
Artificial Intelligence

Contents

1 Definition 5

2 ProLog 6
2.1 Functions . 7

3 Complexity 9

4 Intelligent Agents 9

5 Problem Solving and Search 15
5.1 Uninformed Search Strategies 17

5.1.1 Breadth-first search 17
5.1.2 Uniform-cost search 17
5.1.3 Depth-first search 17
5.1.4 Iterative deepening search 18

5.2 Informed Search Strategies 18
5.2.1 Best-first search 18
5.2.2 Heuristics . 18
5.2.3 Greedy Search 19
5.2.4 A∗ Search . 19

5.3 Local search . 20
5.3.1 Hill-climbing (Gradient ascent/descent) 20
5.3.2 Simulated Annealing 20
5.3.3 Local Beam Search 21
5.3.4 Genetic Algorithms 21

6 Adversarial Search for Game Playing 21
6.1 Minimax Search . 22
6.2 Evaluation Functions 23
6.3 Quiescence . 23
6.4 Alpha-Beta Search . 23
6.5 Monte-Carlo Tree Search 24

7 Constraint Satisfaction Problems 25
7.1 Waltz Algorithm . 28

2

7.2 CSP as Search . 28

8 Constraint Propagation 29
8.1 Inference . 29

8.1.1 Backtracking with Inference 30
8.2 Forward Checking . 30
8.3 Arc Consistency . 31

8.3.1 Arc Consistency for one pair of variables 32
8.3.2 AC-1 . 32
8.3.3 AC-3 . 33

8.4 Decomposition . 33
8.5 Constraint Graphs . 33

8.5.1 Disconnected Constraint Graphs 34
8.5.2 Acyclic Constraint Graphs 34

8.6 Cutset Conditioning 35
8.7 Constraint Propagation with Local Search 35

9 Knowledge and Inference 36
9.1 Propositional Reasoning 36
9.2 Propositional Logic (PL0) 37

9.2.1 Syntax . 37
9.2.2 Semantics . 38

9.3 Formal Systems . 39
9.4 Propositional Natural Deduction Calculus (ND0) . . . 40
9.5 Machine-Oriented Calculi for Propositional Logic 41

9.5.1 Analytic Tableaux 41
9.5.2 Resolution . 43

9.6 SAT Solver . 44
9.6.1 DPLL . 44

9.7 First Order Predicate Logic PL1 46
9.7.1 Natural Deduction ND1 47
9.7.2 First-Order Logic with Equality 48

9.8 First Order Inference 48
9.8.1 Tableau . 48
9.8.2 Resolution . 49
9.8.3 Unification . 49

3

9.9 Logic Programming as Resolution Theorem Proving . . 50

10 Planning & Acting 50
10.1 STRIPS . 51
10.2 PDDL . 52
10.3 Planning Complexity 52

10.3.1 Satisficing planning 52
10.3.2 Optimal planning 52
10.3.3 PlanEx . 53
10.3.4 PlanLen . 53
10.3.5 PolyPlanLen 53

10.4 Relaxing in planning 53
10.4.1 Delete Relaxation 54
10.4.2 h+ heuristic . 54

4

1 Definition

Artificial Intelligence studies how we can make the computer do
things that humans can still do better at the moment

→ AI is decreasing

Aspects:

• Ability to learn

• Inference (drawing conclusions)

• Perception (Wahrnehmung der Umwelt)

• Language understanding (as communication in general)

• Emotion

Analysis

Deep Knowledge-based Not there yet

Shallow No-one wants this Statistical Methods

Narrow Wide Coverage

Precision

100% Producer Task

50% Consumer Tasks

103±1 106±1 Coverage

5

Narrow / weak AI = study or accomplish specific problem solving
or reasoning tasks
Strong AI / AGI (Artificial general intelligence) = software
performing at the full range of human cognitive abilities

Problems requiring strong AI to solve are called AI complete.

2 ProLog

Constants → lower-case
Variables → upper-case or underscore (never-used variable)
Functions and predicates
→ lower-case, applied to terms
→ Parameters have no unique direction ”in” or ”out”

Program:

• Facts → t.

• Rules
→ h : −b1, ..., bn. with h the head literal and bi the body literals
⇒ h if b1, ..., bn.

Knowledge base → set of facts that can be derived of the program
Query → ?− A1, ..., An. with Ai terms called goals
Backchaining → Testing whether query is true or false

Search procedure:

• Top-down

• Left-right

• Depth-first: Backtracking

Internal arithmetic: ?- D is e.
→ e is a ground arithmetic expression that binds D to the result of

6

evaluating e

Lists

→ [a, b, c, ...]

→ [F|R] with F the first element and R the rest list

2.1 Functions

Create a ProLog predicate with 3 arguments: the first two would be the two lists you
want to zip, and the third one would be the result. For instance:

?− zip([1,2,3],[4,5,6],L).
L = [[1, 4], [2, 5], [3, 6]].

?− zip([1,2],[3,4,5],L).
L = [[1, 3], [2, 4], [5]].

Solution:
% remove duplicates function
delete(_,[],[]).
delete(X,[X|T],R) :− delete(X,T,R).
delete(X,[H|T],[H|R]) :− not(X=H), delete(X,T,R).
removeDuplicates([],[]).
removeDuplicates([H|T],[H|R]) :− delete(H,T,S), removeDuplicates(S,R).

% reverse function
preReverse([],X,X).
preReverse([X|Y],Z,W) :− preReverse(Y,[X|Z],W).
myReverse(A,R) :− preReverse(A,[],R).

% permute function
takeout(X,[X|T],T).
takeout(X,[H|T1],[H|T2]) :− takeout(X,T1,T2).
myPermutations([],[]).
myPermutations([X|Y],Z) :− myPermutations(Y,W), takeout(X,Z,W).

%zip
zip([L],[],[[L]]).
zip([],[L],[[L]]).
zip([A],[B],[[A,B]]).
zip([H1|T1],[H2|T2],L) :− zip(T1,T2,T), append([[H1,H2]],T,L).

Problem 1.2 (Binary Tree)
A binary tree of (in this case) natural numbers is inductively defined as a triple tree(n,t1,t2), 60pt
where n is a natural number and t1 and t2 are themselves binary trees.

A leaf is a terminal node, i.e. a tree of the form tree(n,nil,nil). An example tree in
prolog would be:

tree(1,tree(2,nil,nil),tree(2,nil,nil))

1. Write a ProLog function construct that constructs a binary tree out of a list of (dis-
tinct) numbers, such that for every subtree tree(n,t1,t2), all values in t1 are smaller
than n and all values in t2 are larger than n. E.g. the list (5, 2, 4, 1, 3) would yield
tree(5, tree(2, tree(1, nil, nil), tree(4, tree(3, nil, nil), nil)), nil).

2. Write a ProLog function count_leaves that given a binary tree returns the number
of leaves. Use it to test how cost efficient your previous function is (in terms of the
structure that you obtain). What can you observe for larger lists of numbers?

iii

7

3. Write a ProLog function symmetric that checks whether a binary tree is symmetrical.
Solution:
add(X,nil,tree(X,nil,nil)).
add(X,tree(Root,L,R),tree(Root,L1,R)) :− X @< Root, add(X,L,L1).
add(X,tree(Root,L,R),tree(Root,L,R1)) :− X @> Root, add(X,R,R1).

construct(L,T) :− construct(L,T,nil).

construct([],T,T).
construct([N|Ns],T,T0) :− add(N,T0,T1), construct(Ns,T,T1).

count_leaves(nil,0).
count_leaves(tree(_,nil,nil),1) :− !.
count_leaves(tree(_,L,R),N) :− count_leaves(L,NL), count_leaves(R,NR), N is NL+NR.

symmetric(nil).
symmetric(t(_,L,R)) :− mirror(L,R).

mirror(nil,nil).
mirror(t(_,L1,R1),t(_,L2,R2)) :− mirror(L1,R2), mirror(R1,L2).

%A few tests
test1(X):− construct([5,2,4,1,3],Y), count_leaves(Y,X).
% X=2
test2(X):− construct([6,10,5,2,9,4,8,1,3,7],Y), count_leaves(Y,X).
% X=3
symmetric(tree(1,tree(2,nil,nil),tree(2,nil,nil))).
% true.
symmetric(tree(1,tree(3,nil,nil),tree(2,nil,nil))).
% false.

By looking at the number of leaves we can have an idea how balanced the binary tree is.
The bigger the number of leaves the more balanced the tree is, therefor the more efficient is you
representation.

(note: maybe this question is a bit out of scope so don’t cut too many points.)

iv

DFS:

% df s (SearchedValue , Tree , Path , Cost)
d f s (GoalValue , t r e e (GoalValue ,) , GoalValue , 0) .

d f s (GoalValue , t r e e (Value , [(Cost ,T) | Rest]) , Path , FinalCost):−
T = t r e e (IV ,) , wr i t e (IV) ,
d f s (GoalValue ,T,P,C) ,
s t r i n g c on c a t (Value ,P, Path) ,
FinalCost i s C+Cost ; % go down one depth l e v e l
d f s (GoalValue , t r e e (Value , Rest) , Path , FinalCost) .
% next ch i l d

BFS:

% he lpe r method to bu i ld up a f r i n g e − i t takes the Chi ldren
%of a tree , i n s e r t s the path to i t s parent in to the toup le
%and sums up the co s t
i n s e r t (, , [] , []) .

i n s e r t (Path , Cost , [(C,T) | Rest] , [(T, Path ,NC) |NewRest]) :−
NC i s Cost+C,
i n s e r t (Path , Cost , Rest , NewRest) .

% b f s (SearchedValue , Fringe , Path , Cost) ,
% where Fringe i s a l i s t o f t oup l e s (Node , PathToNodesParent , TotalCostToNode)
b f s (GoalValue , [(t r e e (GoalValue ,) , OldPath , FinalCost) |] , FinalPath , FinalCost):−

s t r i n g c on c a t (OldPath , GoalValue , FinalPath) ,
wr i t e (GoalValue) .

8

b f s (GoalValue , [(t r e e (Value , Chi ldren) , Path , Cost) | Fringe] , FinalPath , FinalCost):−
wr i t e (Value) ,
s t r i n g c on c a t (Path , Value , NewPath) ,
i n s e r t (NewPath , Cost , Children , NewChildren) ,
append (Fringe , NewChildren , NewFringe) ,
%btw . changing Fringe and NewChildren here would make t h i s i n to d f s
b f s (GoalValue , NewFringe , FinalPath , FinalCost) .

b f s (GoalValue , Tree , Path , Cost) :−
i s t r e e (Tree) ,
b f s (GoalValue , [(Tree , ”” , 0)] , Path , Cost) .

3 Complexity

→ Worst-case time/space complexity

• Constant: O(1)

• Logarithmic: O(ln(n))

• Linear: O(n)

• Quadratic: O(n2)

• Polynomial: O(nk)

• Exponential: O(kn)

P = alle Probleme, die deterministisch in Polynomialzeit lösbar sind

NP = alle Probleme, die von nicht-deterministischen Turingmaschi-
nen in Polynomialzeit lösbar sind

P ⊂ NP
P = NP ???

4 Intelligent Agents

AI definitions:

9

1. Acting humanly

→ Turing test

2. Thinking humanly

→ Cognitive Science and Cognitive Neuroscience

3. Thinking rationally

→ Aristotle

4. Acting rationally

→ Acting so that you would expect to maximize your goal
achievement + thinking involved

An agent a (fa : P∗ → A) perceives his environment via sensors (P)
and acts on it (A) with actuators

An agent function

• specifies the input-output relation (outside view)

• takes the full sequence of percepts as arguments

An agent program

• implements the function (inside view)

• uses the internal state to avoid the full sequence of percepts

• there are either none or infinitely many programs for a function

A performance measure is a function that evaluates a sequence of en-
vironments

An agent is called rational if it chooses whichever action maximizes
the expected value of the performance measure given the percept se-
quence to date

10

• Rational 6= hellsichtig → only maximize expected value

• Rational 6= allwissend → percepts may not supply all relevant
data

→ but try to explore best

• Rational 6= successful

→ but try to learn best

Rational = exploration, learning, autonomy

An agent is called autonomous if it does not rely on the prior knowl-
edge of the designer

Describing the tasks environment:

• Performance measure

• Environment

• Actuators

• Sensors

Environment types

• Fully observable ↔ partially observable

• Deterministic ↔ stochastic

• Episodic ↔ sequential (state depends on previous state)

• Dynamic ↔ semidynamic (only performance measure changes)
↔ static (nothing changes without the agent doing something)

• Discrete (states, actions are countable) ↔ continuous

• Single-agent ↔ multi-agent

11

Agent types

• Simple reflex agent
→ actions only base on the last percept

Simple reflex agents

I Definition 5.1. A simple reflex agent is an agent a that only bases its actions
on the last percept: fa : P → A.

I Agent Schema:

I Example 5.2.

procedure Reflex−Vacuum−Agent [location,status] returns an action if status =
Dirty then . . .

Kohlhase: Künstliche Intelligenz 1 73 January 30, 2019

• Reflex agent with states

Reflex agents with state

I Idea: Keep track of the state of the world we cannot see now in an internal
model

I Definition 5.5. A stateful reflex agent (also called reflex agent with state or
model-based agent) whose agent function depends on a model of the world
(called the world model).

I Agent Schema:

Kohlhase: Künstliche Intelligenz 1 75 January 30, 2019

• Goal-based agent
→ is a stateful reflex agent with a goal

12

Goal-based agents

I Problem: Having a model of the world does not always determine what to do
(rationally)

I Observation: Having a goal in mind does (determines future actions)
I Definition 5.8. A goal-based agent is a stateful reflex agent that deliberates

actions based on goals and a world model.

I

52 Chapter 2. Intelligent Agents

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do now

State

How the world evolves

What my actions do

Actuators

What the world
is like now

What it will be like
 if I do action A

Goals

Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

example, the taxi may be driving back home, and it may have a rule telling it to fill up with
gas on the way home unless it has at least half a tank. Although “driving back home” may
seem to an aspect of the world state, the fact of the taxi’s destination is actually an aspect of
the agent’s internal state. If you find this puzzling, consider that the taxi could be in exactly
the same place at the same time, but intending to reach a different destination.

2.4.4 Goal-based agents

Knowing something about the current state of the environment is not always enough to decide
what to do. For example, at a road junction, the taxi can turn left, turn right, or go straight
on. The correct decision depends on where the taxi is trying to get to. In other words, as well
as a current state description, the agent needs some sort of goal information that describesGOAL

situations that are desirable—for example, being at the passenger’s destination. The agent
program can combine this with the model (the same information as was used in the model-
based reflex agent) to choose actions that achieve the goal. Figure 2.13 shows the goal-based
agent’s structure.

Sometimes goal-based action selection is straightforward—for example, when goal sat-
isfaction results immediately from a single action. Sometimes it will be more tricky—for
example, when the agent has to consider long sequences of twists and turns in order to find a
way to achieve the goal. Search (Chapters 3 to 5) and planning (Chapters 10 and 11) are the
subfields of AI devoted to finding action sequences that achieve the agent’s goals.

Notice that decision making of this kind is fundamentally different from the condition–
action rules described earlier, in that it involves consideration of the future—both “What will
happen if I do such-and-such?” and “Will that make me happy?” In the reflex agent designs,
this information is not explicitly represented, because the built-in rules map directly from

Kohlhase: Künstliche Intelligenz 1 77 January 30, 2019• Utility-based agent
→ A utility-based agent uses a worldmodel along with a utility
function that influences its preferences among the states of that
world. It chooses the action that leads to the best expected
utility, which is computed by averaging over all possible outcome
states, weighted by the probability of the outcome

Utility-based agents

I Definition 5.10. A utility-based agent uses a worldmodel along with a utility
function that influences its preferences among the states of that world. It
chooses the action that leads to the best expected utility, which is computed by
averaging over all possible outcome states, weighted by the probability of the
outcome.

I Agent Schema:

Kohlhase: Künstliche Intelligenz 1 79 January 30, 2019

• Learning agent (All the above + learning)
→ ameliorates the performance measure

− Learning element → improving the agent’s knowledge

− Critic → gives feedback on learning element based on ex-
ternal performance standard

13

− Problem generator → suggests action leading to new, in-
formative experiences

− Performance element = Agents without learning

Learning Agents

I Agent Schema:

Kohlhase: Künstliche Intelligenz 1 82 January 30, 2019

Domain-Specific Agent ↔ General Agent

State Representation:

• Atomic → No internal structure

• Factored → Each state is characterized by attributes and their
values

• Structured → State includes objects and their relations

Atomic/Factored/Structured State Representations

I
I Example 6.2 (Atomic States). Consider the problem of finding a driving route

from one end of a country to the other via some sequence of cities.
I In an atomic representation the state is represented by the name of a city

I In a factored representation we may have attributes “gps-location”, “gas”,. . . (allows
information sharing between states and uncertainty)

I But how to represent a situation, where a large truck blocking the road, since it is
trying to back into a driveway, but a loose cow is blocking its path. (attribute
“TruckAheadBackingIntoDairyFarmDrivewayBlockedByLooseCow” is unlikely)

I In a structured representation, we can have objects for trucks, cows, etc. and their
relationships

Kohlhase: Künstliche Intelligenz 1 86 January 30, 2019

14

5 Problem Solving and Search

Problem = States + Actions

Offline problem solving ↔ Online problem solving

Problem formulation:

• Search problem: P := 〈S,O, I,G〉
• States: S
• Operators: O ⊆ S × S
• Goal States: G ⊆ S
• Initial State: I
• Cost function: c : O → R+

0

• Step cost: c(o) o ∈ O
• Actions (Operator application): s→o s′, if o = (s, s′) ∈ O with
s′ the successor of s

• Goal test

• Solution: Sequence of operators that bring us from I to G

Problem description:

• Blackbox description → Algorithm has no information about
the problem

• Declarative description→ describes the problem itself (problem
description language)

Problem types:

15

• Single-state problems

→ Observable, deterministic, static, discrete

• Multiple-state problems

→ Initial state not observable or partially observable, deter-
ministic, static, discrete

• Contingency problems

→ non-deterministic, unknown state space

Tree Search Algorithms

→ Make a tree out of the graph

→ Offline algorithm

→ Search strategy = function that picks a node from the fringe of
a search tree

Properties of Strategies:

→ Completeness = does it always find a solution?

→ Time complexity = number of nodes expanded

→ Space complexity = number of nodes in memory

→ Optimality = does it always find a least-cost solution?

b = maximum branching factor
d = minimal depth of a solution
m = maximum depth of the search tree

16

5.1 Uninformed Search Strategies

5.1.1 Breadth-first search

→ Fringe is a FIFO queue

• Complete (if b is finite)

• Time O(bd+1)

• Space O(bd+1) (keeps all nodes in memory)

• Optimal if cost = 1 per step

5.1.2 Uniform-cost search

→ Fringe is queue ordered by increasing path cost (if equal cost FIFO)
→ Add paths costs from the precessor node to the path cost of the
current node

• Complete (if step costs > 0)

• Time: # nodes with path-cost less than that of optimal solution

• Space: # nodes with path-cost less than that of optimal solution

• Optimal

5.1.3 Depth-first search

→ Fringe is a LIFO queue

• Complete if state space is finite (no loops or infinite paths)

• Time O(bm)

• Space O(b ·m) (keeps all nodes in memory)

• Not optimal

17

5.1.4 Iterative deepening search

for(depthLimit = 0; depthLimit < TreeHeight;
depthLimit + +){
depthF irstSearch(TreeCutByDepthLimit)
}

→ Always starts again from the root

• Complete

• Time O(bd+1)

• Space O(b · d) (keeps all nodes in memory)

• Optimal if step cost = 1

5.2 Informed Search Strategies

→ introduce information from outside the problem

5.2.1 Best-first search

Sort the fringe by an evaluation function
→ expanding the most desirable node first
→ Examples: Greedy Search, A∗ Search

5.2.2 Heuristics

→ Function that estimates the cost from the current node to the
nearest goal state

• h : S → R+
0 ∪ {∞} so that h(s) = 0 with s a goal state

• Goal distance function: h∗ : S → R+
0 ∪ {∞} where h∗(s) is the

cost of a cheapest path from s to a goal state or ∞ if no such
path exists

18

Properties:

• Admissible: h(s) ≤ h∗(s) for all s ∈ S
• Consistent: h(s)− h(s′) ≤ c(os,s′) for all s ∈ S and o ∈ O
• Consistency implies Admissibility

h2 dominates h1 if h2(n) ≥ h1(n) for all n
→ If h2 dominates h1, then h2 is better for search than h1

⇒ Find a heuristic for a relaxed problem (Pr := 〈S,Or, Ir,Gr〉 with
Or ⊆ O, Ir ⊆ I, Gr ⊆ G)
→ Every solution for P is one for Pr

→ The optimal solution cost of a relaxed problem is not greater than
the optimal solution cost of the real problem

5.2.3 Greedy Search

→ Uses a heuristic as evaluation function

• Not complete (only if finite space with repeated state checking)

• Time O(bm)

• Space O(bm)

• Not optimal

5.2.4 A∗ Search

→ Evaluation function: f (n) = g(n) + h(n)
→ g(n) the path cost function, h(n) the heuristic

• Complete if there are not infinitely many nodes with f (n) ≤
f (0)

• Time: exponential in relativeErrorInH×lengthOfSolution

19

• Space: exponential in relativeErrorInH×lengthOfSolution
• Optimal with admissible heuristic

5.3 Local search

→ Options aren’t searched systematically

→ operates on a single state (current state)

• Traveling Salesman:

Find shortest trip through set of cities such that each city is
only visited once

→ Start with any complete tour, perform pairwise exchanges

• n-queens problem

Put n queens on a n× n board such that no two queens are
in the same row, column, or diagonal

→ Move a queen to reduce number of conflicts

5.3.1 Hill-climbing (Gradient ascent/descent)

→ Starting anywhere + doing depth-first search with heuristic

→ only if solutions are dense and local maxima can be escaped

5.3.2 Simulated Annealing

→ Escape local maxima by allowing some ”bad” moves, but grad-
ually decrease their size and frequency

→ Shaking ping-pong ball on a bumpy surface

→ Ridges are ascending successions of maxima

20

5.3.3 Local Beam Search

→ Keep k states instead of one

→ Choose top k of all successors

5.3.4 Genetic Algorithms

→ States encoded as strings with substrings as meaningful compo-
nents

→ Local beam search with random modifications of states, crossovers
between pairs of states and optimizing fitness functions

6 Adversarial Search for Game Playing

→ Discrete game states, finite number of game states, finite number
of possible moves, fully observable game states, outcome of moves
deterministic, two players, turn-taking, terminal states have utility,
zero-sum utility (min tries to get opposite of max)

• Game state space: Θ := 〈S,A, T , I,ST , u〉
States: S = ST ∪ SMax ∪ SMin

Actions: A
Transition relation: T
Initial state: I
Terminal states: ST
Utility function: u : ST → R

• Position = State, End State = Terminal State, Move = Action

• Strategy: σX : SX → AX with X ∈ {Max,Min}
→ optimal if it yields best possible utility for X assuming

perfect opponent play

21

Game descriptions:

• Explicit

• Blackbox

→ with human knowledge

• Declarative (General Game Playing)

→ only given the rules

6.1 Minimax Search

→ We are Max and our opponent is Min

→ Max tries to maximize u(s)

→ Min tries to minimize u(s)

→ Computation alternates between Min and Max

1. Depth-first search in game tree with Max in the root

2. Apply utility function to terminal positions

3. Bottom-up compute u(n):

− Max’s turn: u(n) = maximum of utilities of n’s successor
nodes

− Min’s turn: u(n) = minimum of utilities of n’s successor
nodes

4. Choose move that leads to successor node with maximal utility

!Infeasible → use search depth limits and evaluation functions!

22

6.2 Evaluation Functions

→ f (s)→ estimate of u(s)

→ If cut-off states are terminal states use u instead of f

• Weighted linear function: f = w1f1 +w2f2 + ...+wnfn with wi

weights and fi features

wi can be learned automatically

fi have to be assigned by humans

fi in chess: Material, Mobility, King Safety...

6.3 Quiescence

→ Iterative deepening with dynamically adapted depth

→ Search more in positions where value f changes a lot in neigh-
bouring positions

6.4 Alpha-Beta Search

• α = the highest Max-node utility that search has encoun-
tered on its path from the root to n

• β = the lowest Min-node utility that search has encoun-
tered on its path from the root to n

− α−Pruning: In a Min node n, if one successor already has
utility ≤ α, then stop considering n

− β−Pruning: In a Max node n, if one successor already has
utility ≥ β, then stop considering n

23

Alpha-Beta Search: Modified Example

I Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min ∞; [3,∞]

Min 5; [3, 5]

Min 2; [3, 2]

5

Max −∞; [3, 5]

Max 14; [14, 5]

14

2

Kohlhase: Künstliche Intelligenz 1 192 January 30, 2019
→ Don’t look at nodes, where α > β

→ If best moves are always chosen first: O(b
d
2)

b: Branching factor, d: depth limit

6.5 Monte-Carlo Tree Search

1. Try random paths from current state s

2. Take for each child of s the average of found utilities

3. Decide for child with biggest average

→ Better in runtime and memory

→ Needs good guidance for selecting and sampling

24

Sample-balancing:

• Exploitation: Prefer moves with high average

• Exploration: Prefer moves that have not been tried a lot

→ Upper Confidence bounds applied to Trees (UCT) (formula defin-
ing balance)

With Tree building:

keep track of your average utilities also in children

Monte-Carlo Tree Search: Building the Tree

I Idea: we can save work by building the tree as we go along
I Example 5.4 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 2
avg. reward: 55

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30

Kohlhase: Künstliche Intelligenz 1 197 January 30, 2019

7 Constraint Satisfaction Problems

Constraint Satisfaction problem:

• Search problem

• States:

Variables: V = {X1, ..., Xn}
Domains: {Dv|v ∈ V }

25

• Goal Test:

Constraints: Allowable combinations of values for subsets of
variables

Complexity:

∗ n discrete variables

− Finite domains with size d: O(dn)

− Infinite domains

With linear constraints solvable

With nonlinear constraints undecidable

∗ Continuous variables

− Linear constraints: solvable in poly time by linear program-
ming

− Nonlinear constraints: Not solvable

⇒ NP-complete to decide if solvable or not

→ at most n2 constraints, each of size at most d2 → O(n2k2)

Types of Constraints:

• Unary: only one variable involved

• Binary: pairs of variables involved

• Higher-order: more variables involved

• Preferences: constraints with costs (when broken)

26

Constraint network 〈V,D,C〉
• Finite set of variables: V = {X1, ..., Xn}
• Set of variables’ domains: D = {Dv|v ∈ V }
• C = {Cuv|u, v ∈ V and u 6= v}, where a binary constraint Cuv

is a relation (Cuv ⊆ Du ×Dv) and Cuv = Cvu

→ Binary Constraint Satisfaction Problems can be reformulated as
constrained networks

Partial assignment:
partial function a : V → ⋃

u∈V Du with a(v) ∈ Dv for all v ∈
dom(V) mit dom(x) = Wertebereich von x

Inconsistency:
A partial assignment is called inconsistent, if there are variables u, v ∈
dom(a) and Cuv ∈ C, but (a(u), a(v)) /∈ Cuv

→ empty assignment is consistent

Extension:
partial assignment f extends partial assignment g, if dom(g) ⊆ dom(f)
and f |dom(g) = g

Solution:
γ is a constraint satisfaction problem, then a consistent total assign-
ment is a solution and γ is solvable.

27

7.1 Waltz Algorithm

• Problem: Interpret line drawings of solid polyhedra. Are inter-
sections concave or convex?

• Assumptions:

No shadows, cracks

only three-faced vertices

no junctions change with small movements of the eye

• Each line is either

> with right hand of arrow = space,
with left hand of arrow = solid

or + interior convex edge

or − interior concave edge

• Constraints:

18 Legal Kinds of Junctions

I Observation 2.2. There are only 18 “legal” kinds of junctions:

Idea: given a representation of a diagram
I I label each junction in one of these manners (lots of possible ways)
I junctions must be labeled, so that lines are labeled consistently

Fun Fact: CSP always works perfectly! (early success story for CSP [Wal75])
Kohlhase: Künstliche Intelligenz 1 219 January 30, 2019

7.2 CSP as Search

• Initial State: empty assignment

• Successor function: assign value to unassigned variable that pro-
duces no conflict

• fail if no legal assignments

28

• Goal test: current assignment is complete

→ Same fo all CSPs

→ Every solution is at depth n

Backtracking search
→ Depth-first search for CSPs with single-variable assignments
→ Reihenfolge der Belegung muss egal sein

Heuristic: Minimum Remaining Values
→ Choose most constrained variable first

Degree Heuristic
→ Choose variable with most constraints on remaining variables first

Commonly used strategy combination:
→ From set of most constrained variables choose the most constrain-
ing one

Least Constraining Value Heuristic
→ Given a variable, choose the least constraining value

8 Constraint Propagation

8.1 Inference

→ find additional constraints, that follow from the already known
constraints

→ Replace γ by an equivalent and strictly tighter constraint net-
work γ ′

29

Equivalent Constraint Networks
γ and γ ′ (have the same set of variables) are equivalent (≡), if they
have the same solutions.

Tightness
γ ′ is tighter (v) than γ, if:

• For all v ∈ V : D′v ⊆ Dv

• For all u 6= v ∈ V : either Cuv /∈ C or C ′uv ⊆ Cuv

γ ′ is strictly tighter (@) than γ, if at least one of these inclusions is
strict

Inference
≡ + @= Inference
γ ′ ≡ γ and γ ′ @ γ then γ ′ has the same solutions as γ, but fewer
consistent partial assignments
→ γ ′ is a better encoding of the underlying problem

8.1.1 Backtracking with Inference

• Inference at every recursive call of backtracking

• Search vs. Inference: The more complex the inference, the
smaller the number of search nodes, but the larger the runtime
needed at each node.

• Encode partial assignment as unary constraints (i.e., for a(v) =
d, set the unary constraint Dv = {d}), so that inference reasons
about the network restricted to the commitments already made.

8.2 Forward Checking

→ Inference

30

function ForwardChecking(γ, a) returns modified γ

for each v where a(v) = d′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do

Du = {d ∈ Du|(d, d′) ∈ Cuv}
return γ

→ Forward Checking is sound: Tightening does not rule out solutions

8.3 Arc Consistency

→ Inference

• A variable u ∈ V is arc consistent relative to another variable
v ∈ V if either Cuv /∈ C, or for every value d ∈ Du there exists
a value d′ ∈ Dv such that (d, d′) ∈ Cuv.

→ arc consistency is directed/asymmetric

• The network γ is arc consistent if every variable u ∈ V is arc
consistent relative to every other variable v ∈ V .

→ Arc Consistency is sound: Guarantees to deliver an equivalent
network

→ Arc Consistency subsumes forward checking:

AC(γ) v ForwardChecking(γ)

31

8.3.1 Arc Consistency for one pair of variables

function Revise (γ, u, v) returns modified γ

for each d ∈ Du do

if there is no d′ ∈ Dv with (d, d′) ∈ Cuv then Di :=
Du\{d}

return γ

→ O(k2) with k the maximal domain size

8.3.2 AC-1

function AC − 1(γ) returns modified γ

repeat

changesMade := False

for each constraint Cuv do

Revise(γ, u, v) /* ifDu reduces, set changesMade :=
True */

Revise(γ, v, u) /* ifDv reduces, set changesMade :=
True */

until changesMade = False

return γ

→ O(mk2nk) with n variables, m constraints, k maximal domain
size

→ Redundant computations

32

8.3.3 AC-3

function AC − 3(γ) returns modified γ

M := ∅
for each constraint Cuv ∈ C do

M := M ∪ {(u, v), (v, u)}
while M 6= ∅ do

remove any element (u, v) from M

Revise(γ, u, v)

if Du has changed in the call to Revise then

for each constraint Cwu ∈ C where w 6= v do

M := M ∪ {(w, u)}
return γ

→ O(mk3) with m constraints, k maximal domain size

8.4 Decomposition

→ Often, we can exploit the structure of a network to decompose it
into smaller parts that are easier to solve

8.5 Constraint Graphs

→ Decomposition

33

8.5.1 Disconnected Constraint Graphs

Let γ = 〈V,D,C〉 be a constraint network. Let ai be a solution
to each connected component Vi of the constraint graph of γ. Then
a :=

⋃
i ai is a solution to γ.

→ Reduction of worst-case

8.5.2 Acyclic Constraint Graphs

Let γ = 〈V,D,C〉 be a constraint network with n variables and max-
imal domain size k, whose constraint graph is acyclic. Then we can
find a solution for γ, or prove γ to be inconsistent, in time O(nk2).

AcyclicCG(γ)

1. Obtain a directed tree from γ’s constraint graph, picking an
arbitrary variable v as the root, and directing arcs outwards

2. Order the variables topologically, i.e., such that each vertex
is ordered before its children; denote that order by v1, ..., vn

3. for i := n, n− 1, ..., 2 do

Revise(γ, vparent(i), vi)

if Dvparent(i) = ∅ then return ”inconsistent”

→ Every variable is arc consistent relative to its children

4. Run BacktrackingWithInference with forward check-
ing, using the variable order v1, ..., vn

⇒ This algorithm will find a solution without ever having to back-
track!

34

8.6 Cutset Conditioning

→ Decomposition

1. Recursive call of backtracking on a, the sub-graph of the con-
straint graph induced by {v ∈ V |a(v) is undefined} is acyclic.

→ use AcyclicCG() for sub-graph

2. Choose the variable order so that removing the first d variables
renders the constraint graph acyclic

⇒ Runtime exponential in # of variables in the sub-graph not the
whole graph

⇒ Finding optimal cutsets is NP-hard

8.7 Constraint Propagation with Local Search

• Allow states with unsatisfied constraint operators to reassign
variable values

• Variable selection: randomly select any conflicted variable

• Value selection: by min-conflicts heuristic: choose value that
violates the fewest constraints

35

Performance of min-conflicts

I Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)

I The same appears to be true for any randomly-generated CSP except in a
narrow range of the ratio

R =
number of constraints
number of variables

Kohlhase: Künstliche Intelligenz 1 272 January 30, 2019

9 Knowledge and Inference

A Logic is decidable, when its satisfiability problem can be decided in
finite time

9.1 Propositional Reasoning

Representing Knowledge

• Syntax

What are legal statements (formulas) A in the logic

• Semantics

Which formulas A are true under which assignment φ

written φ |= A

Reasoning about Knowledge

• Entailment

Which B are entailed by A

written A |= B

meaning for all φ with φ |= A, we have φ |= B

36

• Deduction

Which statements B can be derived from A

using a set C of inference rules (a calculus)

written A `C B

Properties of Deduction:

− Calculus soundness

→ whenever A `C B, we also have A |= B

→ I don’t pretend to know, if I don’t know

→ A calculus is correct if any derivable(provable) formula
is also a valid formula

− Calculus completeness

→ whenever A |= B, we also have A `C B

→ When I have enough knowledge, I can also deduce it

→ A calculus is complete if any valid formula can also be
derived(proven)

9.2 Propositional Logic (PL0)

9.2.1 Syntax

= atomic propositions

• Propositional variables: Vo
• Connectives: Σo := {T, F,¬,∧,∨, =⇒ , ⇐⇒ , ...}
• Well-formed propositional formulas: wffo(Vo)

Negation ¬A

37

Conjunction A ∧B

Disjunction A ∨B

Implication A =⇒ B

Equivalences/Biimplication A ⇐⇒ B

→ with A, B ∈ wffo(Vo)
• propositional formulae without connectives are called atomic (or

atoms) and complex otherwise

9.2.2 Semantics

= Assign value to every proposition

• ModelM := 〈Do, I〉
– Universe Do = {T, F}
– Interpretation I assigns values to connectives

I(¬) = Do → Do; T 7→ F, F 7→ T

I(∧) = Do ×Do → Do; 〈α, β〉 7→ T, if α = β = T

→ other connectives can be represented by these two

• Variable assignment φ : Vo → Do

→ assigns values to propositional variables

• Value function Iφ : wffo(Vo)→ Do or [[A]]Mφ

→ assigns values to formulae

Iφ(P) = φ(P)

Iφ(¬A) = I(¬)(Iφ(A))

Iφ(A ∧B) = I(∧)(Iφ(A), Iφ(B))

Definitions:

38

− A is true under φ (φ satisfies A) inM
if Iφ(A) = T

− A is false under φ (φ falsifies A) inM
if Iφ(A) = F

− A is satisfiable inM
if Iφ(A) = T for some assignments φ

− A is valid inM
ifM |=φ A for all assignments φ

− A is falsifiable inM
if Iφ(A) = F for some assignments φ

− A is unsatisfiable inM
if Iφ(A) = F for all assignments φ

− A entails B (A |= B)

if Iφ(B) = T for all φ with Iφ(A) = T

9.3 Formal Systems

A logical system is a triple S := 〈L,K, |=〉 where L is a formal
language, K is a set and |=⊆:= K × L. Members of L are called
formulae of S , members of K models for S , and |= the satisfaction
relation.

Let S := 〈L,K, |=〉 be a logical system, then we call a relation
`⊆ P(L)× L a derivation relation for S , if it:

• is proof-reflexive H ` A, if A ∈ A
• is proof-transitive H ` A and H′ ∪{A} ` B, then H∪H′ ` B

39

• monotonic H ` A and H ⊆ H′ imply H′ ` A

We call 〈L,K, |=,`〉 a formal system, iff S := 〈L,K, |=〉 is a logi-
cal system, and ` a derivation relation for S

Let L be a formal language, then an inference rule over L

Derivation Systems and Inference Rules

I Definition 3.4. Let S := 〈L,K, |=〉 be a logical system, then we call a relation
`⊆P(L)×L a derivation relation for S, if it
I is proof-reflexive, i.e. H ` A, if A ∈ H;
I is proof-transitive, i.e. if H ` A and H′ ∪{A} ` B, then H∪H′ ` B;
I monotonic (or admits weakening), i.e. H ` A and H⊆H′ imply H′ ` A.

I Definition 3.5. We call 〈L,K, |=,`〉 a formal system, iff S := 〈L,K, |=〉 is a
logical system, and ` a derivation relation for S.

I Definition 3.6. Let L be a formal language, then an inference rule over L

A1 · · · An

C
N

where A1, . . . ,An and C are formula schemata for L and N is a name.
The Ai are called assumptions, and C is called conclusion.

I Definition 3.7. An inference rule without assumptions is called an axiom (schema).
I Definition 3.8. Let S := 〈L,K, |=〉 be a logical system, then we call a set C of

inference rules over L a calculus for S.

Kohlhase: Künstliche Intelligenz 1 293 January 30, 2019

where A1, ..., An and C are formula schemata for L and N is a name.
The Ai are called assumptions, and C is called conclusion

An inference rule without assumptions is called an axiom (schema).

Let S := 〈L,K, |=〉 be a logical system, then we call a set C of infer-
ence rules over L a calculus for S

We call 〈L,K, |=, C〉 a formal system, iff S := 〈L,K, |=〉 is a
logical system, and C a calculus for S .

A derivation ∅ `C A is called a proof of A and if one exists (write
`C A) then A is called a C-theorem.

9.4 Propositional Natural Deduction Calculus
(ND0)

Calculi: Natural Deduction (ND0; Gentzen [Gen34])

I Idea: ND0 tries to mimic human theorem proving behavior (non-minimal)
I Definition 4.1. The propositional natural deduction calculus ND0 has rules for

the introduction and elimination of connectives
Introduction Elimination Axiom
A B
A∧B∧I

A∧B
A
∧El

A∧B
B
∧Er

A∨¬A TND

[A]1

B
A⇒B

⇒I 1
A⇒B A

B
⇒E

I TND is used only in classical logic (otherwise constructive/intuitionistic)

Kohlhase: Künstliche Intelligenz 1 299 January 30, 2019

40

More Rules for Natural Deduction

I Definition 4.4. ND0 has the following additional rules for the remaining
connectives.

A
A∨B∨Il

B
A∨B∨Ir

A∨B

[A]1

...
C

[B]1

...
C

C
∨E 1

[A]1

...
F
¬A ¬I 1

¬¬A
A
¬E

¬A A
F

FI
F

A
FE

Kohlhase: Künstliche Intelligenz 1 302 January 30, 2019H,A `ND0 B, iff H `ND0 A =⇒ B

9.5 Machine-Oriented Calculi for Propositional
Logic

Unsatisfiability Theorem: Iff H ∪ {¬A}, H |= A is unsatisfiable

• Conjunctive Normal Form (CNF):
∧n
i=1

∨mi

j=1 Ii,j

• Disjunctive Normal Form (DNF):
∨n
i=1

∧mi

j=1 Ii,j

9.5.1 Analytic Tableaux

We call a formula atomic, or an atom, iff it does not contain connec-
tives. We call a formula complex, iff it is not atomic.
We call a pair Aα labeled formula, if α ∈ {T, F}. A labeled atom is
called literal.

41

⇒ Instead of showing ∅ ` Th, show ¬Th `⊥

• formula is analyzed in a tree to determine satisfiability

→ Satisfiable, iff there are open branches

• Use rules exhaustively as long as they contribute new material:

Analytical Tableaux (Formal Treatment of T0)

I formula is analyzed in a tree to determine satisfiability
I branches correspond to valuations (models)
I one per connective

A∧BT

AT

BT

T0∧ A∧BF

AF
∣∣∣ BF
T0∨

¬AT

AF
T0T¬ ¬AF

AT
T0 F¬

Aα

Aβ α 6= β

⊥ T0cut

I Use rules exhaustively as long as they contribute new material
I Definition 5.11. Call a tableau saturated, iff no rule applies, and a branch

closed, iff it ends in ⊥, else open. (open branches in saturated tableaux yield
models)

I Definition 5.12 (T0-Theorem/Derivability). A is a T0-theorem (`T0 A), iff
there is a closed tableau with AF at the root.
Φ⊆wff o(Vo) derives A in T0 (Φ `T0 A), iff there is a closed tableau starting
with AF and ΦT.

Kohlhase: Künstliche Intelligenz 1 311 January 30, 2019

→ Call a tableau saturated, iff no rule applies, and a branch closed,
iff it ends in ⊥, else open

→ A is a T0-theorem (`T0 A), iff there is a closed tableau with AF

at the root

→ φ ⊆ wffo(Vo) derives A in To(φ `To A), iff there is a closed
tableau starting with AF and φT

→ Terminating tableaux are a tableau calculus with the property
that any of its derivations terminates after finitely many steps

• Derived rules:

Derived Rules of Inference

I Definition 5.18. Let C be a calculus, a rule of inference
A1 · · · An

C
is called a

derived inference rule in C, iff there is a C-proof of A1, . . . ,An ` C.
I Definition 5.19. We have the following derived rules of inference

A⇒BT

AF
∣∣∣ BT

A⇒BF

AT

BF

AT

A⇒BT

BT

A∨BT

AT
∣∣∣ BT

A∨BF

AF

BF

A⇔BT

AT

BT

∣∣∣∣
AF

BF

A⇔BF

AT

BF

∣∣∣∣
AF

BT

AT

A⇒BT

¬A∨BT

¬ (¬¬A∧¬B)T

¬¬A∧¬BF

¬¬AF

¬AT

AF

⊥

¬BF

BT

Kohlhase: Künstliche Intelligenz 1 317 January 30, 2019

42

9.5.2 Resolution

→ The proof goal is transformed in CNF and then (dis)proved through
resolution refutation
→ {A,¬B}, {¬A,B} ⇒ {A,¬A}, {¬B,B}
• Resolution Calculus:

Another Test Calculus: Resolution

I Definition 5.26 (Resolution Calculus). The resolution calculus operates a
clause sets via a single inference rule:

PT ∨ A PF ∨ B
A ∨ B

This rule allows to add the clause below the line to a clause set which contains
the two clauses above.

I Definition 5.27 (Resolution Refutation). Let S be a clause set, then we call
a R derivation D : S `R 2 resolution refutation.

I Definition 5.28 (Resolution Proof). We call a resolution refutation of
CNF 0(AF) a resolution proof for A ∈ wff o(Vo).

Kohlhase: Künstliche Intelligenz 1 321 January 30, 2019

• Resolution Refutation:

D : S `R � with derivation R and clause set S

• Resolution Proof:

We call a resolution refutation of CNF 0(AF) a resolution
proof for A ∈ wffo(Vo)

• Clause = disjunction of literals (� = empty disjunction)

• Clause Normal Transformation:

Clause Normal Form Transformation (A calculus)

I Definition 5.29. A clause is a disjunction of literals. We will use 2 for the
empty disjunction (no disjuncts) and call it the empty clause.

I Definition 5.30. We will often write a clause set {C1, . . . ,Cn} as C1; . . . ; Cn,
use S ; T for the union of the clause sets S and T , and S ; C for the extension by
a clause C .

I Definition 5.31 (Transformation into Clause Normal Form). The CNF
transformation calculus CNF 0 consists of the following four inference rules on
sets of labeled formulae.

C ∨ (A∨B)T

C ∨ AT ∨ BT

C ∨ (A∨B)F

C ∨ AF;C ∨ BF

C ∨ ¬AT

C ∨ AF

C ∨ ¬AF

C ∨ AT

I Definition 5.32. We write CNF 0(Aα) for the set of all clauses derivable from
Aα via the rules above.

Kohlhase: Künstliche Intelligenz 1 322 January 30, 2019

• Derived rules of inference:

a rule

Derived Rules of Inference

I Definition 5.33. Let C be a calculus, a rule of inference
A1 . . . An

C
is called

a derived inference rule in C, iff there is a C-proof of A1, . . . ,An ` C.

I Example 5.34.

C ∨ (A⇒B)T

C ∨ (¬A∨B)T

C ∨ ¬AT ∨ BT

C ∨ AF ∨ BT

; C ∨ (A⇒B)T

C ∨ AF ∨ BT

I Others:

C ∨ (A⇒B)T

C ∨ AF ∨ BT

C ∨ (A⇒B)F

C ∨ AT;C ∨ BF

C ∨ A∧BT

C ∨ AT;C ∨ BT

C ∨ A∧BF

C ∨ AF ∨ BF

Kohlhase: Künstliche Intelligenz 1 323 January 30, 2019

is a derived inference rule in the calculus C,
iff there is a C-proof of A1, ..., An ` C

Derived Rules of Inference

I Definition 5.33. Let C be a calculus, a rule of inference
A1 . . . An

C
is called

a derived inference rule in C, iff there is a C-proof of A1, . . . ,An ` C.

I Example 5.34.

C ∨ (A⇒B)T

C ∨ (¬A∨B)T

C ∨ ¬AT ∨ BT

C ∨ AF ∨ BT

; C ∨ (A⇒B)T

C ∨ AF ∨ BT

I Others:

C ∨ (A⇒B)T

C ∨ AF ∨ BT

C ∨ (A⇒B)F

C ∨ AT;C ∨ BF

C ∨ A∧BT

C ∨ AT;C ∨ BT

C ∨ A∧BF

C ∨ AF ∨ BF

Kohlhase: Künstliche Intelligenz 1 323 January 30, 2019

43

9.6 SAT Solver

SAT solvers decide satisfiability of CNF (Conjunctive Normal Form)
formulas
The SAT problem consists in deciding whether a propositional formula
is satisfiable. The problem’s worst case complexity is NP-complete

Phase Transitions in SAT [MSL92]

I Fixed clause length model: Fix clause length k ; n variables. Generate m
clauses, by uniformly choosing k variables P for each clause C , and for each
variable P deciding uniformly whether to add P or PF into C .

I Order parameter: Clause/variable ratio m
n .

I Phase transition: (Fixing k = 3, n = 50)

Kohlhase: Künstliche Intelligenz 1 366 January 30, 2019
Around a clause-to-variable ratio of (4.3) the SAT-problem becomes
intractable. This is known as phase transition.

Clause Normal Form = A propositional logic formula consisting of
conjunctions of disjunctions of literals

Any SAT problem can be viewed as a CSP-problem and any CSP-
problem can be transformed into a SAT-problem in polynomial time.

9.6.1 DPLL

DPLL = backtracking with inference performed by unit propagation
(UP), which iteratively instantiates unit clauses and simplifies the for-
mula

The DPLL algorithm uses the unit propagation rule and the split rule.

DPLL with clause learning is equivalent to resolution

44

→ can be exponentially long

Does DPLL Care?

I Oh yes, it does! Extreme runtime peak at the phase transition!

Kohlhase: Künstliche Intelligenz 1 367 January 30, 2019

1. solange unit clause enthalten, wende unit propagation an

2. wenn � erhalten → unsatisfiable

3. nehme eine random Proposition P und versuche DPLL mit ein-
mal P = True und einmal P = False (gehe zu 1)

4. wenn für P F und P T kein unsatisfiable gefunden, dann haben
wir eine partielle interpretation gefunden (alle bereits gesetzten
propositions müssen diese Belegung haben, bei den nicht geset-
zten ist die Belegung egal)

Unit Resolution:

UP = Unit Resolution

I The Unit Propagation (UP) Rule . . .

while ∆′ contains a unit clause {l} do
extend I ′ with the respective truth value for the proposition underlying l
simplify ∆′ /∗ remove false literals ∗/

. . . corresponds to a calculus:
I Definition 2.5 (Unit Resolution). Unit resolution (UR) is the calculus

consisting of the following inference rule:

C ∨ PF PT

C

I Unit propagation = Resolution restricted to the case where one of the parent
clauses is unit.

I Observation 2.6 (Soundness). UR is sound (since resolution is)
I Observation 2.7 (Completeness). UR is not refutation complete
I Example 2.8. PT ∨ QT; PT ∨ QF; PF ∨ QT; PF ∨ QF is unsatisfiable but UP

cannot derive the empty clause 2.
I UP makes only limited inferences, as long as there are unit clauses. It does not

guarantee to infer everything that can be inferred.
Kohlhase: Künstliche Intelligenz 1 342 January 30, 2019

Unit propagation = Resolution restricted to the case where one of
the parent clauses is unit

45

9.7 First Order Predicate Logic PL1

Syntax:

• Individual variables Vι
– Truth values o

– Individuals ι

• Connectives Σo

→ on truth values

• Function constants Σf
k = {f, g, h, ...}

→ on individuals

• Predicate constants Σp
k = {p, q, r, ...}

• Skolem constants Σsk
k = {f k1 , f k2 , ...}

• Σι = Σf ∪ Σp ∪ Σsk

• Σ = Σι ∪ Σo

• Formulae

– Terms

→ denote individuals

– Propositions

→ denote truth values

• Fixed truth values Universe Do = {T, F}
• Individuals Universe Dι 6= ∅
• ModelM = 〈Dι, I〉

Semantics:

• As for propositional logic +

46

• Iφ(f (A1, ..., Ak)) = I(f)(Iφ(A1), ..., Iφ(Ak))

• Iφ(p(A1, ..., Ak)) = >, iff 〈Iφ(A1), ..., Iφ(Ak)〉 ∈ I(p)

• Iφ(∀X.A) = >, iff Iφ,[a/X](A) = > for all a ∈ Dι

→ variable capture = An (unsound) operation that turns a free vari-
able into a bound variable

A variable X is bound in a formula if and only if it occurs in the
scope of either a universal or an existential quantifier binding X.

9.7.1 Natural Deduction ND1

ND0 +

First-Order Natural Deduction (ND1; Gentzen [Gen34])

I Rules for propositional connectives just as always
I Definition 3.10 (New Quantifier Rules). The first-order natural deduction

calculus ND1 extends ND0 by the following four rules
A
∀X A

∀I ∗
∀X A

[B/X](A)
∀E

[B/X](A)

∃X A
∃I

∃X A

[[c/X](A)]1

...
C

C
∃E 1

∗ means that A does not depend on any hypothesis in which X is free.

Kohlhase: Künstliche Intelligenz 1 401 January 30, 2019

∗ means that A does not depend on any hypothesis in which X is
free.

Natural Deduction with Equality

I Definition 3.13 (First-Order Logic with Equality). We extend PL1 with a
new logical symbol for equality = ∈ Σp

2 and fix its semantics to
I(=) := {(x , x) | x ∈ Dι}. We call the extended logic first-order logic with
equality (PL1=)

I We now extend natural deduction as well.
I Definition 3.14. For the calculus of natural deduction with equality ND1

= we
add the following two equality rules to ND1 to deal with equality:

A = A
=I

A = B C [A]p
[B/p]C

=E

where C [A]p if the formula C has a subterm A at position p and [B/p]C is the
result of replacing that subterm with B.

I In many ways equivalence behaves like equality, so we will use the following
derived rules in ND1:

A⇔A
⇔I

A⇔B C [A]p
[B/p]C

⇔ =E

Kohlhase: Künstliche Intelligenz 1 404 January 30, 2019

47

9.7.2 First-Order Logic with Equality

Natural Deduction with Equality

I Definition 3.13 (First-Order Logic with Equality). We extend PL1 with a
new logical symbol for equality = ∈ Σp

2 and fix its semantics to
I(=) := {(x , x) | x ∈ Dι}. We call the extended logic first-order logic with
equality (PL1=)

I We now extend natural deduction as well.
I Definition 3.14. For the calculus of natural deduction with equality ND1

= we
add the following two equality rules to ND1 to deal with equality:

A = A
=I

A = B C [A]p
[B/p]C

=E

where C [A]p if the formula C has a subterm A at position p and [B/p]C is the
result of replacing that subterm with B.

I In many ways equivalence behaves like equality, so we will use the following
derived rules in ND1:

A⇔A
⇔I

A⇔B C [A]p
[B/p]C

⇔ =E

Kohlhase: Künstliche Intelligenz 1 404 January 30, 2019

Positions in Formulae

I Idea: Formulae are (naturally) trees, so we can use tree positions to talk about
subformulae

I Definition 3.15. A formula position p is a list of natural number that in each
node of a formula (tree) specifies into which child to descend. For a formula A
we denote the subformula at p with A|p.

I We will sometimes write a formula C as C [A]p to indicate that C the
subformula A at position p.

I Definition 3.16. Let p be a position, then [A/p]C is the formula obtained from
C by replacing the subformula at position p by A.

I Example 3.17 (Schematically).

A = C|p

p

C

B

p

[B/p]C

Kohlhase: Künstliche Intelligenz 1 405 January 30, 2019

9.8 First Order Inference

9.8.1 Tableau

→ There is no terminating tableaux calculus for first order logic

T0 +

First-Order Standard Tableaux (T1)

I Refutation calculus based on trees of labeled formulae
I Tableau-Rules: T0 (propositional tableau rules) plus

∀X AT C ∈ cwff ι(Σι)

[C/X](A)T T1:∀ ∀X AF c ∈ (Σsk
0 \H)

[c/X](A)F T1:∃

Kohlhase: Künstliche Intelligenz 1 412 January 30, 2019

→ have to guess in T1 : ∀

⇒ Free Variable Tableau T f
0 :

Free variable Tableaux (T f
1)

I Refutation calculus based on trees of labeled formulae
I T0 (propositional tableau rules) plus
I Quantifier rules:

∀X AT Y new

[Y /X](A)T T f
1 :∀ ∀X AF free(∀X A) = {X 1, . . . ,X k} f ∈ Σsk

k

[f (X 1, . . . ,X k)/X](A)F T f
1 :∃

I Generalized cut rule: T f
1 :⊥ instantiates the whole tableau by σ.

Aα

Bβ α 6= β σ(A) = σ(B)

⊥ : σ
T f
1 :⊥

Advantage: no guessing necessary in T f
1 :∀-rule

II New: find suitable substitution (most general unifier)

Kohlhase: Künstliche Intelligenz 1 413 January 30, 2019

48

Free variable Tableaux (T f
1)

I Refutation calculus based on trees of labeled formulae
I T0 (propositional tableau rules) plus
I Quantifier rules:

∀X AT Y new

[Y /X](A)T T f
1 :∀ ∀X AF free(∀X A) = {X 1, . . . ,X k} f ∈ Σsk

k

[f (X 1, . . . ,X k)/X](A)F T f
1 :∃

I Generalized cut rule: T f
1 :⊥ instantiates the whole tableau by σ.

Aα

Bβ α 6= β σ(A) = σ(B)

⊥ : σ
T f
1 :⊥

Advantage: no guessing necessary in T f
1 :∀-rule

II New: find suitable substitution (most general unifier)

Kohlhase: Künstliche Intelligenz 1 413 January 30, 2019

9.8.2 Resolution

CNF:

First-Order Resolution (CNF)

I Definition 2.1. The Conjunctive Normal Form Calculus CNF 1 is given by the
inference rules of CNF 0 extended by

(∀X A)T ∨ C Z 6∈ (free(A)∪ free(C))

[Z/X](A)T ∨ C

(∀X A)F ∨ C {X1, . . . ,Xk} = free(∀X A)

[f k
n (X 1, . . . ,X k)/X](A)F ∨ C

CNF 1(Φ) is the set of all clauses that can be derived from Φ.
I Definition 2.2 (First-Order Resolution Calculus). First-order resolution is a

refutation calculus that manipulates formulae in conjunctive normal form. R1

has two inference rules

AT ∨ C BF ∨D σ = mgu(A,B)

σ(C) ∨ σ(D)

Aα ∨ Bα ∨ C σ = mgu(A,B)

σ(A) ∨ σ(C)

Kohlhase: Künstliche Intelligenz 1 425 January 30, 2019

Calculus:

First-Order Resolution (CNF)

I Definition 2.1. The Conjunctive Normal Form Calculus CNF 1 is given by the
inference rules of CNF 0 extended by

(∀X A)T ∨ C Z 6∈ (free(A)∪ free(C))

[Z/X](A)T ∨ C

(∀X A)F ∨ C {X1, . . . ,Xk} = free(∀X A)

[f k
n (X 1, . . . ,X k)/X](A)F ∨ C

CNF 1(Φ) is the set of all clauses that can be derived from Φ.
I Definition 2.2 (First-Order Resolution Calculus). First-order resolution is a

refutation calculus that manipulates formulae in conjunctive normal form. R1

has two inference rules

AT ∨ C BF ∨D σ = mgu(A,B)

σ(C) ∨ σ(D)

Aα ∨ Bα ∨ C σ = mgu(A,B)

σ(A) ∨ σ(C)

Kohlhase: Künstliche Intelligenz 1 425 January 30, 2019

9.8.3 Unification

→

Unification Algorithm

II Definition 1.21. Inference system U

E ∧ f (A1, . . . ,An) =? f (B1, . . . ,Bn)

E ∧A1 =? B1 ∧ . . .∧An =? Bn
U dec

E ∧A=? A
E U triv

E ∧X =? A X 6∈ free(A) X ∈ free(E)

[A/X](E)∧X =? A
U elim

I Lemma 1.22. U is correct: E `U F implies U(F)⊆U(E)

I Lemma 1.23. U is complete: E `U F implies U(E)⊆U(F)

I Lemma 1.24. U is confluent: the order of derivations does not matter
I Corollary 1.25. First-Order Unification is unitary: i.e. most general unifiers

are unique up to renaming of introduced variables.
I Proof Sketch: the inference system U is trivially branching

Kohlhase: Künstliche Intelligenz 1 420 January 30, 2019

• correct

• complete

49

• confluent → order of derivations does not matter

9.9 Logic Programming as Resolution Theorem
Proving

• Deduction

Three Principal Modes of Inference

I Deduction: knowledge extension
rains⇒wet_street rains

wet_street
D

I Abduction explanation
rains⇒wet_street wet_street

rains
A

I Induction learning rules
wet_street rains

rains⇒wet_street
I

Kohlhase: Künstliche Intelligenz 1 436 January 30, 2019

• Abduction

Three Principal Modes of Inference

I Deduction: knowledge extension
rains⇒wet_street rains

wet_street
D

I Abduction explanation
rains⇒wet_street wet_street

rains
A

I Induction learning rules
wet_street rains

rains⇒wet_street
I

Kohlhase: Künstliche Intelligenz 1 436 January 30, 2019

• Learning rules

Three Principal Modes of Inference

I Deduction: knowledge extension
rains⇒wet_street rains

wet_street
D

I Abduction explanation
rains⇒wet_street wet_street

rains
A

I Induction learning rules
wet_street rains

rains⇒wet_street
I

Kohlhase: Künstliche Intelligenz 1 436 January 30, 2019

Semantic Web = project of extending the internet by annotating con-
tent on the internet using logic to render it machine-readable

10 Planning & Acting

→ Write one program that can solve all classical search problems

Planning Language:

• States

• Initial State I

• Goal Condition G

50

• Actions A

– Preconditions

– Effects

• Solution → Plan (Sequence of actions)

10.1 STRIPS

→ Stanford Research Institute Problem Solver

→ the simplest possible (reasonably expressive) logics-based plan-
ning language

→ only Boolean variables

Π = 〈P,A, I,G〉
• P finite set of facts/Propositions

• A finite set of actions A = 〈prea, adda, dela〉
– Preconditions prea

– Add List adda

– Delete List dela

adda ∩ dela = ∅
• Initial State I ⊆ P

• Goal G ⊆ P

51

10.2 PDDL

→ Planning Domain Description Language

• Domain file

The Blocksworld in PDDL: Domain File

Initial State Goal State

D

B

A

C

E

D

CBAE

(define (domain blocksworld)
(:predicates (clear ?x) (holding ?x) (on ?x ?y)

(on−table ?x) (arm−empty))
(:action stack
:parameters (?x ?y)
:precondition (and (clear ?y) (holding ?x))
:effect (and (arm−empty) (on ?x ?y)

(not (clear ?y)) (not (holding ?x)))
)
. . .

Kohlhase: Künstliche Intelligenz 1 476 January 30, 2019• Problem file

The Blocksworld in PDDL: Problem File

Initial State Goal State

D

B

A

C

E

D

CBAE

(define (problem bw−abcde)
(:domain blocksworld)
(:objects a b c d e)
(:init (on−table a) (clear a)

(on−table b) (clear b)
(on−table e) (clear e)
(on−table c) (on d c) (clear d)
(arm−empty))

(:goal (and (on e c) (on c a) (on b d))))

Kohlhase: Künstliche Intelligenz 1 477 January 30, 201910.3 Planning Complexity

10.3.1 Satisficing planning

→ find a plan for Π or ”unsolvable”

10.3.2 Optimal planning

→ find an optimal plan for Π or ”unsolvable”

→

52

10.3.3 PlanEx

→ problem of deciding, whether or not there exists a plan

→ PSPACE-complete = PSPACE-hard + in PSPACE

10.3.4 PlanLen

→ problem of deciding, whether or not there exists a plan of at
most length X

→ PSPACE-complete

10.3.5 PolyPlanLen

→ problem of deciding, whether or not there exists a plan of at
most length X, whereas X is bounded by a polynomial in the
size of Π

→ NP-complete

10.4 Relaxing in planning

• Problem class P with heuristic hP

• Transformation R that transforms P to P ′

• Simpler problem class P ′ with optimal heuristic h∗P ′

→ hP = h∗P ′

53

10.4.1 Delete Relaxation

R: When the world changes, its previous state remains true as well
⇒ Delete list of P ′ is empty

PlanEx+ (deciding whether or not there exists a relaxed plan) is
a member of P

10.4.2 h+ heuristic

h+ → ideal delete-relaxation heuristic

h+ is admissible

h+ is NP-hard to compute

54

