
Artificial Intelligence II

Summary

Thilo Kratzer

July 16, 2018

DISCLAIMER: THIS IS NOT A COMPLETE SUMMARY. ERRORS ARE LIKELY. THE SOLE SOURCE ARE THE
LECTURE SLIDES OF THE LECTURE ”KÜNSTLICHE INTELLIGENZ II” OF THE SUMMER TERM 2018 AT

THE FRIEDRICH-ALEXANDER UNIVERSITY.

1 Quantifying Uncertainty

Definition 1 (Agent). An agent is an entity that per-
ceives and acts. It is modeled as a function from percept
histories to actions.

P∗ 7→ A

An agent is anything that perceives its environment via
sensors and acts on it with actuators.

Definition 2 (World Model). A stateful reflex agent has
a world model consisting of

belief state that has information about the possible
states the world may be in

transition model that updates the belief state based on
sensor information and actions

Definition 3 (Probability Theory). A probability theory
is an assertion language for talking about possible worlds
and an inference method for quantifying the degree of
belief in such assertions.

Definition 4 (Probabiltiy Model). A probabiltiy model
〈Π, P 〉 consists of a set Π of possible worlds called the
sample space and a probability function P : Ω→ R, such
that 0 ≤ P (ω) ≤ 1 for all ω ∈ Ω and

∑
ω∈Ω P (ω) = 1.

Definition 5 (Random Variable). A random vari-
able (also called random quantity, aleatory variable, or
stochastic variable) is a variable quantity whose value
depends on possible outcomes of unknown variables and
processes we do not understand.

Definition 6 (Probability). Given a random variable X,
P (X = x) denotes the prior probability, or unconditional
probability, that X has value x in the absence of any other
information.

Definition 7 (Event). We will refer to the fact X = x
as an event, or an outcome. The notation uppercase ”X”
for a variable, and lowercase ”x” for one of its values will
be used frequently.

Definition 8 (probability distribution). The probability
distribution for a random variable X, written P(X), is
the vector of probabilities for the (ordered) domain of X.

Definition 9 (Joint Probability Distribution). Given a
subset Z⊆ {X1, . . . , Xn} of random variables, an event is
an assignment of values to the variables in Z. The joint
probability distribution, written P(Z), lists the probabil-
ities of all events.

Definition 10 (Atomic Event). Given random variables
{X1, . . . , Xn}, an atomic event is an assignment of values
to all variables.

Definition 11 (Full Joint Probability Distribution).
Given random variables {X1, . . . , Xn}, the full joint prob-
ability distribution, denoted P({X1, . . . , Xn}), lists the
probabilities of all atomic events.

Definition 12 (Proposition). Given random variables
{X1, . . . , Xn}, a propositional formula, short proposition,
is a propositional formula over the atoms Xi = xi where
xi is a value in the domain of Xi. A function P that maps
propositions into [0, 1] is a probability measure if

• P (>) = 1

• for all propositions A, P (A) =
∑
e|=A P (e) where e

is an atomic event.

Theorem 1 (Kolmogorow). A function P that maps
propositions into [0, 1] is a probability measure iff

• P (>) = 1 and

• for all propositions A,B:
P (a ∨ b) = P (a) + P (b)− P (a ∧ b).

Definition 13 (Conditional Probability). Given propo-
sitions A and B where P (b) 6= 0, the conditional probabil-
ity, or posterior probability, of a given b, written P (a | b),
is defined as:

P (a | b) =
P (a ∧ b)
P (b)

Definition 14 (Conditional Probability Distribution).
Given random variables X and Y , the conditional proba-
bility distribution of X given Y , written P(X | Y), is the
table of all conditional probabilities of values of X given
values of Y .

Definition 15 (Independence). Events a and b are
(stochastically) indepentent if P (a ∧ b) = P (a) · P (b).
Random variables X and Y are indepentent if P(X,Y) =
P(X) ·P(Y).

1

Proposition 1 (Product Rule). Given propositions A
and B, P (a ∧ b) = P (a | b) · P (b) = P (b | a) · P (a).

Definition 16 (System of Equation). P(X,Y) =
P(X | Y) · P(Y) is a system of equations. Similar for
unconditional distributions, P(X,Y) = P(X) ·P(Y).

Proposition 2 (Chain Rule). Given random variables
X1, . . . , Xn, we have:

P(X1, . . . , Xn) =
P(Xn | Xn−1, . . . , X1) ·P(Xn−1, . . . , X1)

Proposition 3 (Marginalization). Given sets X and Y of
random variables: P(X) =

∑
y∈Y P(X, y) where

∑
y∈Y

sums over all possible value combinations of Y.

Definition 17 (Normalization Constant). Given a vector

〈w1, . . . , wk〉 of number in [0, 1] where
∑k
i=1 wi ≤ 1, the

normalization constant α is α〈w1, . . . , wk〉 := 1/
∑k

i=1 wi.

Proposition 4 (Normalization). Given a random vari-
able X and an event e, we have P(X | e) = αP(X, e).

Proposition 5 (Bayes’ Rule). Given propositions A and
B where P (a) 6= 0 and P (b) 6= 0, we have:

P (a | b) =
P (b | a) · P (a)

P (b)
.

Definition 18 (conditionally independent). Given sets
of random variables Z1, Z2, and Z, we say that Z1 and
Z2 are conditionally independent given Z if:

P(Z1,Z2 | Z) = P(Z1 | Z) ·P(Z2 | Z).

We alternatively say that Z1 is conditionally independent
of Z2 given Z. If Z = ∅ we say Z1 is (stochastically)
independent to Z2 (Def. 15).

Proposition 6. If Z1 and Z2 are conditionally indepen-
dent given Z then:

P(Z1 | Z2,Z) = P(Z1 | Z).

Definition 19 (Naive Bayes Model). A Bayesian net-
work in which a single cause directly influences a num-
ber of effects, all of which are conditionally independent,
given the cause is called a naive Bayes model or Bayesian
classifiers.

Remark 1. In a naive Bayes model, the full joint prob-
ability distribution can be written as:

P(cause | effect1, . . . effectn) = P(cause)·
∏
i

P(effecti | cause)

2 Bayesian Networks

Definition 20 (Bayesian Network). Given random
variables X1, . . . , Xn with finite domains D1, . . . , Dn,
a Bayesian network (also belief network or prob-
abilistic network) is an acyclic directed graph
BN = 〈{X1, . . . , Xn}, E〉. We denote Parents(Xi) :=
{Xj | (Xj , Xi) ∈ E}. Each Xi is associated with a
function CPT(Xi) : Di ×

∏
Xj∈Parents(Xi)

Dj → [0, 1],
the conditional probability table.

Definition 21 (conditionally independent). Given a
Bayesian network BN = 〈{X1, . . . , Xn}, E〉, we identify
BN with the following two assumptions:

• for 1 ≤ i ≤ n, Xi is conditionally indepen-
dent of NonDesc(Xi) given Parents(Xi), where
NonDesc(Xi) := {Xj | (Xi, Xj) /∈ E∗}\Parents(Xi)
where E∗ is the transitive-reflexive closure of E.

• for 1 ≤ i ≤ n, all values xi of Xi and
all value combinations of Parents(Xi), we have
P (xi | Parents(Xi)) = CPT(xi,Parents(Xi)).

Definition 22. The size of a Bayesian network is not a
fixed property of the domain. It depends on the skill of
the designer.

Procedure BN construction algorithm

1: Initialize BN = 〈{X1, . . . , Xn}, E〉, where E = ∅
2: Fix any order of the variables X1, . . . , Xn

3: for i := 1, . . . , n do
4: Choose a minimal set Parents(Xi) ⊆
{X1, . . . , Xi−1} so that P(Xi | Xi−1, . . . , X1) =
P(Xi | Parents(X1)) /* use (cond.) indpendence */

5: for each Xj ∈ Parents(Xi) do
6: insert (Xj , Xi) into E

7: end loop
8: Associate Xi with CPT(Xi) corresponding to

P(Xi | Parents(Xi))

9: end loop

Definition 23 (size). Given random variables
X1, . . . , Xn with finite domains D1, . . . , Dn the
size (total number of entries in the CPTs) of
BN = 〈{X1, . . . , Xn}, E〉 is defined as size(BN) :=∑n
i=1 #(Di) ·

∏
Xj∈Parents(Xi)

#(Dj)

Definition 24 (deterministic). A node X in a Bayesian
network is called deterministic if its value is completely
determined by the values of Parents(X).

Definition 25 (noisy disjunction node). The CPT of a
noisy disjunction node X in a Bayesian network is given
by P (xi | Parents(Xi)) =

∏
{j | Xj=>} qj , where qi are the

inhibitation factors of Xi ∈ Parents(X).

Definition 26 (Probabilistic Inference Task). Given ran-
dom variables {X1, . . . , Xn}, a probabilistic inference task
consists of a set X ⊆ {X1, . . . , Xn} of query variables,
a set E ⊆ {X1, . . . , Xn} of evidence variables, and an
event e that assigns values to E. We wish to compute
the posterior probability distribution P(X | e). Y :=
{X1, . . . , Xn} \ (X ∪E) are the hidden variables.

Definition 27 (Polytree). A graph is calles singly con-
nected, or a polytree, if if there is at most one undirected
path between any two nodes in the graph.

Definition 28 (Decision Theory). Decision theory inves-
tigates how an agent a deals with choosing among actions
based on the desirability of their outcomes.

Definition 29 (Lottery). Lottery L = [p,A; (1 − p), B].
An agent chooses among prizes (A, B, etc.) and lotteries,
i.e., situations with uncertain prizes.

2

Definition 30 (Expected Utility). Treat the result of an
action a as a random variable R(a) whose variables are
the possible outcome states. The expected utility EU(a)
of an action a (given evidence e) is then:

EU(a | e) =
∑
s′

P (R(a) = s′ | a, e) · U(s′)

3 Making Decisions Rationally

Definition 31 (Preferences). An agent decides weather

• (A ≺ B) when A preferred to B

• (A ∼ B) when indifference between A and B

• (A � B) when B not preferred to A.

Definition 32 (Constraints).

Orderability (A ≺ B) ∨ (B ≺ A) ∨ (A ∼ B)

Transitivity (A ≺ B) ∧ (B ≺ C)⇒ (A ≺ C)

Continuity (A ≺ B ≺ C)⇒ (∃p. [p,A; (1− p), C] ∼ B)

Substitutability (A ∼ B)⇒
([p,A; (1− p), C] ∼ [p,B; (1− p), C])

Monotonicity (A ≺ B)⇒
(p ≥ q)⇔ ([p,A; (1− p), B] � [q, A; (1− q), B])

Theorem 2 (Ramseys, 1931). Given preferences satisfy-
ing the constraints there exists a real-valued function U
such that

(U(A) ≥ U(B))⇔ A � B and
U([p1, S1, . . . , pn, Sn]) =

∑
i piU(Si).

Remark 2. Agent behavior is invariant w.r.t. positive
linear transformation, i.e.

U ′(x) = k1U(x) + k2 where k1 > 0

behaves exactly like U .

Definition 33 (value function). We call a total ordering
on states a value function or ordinal utility function.

Definition 34 (MEU principle). Choose the action that
maximizes expected utility.

Definition 35 (Standard approach to assessment of hu-
man utilities). Compare a given state A to a standard
lottery Lp that has

• ”best possible prize” u> with probability p

• ”worst possible catastrophe” u⊥ with probability
1− p

Adjust lottery probability p until A ∼ Lp. Then
U(A) = p.

Definition 36 (Normalized utility). u> = 1, u⊥ = 0

Definition 37 (Micromorts). One-millionth chance of
death (useful for Russian roulette, paying to reduce prod-
uct risks, etc.).

Definition 38 (QALYs). Quality-adjusted life years
(useful for medical decisions involving substantial risk).

Definition 39 (Dominance). Choice B strictly domi-
nates choice A ⇔ Xi(B) ≥ Xi(A) for all i (and hence
U(B) ≥ U(A)).

Definition 40 (Stochastical Dominance). Distribution
p1 stochastically dominates distribution p2 if the cummu-
lative distribution of p2 dominates that for p1 for all t:∫ t

−∞
p1(x)dx ≤

∫ t

−∞
p2(x)dx

Definition 41 (Positive Influence). X
+→ Y (X posi-

tively influences Y) means that P(Y | x1, z) stochastically
dominates P(Y | x2, z) for every value z of Y ’s other par-
ents Z and all x1 and x2 with x1 ≥ x2.

Definition 42 (Independence). X1 and X2 (pref-
erentially) independent of X3 iff preference between
〈x1, x2, x3〉 and 〈x′1, x′2, x′3〉 does not depend on x3.

Theorem 3 (Leontief, 1947). If every pair of attributes
is preferentially independent of its complement, then ev-
ery subset of attributes is preferentially independent of
its complement: mutual preferential independence.

Theorem 4 (Debreu, 1960). Mutual preferential inde-
pendence implies that there is an additive value function:
V (S) =

∑
i Vi(Xi(S)), where Vi is a value function refer-

encing just one variable Xi.

Definition 43 (utility-independence). X is utility-
independent of Y iff preferences over lotteries in X do
not depend on particular values in Y.

Definition 44 (mutually utility-independence). A set X
is mutually utility-independent, iff each subset is utility-
independent of its complement.

Theorem 5. For mutually utility-indepenent sets there
is a multiplicative utility function:

U = k1U1 + k2U2 + k3U3

+ k1k2U1U2 + k2k3U2U3

+ k3k1U3U1 + k1k2k3U1U2U3

Definition 45 (value nodes). Add action nodes � and
utility nodes � (also called value nodes) to belief networks
to enable rational decision making.

Definition 46 (Expected utility). With current evidence
E, current best action α and possible action outcomes Si
the expected utility is

EU(α | E) = max
a

(
∑
i

U(Si) · P (Si | E, a))

Definition 47 (VPI). Value of perfect information.

VPIE(Ej) =∑
k
P (Ej = ejk | E) · EU(αejk | E,Ejk = ejk)− EU(α | E)

3

Definition 48 (Properties of VPI).

• nonnegative: VPIE(Ej) ≥ 0 for all j and E

• nonadditive:

VPIE(Ej , Ek) 6= VPIE(Ej) + V PIE(Ek)

• order-independent:

VPIE(Ej , Ek) = VPIE(Ej) + VPIE,Ej
(Ek)

= VPIE(Ek) + VPIE,Ek
(Ej)

Definition 49. A simple Information-Gathering Agent:

Function Information-Gathering-Agent(percept)

Returns:
an action

Locals:
D, a decision network

1: integrate percept into D
2: j := argmax

k
(VPIE(Ek)/Cost(Ek))

3: if VPIE(Ej) > Cost(Ej) then
4: return Request(Ej)
5: else
6: return the best action from D

4 Temporal Probability Models

Definition 50 (temporal probability model). A temporal
probability model is a probability model, where possible
worlds are indexed by a time structure 〈S,�〉.

Definition 51 (Markov property). Xt only depends on
a bounded subset of X0:t−1.

Definition 52 (Markov process). A (discrete-time)
Markov process (also called Markov chain) is a sequence
of random variables with the Markov property.

• First-order Markov process:

P(Xt | X0:t−1) = P(Xt | Xt−1)

• Second-order Markov process:

P(Xt | X0:t−1) = P(Xt | Xt−2,Xt−1)

Definition 53. We divide the random variables in a
Markov process M into a set of (hidden) state variables
Xt and a set of (observable) evidence variables Et. We
call P(Xt | Xt−1) the transition model and P(Et | Et−1)
the sensor model of M .

Definition 54 (Stationarity). A Markov process is called
stationary if the transition model is independent of time,
i.e. P(Xt | Xt−1) is the same for all t.

Definition 55 (Sensor Property). We say that a
sensor model has the sensor Markov property, iff
P(Et | X0:t,E0:t−1) = P(Et | Xt).

Remark 3 (Transition & Sensor Models).

Figure 1: Markov process example with transition and
sensor probabilities (models)

Remark 4. If we additionally know the initial prior prob-
abilities P(X0) (time t = 0), then we can compute the full
joint probability distribution as

P(X0:t,E0:t) = P(X0) ·
t∏
i=1

P(Xi | Xi−1) ·P(Ei | Xi)

Definition 56 (Filtering or monitoring). P(Xt | e1:t),
computing the belief state input to the decision process
of a rational agent.

P(Xt+1 | e1:t+1)

= α ·P(et+1 | Xt+1) ·P(Xt+1 | e1:t)

= α ·P(et+1 | Xt+1)︸ ︷︷ ︸
sensor
model

·
∑
xt

P(Xt+1 | xt)︸ ︷︷ ︸
transition

model

·P(xt | e1:t)︸ ︷︷ ︸
recursive

call

Definition 57 (Prediction or state estimation).
P(Xt+k | e1:t) for k > 0, evaluation of possible action
sequences (filtering without new evidence).

P(Xt+k+1 | e1:t)

=
∑
xt+k

P(Xt+k+1 | xt+k)︸ ︷︷ ︸
transition

model

·P(xt+k | e1:t)︸ ︷︷ ︸
recursive

call

Definition 58 (Smoothing or hindsight). P(Xk | e1:t)
for 0 ≤ k < t, better estimate of past states.

P(Xk | e1:t)

= α ·P(Xk | e1:k) ·P(ek+1:t | Xk)

with backward message bk+1:t :

P(ek+1:t | Xk)

=
∑
xk+1

P (ek+1 | xk+1)︸ ︷︷ ︸
sensor
model

·P (ek+2:t | xk+1)︸ ︷︷ ︸
recursive

call

·P(xk+1 | Xk)︸ ︷︷ ︸
transition

model

Definition 59 (Forward-backward algorithm). Cache
forward messages along the way:

4

Function Forward-Backward(ev, prior)

Inputs:
ev, a vector of evidence values for steps 1, . . . , t
prior, the prior distribution on the initial state

Returns:
a vector of pabability distributions

Locals:
fv, a vector of forward messages for steps 1, . . . , t
b, a representation of the backward message
sv, a vector of smoothed estimates for steps 1, . . . , t

1: fv[0] := prior
2: for i = 1 to t do
3: fv[i] := FORWARD(fv[i− 1], ev[i])

4: for i = t downto 1 do
5: sv[i] := NORMALIZE(fv[i], b)
6: b := BACKWARD(b, ev[i])

7: return sv

Remark 5. Time linear in t (polytree inference), space
O(t ·#(f)).

Definition 60 (Most Likely Explanation). tbd.

Definition 61 (Transition Matrix).

Tij = P (Xt = j | Xt−1 = i)

Definition 62 (Sensor Matrix). Ot for each time step,
diagonal elements P (et | Xt = i).

Definition 63 (Hidden Markov Models). Forward and
backward messages as column vectors:

HMM filtering : f1:t+1 = α · (Ot+1 Tt f1:t)

HMM smoothing : bk+1:t = T Ok+1 bk+2:t

Definition 64 (Dynamic Bayesian Network). A
Bayesian network D is called dynamic (a DBN), if its
random variables are indexed by a time structure. We
assume that its structure is

• time sliced, i.e. that the time slices Dt – the sub-
graphs of t-indexed random variables and the edges
between them – are isomorophic

• a first-order Markov process, i. e. that variables Xt

can only have parents in Dt and Dt−1

Definition 65 (Naive method). Unroll the network and
run any exact algorithm. Problem: inference cost for each
update grows with t.

Definition 66 (Rollup filtering). Add slice t + 1, sum
out slice t using variable elimination.

5 Making Complex decisions

Definition 67 (Markov Process). A sequential decision
problem in a fully observable, stochastic environment
with a Markovian transition model and an additive re-
ward function is called a Markov decision process. It con-
sist of

• a set of S of states (with initial state s0 ∈ S)

• sets Actions(s) of actions for each state s

• a transition model P (s′ | s, a)

• a reward function R : S → R

Definition 68 (stationary). We call preferences on re-
ward sequences stationary, iff

[r, r0, r1, r2, . . .] ≺ [r, r′0, r
′
1, r
′
2, . . .] ≺

⇔ [r0, r1, r2, . . .] ≺ [r′0, r
′
1, r
′
2, . . .]

Theorem 6. For stationary preferences, there are only
two ways to combine rewards over time.

• An additive rewards:

U([s0, s1, . . .]) = R(s0) +R(s1) + . . .

• A discounted rewards:

U([s0, s1, s2, . . .]) = R(s0)+γR(s1)+γ2R(s1)+ . . .

where γ is the discount factor.

Definition 69 (Expected Utility). Given a policy π, let
St be the state the agent reaches at time t starting at
state s0. Then the expected utility obtained by executing
π starting in s is given by

Uπ(s) = E(

∞∑
t=0

γt R(st))

we define the π∗s := argmax
π

(Uπ(s)).

Definition 70 (optimal policy). We call π∗ := π∗s for
some s the optimal policy. This does not hold for finite-
horizon policies.

Definition 71. The utility U(s) of a state s is Uπ
∗
(s).

Theorem 7 (Bellman equation, 1957).

U(s) = R(s) + γ ·max
a

∑
s′

U(s′) · T (s, a, s′)

Definition 72 (Value Iteration Algorithm). The value
iteration algorithm for utility functions is given by

Function Value-Iteration(mdp, ε)

Inputs:
mdp, an MDP with states S, actions A(s), transition
model P (s′ | s, a), rewards R(s), and discount γ.
ε, the max. error allowed in the utility of any state

Returns:
a utility function

Locals:
U,U ′, vectors of utilities for states in S, initially zero
δ, max. change in utility of any state in an iteration

1: repeat
2: U := U ′, δ := 0
3: for each State s in S do
4: U ′[s] := R(s) + γ ·max

a

∑
s′ U [s′] · P (s′ | a, s)

5:

6: if |U ′[s]− U [s]| > δ then δ := |U ′[s]− U [s]|
7: end for
8: until δ < ε (1−γ)

γ
9: return U

5

Theorem 8. For any two approximations U t and V t

||U t+1 − V t+1|| ≤ γ||U t − V t||

i. e. any distinct approximations must get closer to each
other so, in particular, any approximation must get closer
to the true U and value iteration converges to a unique,
stable, optimal solution.

Theorem 9. If ||U t+1 − U t|| < ε then
||U t+1 − U || < 2ε γ

(1−γ) . I. e. once the change in U t

becomes small, we are almost done.

Definition 73. The policy iteration algorithm is given
by the following pseudocode:

Function Policy-Iteration(mdp)

Inputs:
mdp, an MDP with states S, actions A(s), transition
model P (s′ | s, a), rewards R(s), and discount γ.

Returns:
a policy

Locals:
U , a vector of utilities for states in S, initially zero
π, a policy indexed by state, initially random

1: repeat
2: U := Policy-Evaluation(π, U,mdp)
3: unchanged := True
4: for each State s in X do
5: if max

a∈A(s)

∑
s′
P (s′ | s, a) · U(s′)

>
∑
s′
P (s′ | s, π[s′]) · U(s′) then

6: π[s] := argmax
b∈A(s)

(
∑
s′
P (s′ | s, a) · U(s′))

7: unchanged := False

8: end if
9: end for

10: until unchanged
11: return π

Definition 74 (partially observable MDP). A partially
observable MDP (a POMDP for short) is a MDP together
with an observation model O that is stationary and has
the sensor Markov property: O(s, e) = P (e | s).

Theorem 10 (Astrom, 1965). The optimal policy in a
POMDP is a function π(b) where b is the belief state
(probability distribution over states).

Definition 75 (Dynamic Decision Networks).

• Transition and Sensor Networks are represented as
a DBN (a dynamic Bayesian network)

• action nodes and utility nodes are added to create
a dynamic decision network (DDN)

• a filtering algo is used to incorporate each new per-
cept and action and to update the belief state rep-
resentation

• decisions are made by projecting forward possible
action sequences and choosing the best one

6 Learning from Observations

Definition 76 (Learning agent). This is an agent that
augments the performance element (which chooses actions
from percept sequences) with a

learning element that makes improvements to the
agent’s performance element

critic which gives feedback to the learning element based
on an external performance standard

problem generator which suggests actions that can
lead to new, informative experiences

Definition 77 (Target Function). f is the target func-
tion we want to learn. An example is a pair (x, y) ∈ f .

Definition 78 (Inductive Learning). The inductive
learning problem 〈H, f〉 consists in finding a hypothesis
h ∈ H such that h|dom(f) ≈ f given a training set f of
examples and a hypothesis space H.

Definition 79. We call h consistent with f , if it agrees
with f on all examples in T .

Definition 80 (Ockham’s razor). Maximize a combina-
tion of consistency and simplicity.

Definition 81. We say an inductive learning problem
〈H, f〉 is realizable, if there is a h ∈ H consistent with f .

Definition 82 (attribute-based). In attribute-based rep-
resentations, examples are described by attributes and
their values (Boolean, discrete, continuous, etc.).

Definition 83 (Classification). Classification of exam-
ples is positive (T, >) or negative (F, ⊥).

Definition 84 (Decision Tree Learning). The following
algorithm performs decision tree learning:

Algorithm DTL(examples, attributes, default)

1: if examples is empty then return default
2: else if all examples have the same classification then
3: return the classification
4: else if attributes is empty then
5: return Mode(examples)
6: else
7: best := Choose-Attribute(attributes, examples)
8: tree := a new decision tree with root test best
9: m := Mode(examples)

10: for each value vi of best do
11: examples :=

{elements of examples with best = vi}
12: subtree := DTL(examplesi, attributes\best,m)
13: add a branch to tree with label vi

and subtree subtree
14: end for
15: return tree

Remark 6. Mode(examples) := most frequent value in
examples.

6

Definition 85 (Information). If the prior is 〈P1, . . . , Pn〉,
then the information in an answer is

I(〈P1, . . . , Pn〉) =

n∑
i=1

−Pi · log2(Pi)

(also called entropy of the prior).

Definition 86 (Information Gain). The information gain
from an attribute test A is

Gain(A) :=

I(〈 p

p+ n
,

n

p+ n
〉)−

∑
i

pi + ni
p+ n

· I(〈 pi
pi + ni

,
ni

pi + ni
〉)

Remark 7. The learning curve depends on

• realizable (can express target function) vs. non-
realizable (can be due to missing attributes or re-
stricted hypothesis class)

• redundant expressiveness (e.g., loads of irrelevant
attributes)

Figure 2: different learning curves

Definition 87 (Overfitting). We speak of overfitting, if a
hypothesis h describes random error rather than the un-
derlying relationship. Underfitting occurs when h cannot
capture the underlying trend of the data. Overfitting in-
creases with the size of hypothesis space and the number
of attributes, but decreases with number of examples.

Definition 88 (decision tree pruning). For decision tree
pruning repeat the following on a learned decision tree:

• Find a terminal test node n (only result leaves as
descendent)

• if test is irrelevant, i.e. has low information gain,
prune it by replacing n by with a leaf node.

Definition 89 (Significance). A result has statistical sig-
nificance, if the probability they could arise from the null
hypothesis (the assumption that there is no underlying
pattern) is very low (usually 5%).

Remark 8 (Sum of squared errors). A convenient mea-
sure of the total deviation is

∆ =

d∑
k=1

(pk − p̂k)2

p̂k
+

(nk − n̂k)2

n̂k

Definition 90 (χ2 pruning). Decision tree pruning with
Pearson’s χ2 with d−1 degrees of freedom for ∆ is called
χ2 pruning.

Definition 91 (IID). A sequence of Ej of random vari-
ables is independent and identically distributed (short
IID), iff they are

• independent,
i. e. P(Ej | Ej−1, Ej−2, . . .) = P(Ej) and

• independently distributed,
i. e. P(Ei) = P(Ej) for all i and j.

Definition 92 (Error Rate). Given an inductive learning
problem 〈H, f〉, we define the error rate of a hypothesis
h ∈ H as

#({x ∈ dom(f) | h(x) 6= f(x)})
#(dom(f))

Definition 93 (holdout cross-validation). Splitting the
data available for learning into a

• training set from which the learning algorithm pro-
duces a hypothesis h

• and a test set, which is used for evaluating h

is called holdout cross-validation (no peeking at test set
allowed).

Definition 94 (k-fold cross-validation). In k-fold cross-
validation, we perform k rounds of learning, each with 1

k
of the data as test set and average ove the k test scores.

Definition 95 (LOOCV). If k = #(dom(f)), then
k-fold cross-validation is called leave-one-out cross-
validation (LOOCV).

Definition 96 (Model Selection). The model selection
problem is to determine (given data) a good hypothesis
space.

Remark 9. We can solve the problem of ”learning from
observations f” in a two-part process:

• model selection determines a hypotheses space H,

• optimization solves the induced inductive learning
problem {H, f}.

Definition 97 (Model Selection Algorithm).

Function
Cross-Validation-Wrapper(Learner, k, examples)

Returns:
a hypothesis

Locals:
errT, an array, storing training-set error rates
errV, an array, storing validation-set error rates

1: for size = 1 to ∞ do
2: errT[size], errV[size] :=

Cross-Validation(Learner, size, k, examples)
3: if errT hast converged then
4: best size :=

the value of size with minimum errV [size]
5: return Learner(best size, examples)

6: end if
7: end for

7

Function
Cross-Validation(Learner, size, k, examples)

Returns:
average training set error rate,
average validation set error rate

1: fold errT := 0, fold errV := 0
2: for fold = 1 to k do
3: training set, validation set :=

Partition(examples, fold, k)
4: h := Learner(size, training set)
5: fold errT :=

fold errT set + Error-Rate(h, training set)
6: fold errV :=

fold errV set + Error-Rate(h, validation set)

7: end for

8: return
fold errT

k
,
fold errV

k

Remark 10. Partition(examples, fold, k) returns two

sets: a validation set of size |examples|
k and the rest (the

split is different for each fold value).

Definition 98 (Loss function). The loss function L is
defined by setting L(x, y, ŷ) to be the amount of utility
lost by prediction h(x) = ŷ instead of f(x) = y. If L is
independent of x, we often use L(y, ŷ).

Definition 99 (Popular general loss functions).

• absolute value loss: L1(y, ŷ) := |y − ŷ|

• squared value loss: L2(y, ŷ) := (y − ŷ)2

• 0/1 loss: L0/1(y, ŷ) := 0, if y = ŷ, else 1

Definition 100 (Generalization). Let ε be the set of all
possible example and P(X,Y) the prior probability dis-
tribution over its components, then the expected gener-
alization loss for a hypothesis h with respect to a loss
function L is

GenLossL(h) :=
∑

(x,y)∈E

L(y, h(x)) · P (x, y)

and the best hypothesis h∗ := argmin
h∈H

GenLossL(h).

Definition 101 (Emperical Loss). P(X,Y) is not know
so the learner can only estimation generalization loss:
let L be a loss function and E a set of examples with
#(E) = N , then

EmpLossL(h) :=
1

N

∑
(x,y)∈E

L(y, h(x))

and the estimated hypothesis ĥ∗ := argmin
h∈H

EmpLossL(h).

Remark 11. There are four reasons why ĥ∗ may differ
from f:

• realizablility: then we have to settle for an approx-
imation h∗ of f

• variance: different subsets of f give differents h∗ →
more examples

• noise: if f is non-deterministic, then we cannot ex-
pect perfect results

• computational complexity: if H is too large to sys-
tematically explore, we make due with subset and
get an approximation.

Definition 102 (PAC). Any learning algorithm that re-
turns hypotheses that are probably approximately correct
is called a PAC learning algorithm.

Definition 103. The error rate error(h) of a hypothesis
h is the probability that h misclassifies a new example.

error(h) := GenLossL0/1
(h) =

∑
(x,y)∈E

L0/1(y, h(x))·P (x, y)

Definition 104. A hypothesis h is called approxima-
tively correct, iff error(h) ≤ ε for some small ε > 0. We
write Hb := {h ∈ H | error(h) > ε}.

Definition 105. The number of required examples as a
function of ε and δ is called the sample complexity of H.

Definition 106 (Classification, Regression). We call an
inductive learning problem {H, f} a classification prob-
lem, iff codom(f) is discrete, and a regression problem
if codom(f) is continuous, i. e. non-discrete (usually
real-valued).

Definition 107. A univariate or unary function is a func-
tion with one argument.

Remark 12. A univariate, linear function f : R → R is
of the form f(x) = w1x+ w0 for some wi ∈ R.

Definition 108. Given a vector w := (w0, w1), we define
hw(x) := w1x+ w0.

Definition 109. Given a set of examples E ⊆ R × R,
the task of finding hw that best fits E is called linear
regression.

Definition 110 (Weight Space). The weight space is the
space of all possible combinations of weights. The weight
space of univariate linear regression is R2 (convex).

Figure 3: graph of the loss function over R2

Remark 13. The squared error loss function is convex
for any linear regression problem. There are no local min-
ima.

8

Definition 111 (Gradient descent algorithm). The gra-
dient descent algorithm for finding a minimum of a con-
tinuous function f is hill-climbing in the direction of the
steepest descent, which can be computed by the partial
derivatives of f .

Function Gradient-Descent(f,w, α)

Inputs:
a differentiable function f and
initial weights w = (w0, w1)

Returns:
a local minimum of f

1: repeat
2: for each wi do

3: wi ← wi − α
∂

∂wi
(f(w))

4: end for
5: until w converges

The parameter α is called the learning rate. It can be a
fixed constant or it can decay as learning proceeds.

Definition 112 (Decision Boundary). A decision bound-
ary is a line (or a surface, in higher dimensions) that sep-
arates two classes of points. A linear decision boundary
is called a linear separator and data that admits one are
called linearly separable.

Definition 113. For n training examples (xj , yj) we
have:

w0 ← w0 − α
∑
j

−2(yj − hw(xj))

w1 ← w1 − α
∑
j

−2(yj − hw(xj)) · xn

These updates constitute the batch gradient-descent
learning rule for univariate linear regression.

Definition 114. A multivariate or n-ary function is a
function with one or more arguments.

Definition 115. Given an example (x, y), the perceptron
learning rule is

wi ← wi + α · (y − hw(x)) · xi

Definition 116 (Logistic regression). The process of
weight-fitting in

hw(x) =
1

1 + e−(w·x)

is called logistic regression. There is no easy closed form
solution, but gradient descent is straightforward.

Definition 117. Mental activity consists primarily of
electrochemical activity in networks of brain cells called
neurons.

Definition 118. The animal brain is a biological neural
network

• with 1011 neurons of > 20 types, 1014 synapses and
1 ms to 10 ms cycle time.

• Signals are noisy ”spike trains” of electrical poten-
tial

Definition 119. The AI sub-field of neural networks
(also called connectionism, parallel distributed process-
ing, and neural computation) studies computing systems
inspired by the biological neural networks that constitute
brains.

Definition 120 (Neuronal Network). An artificial neu-
ral network is a directed graph of units and links. A link
from unit i to unit j propagates the activation aik from
i to j, it has a weight wi,j associated with it.

Definition 121 (McCulloch-Pitts). A McCulloch-Pitts
unit first computes a weighted sum of all inputs and then
applies an activation function g to it.

ini =
∑
j

wj,iaj

ai ← g(ini)) = g(
∑
j

wj,iaj)

If g is a threshold function, we call the unit a percep-
tron unit, if g is a logistic function a sigmoid perceptron
unit. A McCullorch-Pitts network is a neural network
with McCullorch-Pitts units.

Theorem 11 (McCulloch and Pitts). Every Boolean
function can be implemented as McCulloch-Pitts units.

Definition 122 (Feed-Forward). A neural network is
called a feed-forward network, if it is acyclic. We will
look at single-layer and multi-layer perceptrons.

Definition 123 (Recurrence). A neural network is called
recurrent, iff it has cycles.

• Hopfield networks have symmetric weights
(wi,j = wji) g(x) = sign(x), ai = ±1; holographic
associative memory

• Boltzmann machines use stochastic activation func-
tions, ≈ MCMC in Bayes nets

Definition 124 (Perception network). A perceptron net-
work is a feed-forward network of perceptron units. A
single-layer perceptron network is called perceptron.

Definition 125 (Hidden units). Layers are usually fully
connected. Numbers of hidden units typically chosen by
hand.

Definition 126 (Back-propagation). The back-
propagation rule for hidden nodes of a multilayer per-
ceptron is

∆j ← g′(ini) ·
∑
i

wj,i∆i

Update rule for weights in hidden layer:

wk,j ← wk,j + α · ak ·∆j

Remark 14. Most neuroscientists deny that back-
propagation occurs in the brain.

9

Definition 127 (Back-propagation learning algorithm).

Function Back-Prop-Learning(examples,network)

Inputs:
examples, a set of examples, each with input vector x
and output vector y
network, a multilayer network with L layers, weights
wi,j , activation function g

Returns:
a neuronal network

Locals:
∆, a vector of errors, indexed by network node

1: repeat
2: for each weight wi,j in network do
3: wi,j := a small random number
4: for each example (x,y) in examples do

/* Propagate the inputs forward to
compute the outputs */

5: for each node i in the input layer do
6: ai := xi
7: for I = 2 to L do
8: for each node j in layer I do
9: ini :=

∑
i wi,j · ai

10: aj := g(ini)

11: end for
/* Propagate deltas backward

from output layer to input layer */
12: for each node j in output layer do
13: ∆[j] := g′(ini) · (yj − aj)
14: for I = L− 1 to 1 do
15: for each node i in layer I do
16: ∆[i] := g′(ini) ·

∑
j wi,j ·∆[j]

/* Update every weight in network
using deltas */

17: for each wi,j in network do
18: wi,j := wi,j + α · ai ·∆[j]

19: end for
20: end for
21: end for
22: end for
23: until some stopping criterion is satisfied
24: return network

Definition 128 (Support Vector Machine). Given a lin-
early separable data set E the maximal margin separator
is the linear separator s that maximizes the margin, i. e.
the distance of the E from s. Find the optimal solution
by solving the SVM equation

argmax
α

(
∑
j

αj −
1

2

∑
j,k

αj αk yj yk (xj · xj))

under the constraints αj ≥ 0 and
∑
j αj yj = 0.

Definition 129 (Kernel Function). We call a function
(xj · xj)

2 a Kernel function.

Definition 130 (Polynomial Kernel). The function
K(xj ,xk) = (1+(xj ·xj))

d a Kernel function correspond-
ing to a feature space whose dimension is exponential in
d. It is called the polynomial kernel.

Theorem 12 (Mercer’s Theorem). Every kernel function
where K(xj ,xk) is positive definite corresponds to some
feature space.

10

