

0.8.3 Unification

gAf(Al’,..,A”):?f(Bl7...7Bn) EAA=TA |
EANAL="BlA ... AAP="Bn U dec z U triv

EANX="A X ¢ free(A) X € free(&)

[A/X](E)AX=TA U elim

® correct

e complete

49

e confluent — order of derivations does not matter

9.9 Logic Programming as Resolution Theorem
Proving

e Deduction

rains = wet _street rains D

wet _street

e Abduction

rains = wet _street wet street A

rains

e Learning rules

wet street rains

rains = wet _ street

Semantic Web = project of extending the internet by annotating con-
tent on the internet using logic to render it machine-readable

10 Planning & Acting
— Write one program that can solve all classical search problems

Planning Language:
e States
e [nitial State [
e Goal Condition G

50

e Actions A
— Preconditions
— BEffects

e Solution — Plan (Sequence of actions)

10.1 STRIPS

— Stanford Research Institute Problem Solver

— the simplest possible (reasonably expressive) logics-based plan-
ning language

— only Boolean variables

M= (P,AIQG)
e P finite set of facts/Propositions
e A finite set of actions A = (pre,, add,, del,)

— Preconditions pre,

— Add List add,

— Delete List del,
add, N del, = ()

Initial State I C P
Goal G C P

51

10.2 PDDL

— Planning Domain Description Language

e Domain file

(define (domain blocksworld)
(:predicates (clear 7x) (holding 7x) (on 7x ?y)
(on—table ?x) (arm—empty))

(:action stack

:parameters (7x ?y)

:precondition (and (clear ?y) (holding 7x))

.effect (and (arm—empty) (on ?x ?y)

(not (clear ?y)) (not (holding ?x)))

e Problem file

(define (problem bw—abcde)

(:domain blocksworld)

(:objects a b c d e)

(:init (on—table a) (clear a)
(on—table b) (clear b)
(on—table) (clear e)

(on—table c) (on d c) (clear d)

(arm—empty))
(:goal (and (on e c) (on c a) (on b d))))

10.3 Planning Complexity
10.3.1 Satisficing planning

— find a plan for II or "unsolvable”

10.3.2 Optimal planning
— find an optimal plan for I or "unsolvable”

%

52

10.3.3 PlanEx

— problem of deciding, whether or not there exists a plan

— PSPACE-complete = PSPACE-hard + in PSPACE

10.3.4 PlanLen

— problem of deciding, whether or not there exists a plan of at
most length X

— PSPACE-complete

10.3.5 PolyPlanLen

— problem of deciding, whether or not there exists a plan of at
most length X, whereas X is bounded by a polynomial in the
size of 11

— NP-complete

10.4 Relaxing in planning

e Problem class P with heuristic hp
e Transformation R that transforms P to P’
e Simpler problem class P’ with optimal heuristic h},

— hP - h*P/

53

10.4.1 Delete Relaxation

R: When the world changes, its previous state remains true as well
= Delete list of P’ is empty

PlanEx*t (deciding whether or not there exists a relaxed plan) is
a member of P

10.4.2 A" heuristic

ht — ideal delete-relaxation heuristic
h* is admissible

h™ is NP-hard to compute

54

