Fully specified control flow

Fully specified data management

What is it?
do this, then that
~_ Explicit programming
data x addedtodatay /
Pro/Con
O—
is typed

somethimes anonymous (e.g. 4*5)

Data
names a address ranges

declaration
imposes structure on address range

Variable is combination of name, type and value

Opposite to renaming Binds name to multiple objects

Context in which name is usded tells which actual object to use \ Overlading

Math operators usually overloaded /

Enumeration
Compound
Series of unkown number of elements, all of the same tpe Sequence / Lists
Array
Sets and Bags Data Structures
Records and Pointers \
Unions

todo /I Type Orthogonality

Type Equivalence \|_Types

Ty

C/C++ has coercions, ADA not

Coercions are implicit type conversions

Good/Bad? s N\ Coercions/Contexts/Casts]

(ADA) A: Integer := Integer(3.14) Conversions are function call that do the conversoins /
A named data-type defined solely by the operations on/for it Abstract Data Types (ADT) /
Generics /

Imperativ
types are inferred dynamic \
Typing
static)
Lvalue indicates memory address
Completely evaluate the RHS (right-hand-side)? \ Assignments: Lvalue = Rvalue
Rvalue delivers a vlaue and is in form of an expression /
if then else
switch / case
for Flow of Control
Repetition
Signals and Exceptions
Procedures have no return values]
~_ Procedures and Functions
Functions have return values /
Global
All global data in 'ABC' is persistent
Persistent
Survives program exits
is the process of attaching a use-name to a declaration
compile-time . Scope
static o
binding
run-time
dynamic
Python, Perl, shell-scripts
declaration-before-use
Scoping problems
forward-declarations
Pass by value
Pass by reference | Parameter Passing mechanisms
Pass by result /
Group of related types, variables, routines, etc. Modules and Packages
Program Composition
easier / more efficient implementation of some problems
Motivation
some simulations require independent workers >
virtual cpus
characteristics
shared memory / distributed memory ~ /
deadlock
livelock
loadbalancing problems
inconsistent states
data-race
really hard to find
shared memory
co-routines
control-flow ping-pong >
on top of functional / imperative lang.
parfor / par_begin + par_end
solves just the problem of allocating virtual processors parallel statements
doesn't help with structure parallelism
data-races still possible
child / parent
fork / join
processes
multi processor: in shared memory
™\ 'shared' variables
distributed: messages for reads/writes ~ /
producer / consumer
no language statement is atomic
lock / unlock {
semaphore
locking granularity
™\ problem mutex
cost of lock / unlock non-trivial ~ /
reads safe / writes require locking? — Copy-on-write synchronization
™\ locking strategy
optimistic vs pessimistic ~ /
condition synchronization
special abstract-data-type
data access just over operators (mutual exclusive) \ monitor | Parallel/Distributed
wait blocks until signal — wakeup 1 waiter condition variables / [
distributed computers communicate over explicit messages over a network

=distributed assignment statement)
message passing
messages are typed

~_ language level /
send and receive are blocking / |

by process name

by 1/0 object \/

wait for msg recv (=delay=slow)

naming sender / receiver

simple \ sync-send-recv

wait for fixed set / singleton msg

Sync vs async

send immediately — continue with next statement

recv: test if msg pending else error msg

alternative: create subprocess for each arriving msg within the receiver most common: explicit receipt
occam one-way: either input or output
used by Java RPC, corba + others
wait for return value RPC /1y, Principles of Programming Languages

one-way vs two-way

looks like a lokal procedure call (remote references)

two-way: call and get return value

marshalling & unmarshalling of parameters
used by Ada

rendezvous

uses mailbox principle

distributed database of tuples

in(tuple), out(tuple), read(tuple)

trees linda tupel space

lists |\ can be used to simulate complex data structures

arrays /

autonomous objects = actors = active objects (own virt./mobile processor)

actors communicate with msgs \ actor languages & agents

salsal

serializing ressources

set of statements whose effects are applied atomically

Transactions
nested transactions?

Domain Specific Languages

data-type has a value domain/range

Value domain has constraints to only 'desirable’ values \ Ideally: Problem = a data type

_J

data type: checker-board

valid: data-type + 8 queens X
desirable: 8 queens that do not attach j

Constraint Programming

Example: 8 Queens problem

On Activation: system searches for solution -> constrain solver

Similar to prolog

Whenever a variable changes, call ossociated function

Used inernally in constraint based languages or in debuggers

'Loops' from Xerox PARC Access-oriented Programming
Spreadsheets \ Example Languages /
JavaFX

sucessor is named 'J' All the world is an array in 'JPL'

Everything is a setin 'SETL'

Single-datastructure languages

Dataflow programming

All the world is a string

regular expressions Pattern matching Other Paradigms /I
Text processing: AWK /1 —
text replacement
/monkey/ { print "monkey"; print" } print has a monkey if the line contains a monkey pattern -> action 7
redirect i/o

global variables | Unix shell
Shell programmin
loops, conditions etc / } prog J

OO Shell Windows shell: Powershell

Database languages

Music languages

Correcteness criterion: What *and* When Real-time languages

Probabilistic / Fuzzy programming
Matlab
R
Octave /
Separate graphics from implementation
Silverlight \ GUI Programming

gavarx)

Aspect Oriented Programming

Math languages

Perl
www
Javascript >

Glue documentation and code together Literate Programming

Handles when/where to start programs and how to connect them
not really good for parallel programming

Distributed programming involves external tools ala netpipe, ssh, etc \ Unix shell scripting can be seen as coordination language

Perhaps we need an internet aware scripting language / Coordination Languages

Resource: Software component offering some services, with well-defined interfaces

compound task: multiple resources used Taks use resources \ Hermes

Service flows connect inputs to putputs upon event occurence /

Component based programming

Objective: Multi-process, multi-language communication
Object lookup via strings, called "IOR’ \ Corba
~
Problem: Plymorphic remote calls /
) /

use a different language to interface to a (module|packagellibrary

Interface Definition Languages

DSL for building routers/packet-processors

pull, push sometihng to/from queues to others can use it
Classifier: takes one packet and selects one of many outputs Router Building Language: Click

Scheduler: tackes a packet from one of many inputs and puts it one output \ Component types

Forward?Processor: Takes a packet from one input and puts it on one output

Are "autonomous fotare components"

not monolithic
no global view of whole system \ Multi-agent system: Multiple intelligent agents interacting with each other

no global coordinator for system / /

Agents

MAML: Multi-Agent Modeling Language

Language for querying XML formatted databases

Has: functions, conditional execution, looping, etc. XQuery

Future Paradigms

Return <E> statement add <E> to return set *but* does not immediately return control /

Based on ruby

~_ Framework with a domain specific language
Used for expressing tests in almost flued English ~~ / R-Spec

"Behavior Driven Development”

parallelism

trait (like java interface but may has implementations and inheritance)

object is set of traits with fields and mehtods \ strucuring

components / API

Extensibilty: A program can extend the base language

parametric types (like c++ template but not like java generics)

OO0 Language with
type intference where possible Fortress

top level functions (like static methods in java)

functions can have pre/post conditions

Mul if n is variable

function call if n is a function \ Juxtaposition. Context of symbols defines meaning. Example "n m"

append if n a string /

Almost anything allowed parallel

lightweight taks

async expression + statement executions
Set of extensions for Java for easier/better parallel and distributed programming

Immutable objects
java has arrays of arrays only multi-dim arrays j

X10

A reference may not be null or the type must be nullable for this to happen

Partitioned global address space

atomic blocks

Object Oriented J

Identify 'data’ rather than 'functions’

Encapsulate data in Objects

Objects can be categorized and reasoned over their types

Functions change often, data changes little

Problems
< Objects hide data from implementation

Binding Times:Objects decides which operation applies

Data encapsulation

Minimal language requirements / Inheritance

|
\

\ Dynamic Binding
Is Type of an Object "a class is the category of an object"

Internal variables are members (fields, methods)

Class == type ? Not every language looks at classes as types

Classes called 'meta classes'

Java: Reflection

Introspection

class constructors

f\ class fields

Data type that can refer to different types at runtime

Meta class contains information about

Polymorphic data type
Polymorphism /~ A__ Provide interface to allow manipulation of multiple data types

Polymorphic function Can operate on different argument types

Reference Semantics

'new' says nothing over 'where'

same language privde no 'delete’
Object Management

Java JDK: 16 bytes per boject
\ If most/everything is a object, the per-boject memory overhead will killus
N_ C++: 8 bytes (64bit)

Linearization

Inheritance Mixins

Inheritance as a Contract Trait: A partially implemented contract

Generics/Templates Ay generics instantiation o

Functional -

Logic

when is a set of rules a logic?

basic assumptions(axioms)

rules create facts from existing facts

programmer states problem, language/compiler figures out how to solve it

X a set of facts can only increase (once proven right, cannot prove false and retract the fact)

Predicate logic / {first,second} order logic / typed logic

search for the answer

apply rules to problem to reduce it to a solution

horn logic

k problem specific knowledge can be applied

log.programming a step towards declarative programming

condition is true if 0 or more other clauses are true

subset of predicate logic

a form of function: 0 or more arguments

predicates

argument variable or constant

search order is non-deterministic

relations

data structures

unification

system works back to prove query using facts and if-rules / clause can't be proven — try another clause: backtracking

\ all possible solutions are searched DFS = expensive

closed world assumption: all that is needed must be in rules/facts

head and goal match if equal / can be made equal by binding variables in head/goal

same predicate

same number of arguments

equality

each argument in head must be equal or made equal to goals by binding

if both are unbound, rename variable in goal

horn clause specifies relation between argument variables

lists

—
A\ facts as tuples

