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1. Image Formation

1. Image Formation

There are three major components that determine the appearance of an image.

• Geometry of the scene and of the projection to the camera

• Optical properties of the materials in the scene and of the sensors

• Illumination conditions

1.1. Pinhole Camera and Lenses

Most of the Time we use the model of the Pinhole Camera (figure 1.1). The hole
of the Camera is so small, that only one Light-Ray goes trough. Advantages of the

Abbildung 1.1.: Pinhole camera

Pinhole Camera:

• The Projection is very simple because only one lightray can pass the hole.

• clear one-to-one Relationship between the 3D-Point in the scene and the 2D-
Point in the Image

1
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• very crisp Images of stationary scenes

Disadvantages of the Pinhole Camera:

• needs a long exposure Time to get enough light on the sensors. This leeds to
a problem for scene which contains moving objects

• very blurred Images for scenes which are not stationary

A Solution for the stationary-scene Problem would be to open the Hole. But this
leads also to blurred Images (the clear 1:1-Relationship gets violated). A Solution is
to use a Lens fore more Light but preserve the 1:1-Relationship

Lens

The Lens gather a cone of Rays from a Point ~P to a single Point ~p on the Other
side (Figure 1.2). Thats why the Image is much brighter but not blurred.
Most of the time we use the model of a thin Lens (figure 1.2) Where the Center of

Abbildung 1.2.: thin-Lens

projection is center of the lens, the Point O and the optical axis is perpendicular to
the plane of the lens and passes trough the Center of Projection.
The property of the thin Lens is that their exists two focal Points ~Fl and ~Fr. The
focal Point is defined in that way, that all Rays which are parallel to the optical
Axis (which means they are perpendicular to the plane of the Lens) will converge at
a single Point, which is the focal Point of the Lens. The distance of the focal Point
to the center of the Lens is determined by f and is called focal length. This value is
a property of the Lens, e.g. if you use a 12 mm Lens you mean that f = 12 mm.
Now use that information to use a lens in the Context of Imaging.
On the right side from the Lens is the Sensor and on the left side is the scene.

2
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The Thin Lens Law (eq. 1.1) is derived from Figure 1.3 where you can find similar

Abbildung 1.3.: Lens

Triangles and combine the equations.

1
f

= 1
z + f

+ 1
Z + f

(1.1)

The Law express exactly the relationship between the distance in the scene and the
distance to the image plane.
The implication of this equation is:
if my Object that I’m Imaging is infinitely far away the distance where the object
is projected approaches the focal length.

(Z + f)→∞⇒ (f + z)→ f (1.2)

For all following applications we assume that (z + f) = f which is not true but
simplify the math.
Another important aspect is the effective diameter of a Lens d which is adjustable
with a iris.

Image Blur

In figure 1.4 you can see how the Iris can change how the image will be blurred.
There exists a lower bound for sharpness: If the Blur circle gets smaller than one
Pixel then your Image will not get sharper independent how much you close the iris

3
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Abbildung 1.4.: Lens

Depth of Field

The depth of field is the distance between the nearest and farthest points in the
scene that appear in focus. It is defined as the difference between the far and near
planes.

4
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1.2. Optical properties

All following discussions consider an infinitesimal area patch dA centered around a
point ~P . The d’s (like dA) express that we are handling with small values.

Foreshortening

A patch dA can have different orientations with respect to the image plane (figure
1.5). Every patch whose surface normal forms an angle with the optical Axis has a
foreshortened area. The tilted patch appears smaller to the viewer, i.e. foreshortened.

Abbildung 1.5.: Lens

Foreshortening cause different effects:

• How bright a patch appears to the viewer, E(p)

• How much light falls on a patch and hence how bright it is, L(P )

Solid Angle

In 3D you cant describe an Angle as easy as in the 2D World where you can use 2
Lines. Therefore its much easier to use the Patch dω on the unit Sphere to describe
the Angle.
The Solid Angle is a way to describe the Angle of the Cone from a Point ~P to the
patch dA.

• Step1: Draw a unit sphere centered at q

• Step2: Project dA on the perimeter of that sphere

• Step3: The area of that projection is the angle in steradians. It depends on:

– The angle φ between the normal to the patch dA and the radius that
reaches the center of dA.

5
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Abbildung 1.6.: The definition of Solid Angle

– The distance r between the center of the patch dA and the center of? t
he circle q

–
dω = dA · cosψ

r2 (1.3)

Light

We are interested in the Power of the Light which reaches our camera.

• Light: electromagnetc energie, Q

• Flux: Power carried by the EM radiation

P = dQ

dt
(1.4)

• Intesity: Power of light traveling in a specific direction

I = dP

dω
where dω is the Solid Angle (1.5)

Irradiance

Irradiance is the power of light falling on a surface patch (figure 1.7):

E = dP

dA
in

Watt
m2 (1.6)

It is independent of direction! If you want to measure the amount of Light which
is leaving (reflected) the Patch you use also the Irradiance.

6
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Abbildung 1.7.: Irradiance measure the concentration of Power on the Patch

radiance

Radiance is the power of light falling on a surface patch from a specific direction.

L = d2P

dω · dA · cos θ in
Watt

steradians ·m2 (1.7)

Radiance means look for the power (the d2 shows that the power is very small) with
respect to both the solid Angle and the foreshorten Area. Its also the measurement

Abbildung 1.8.: Radiance

if you want know the amount of Power which is leaving the patch in the direction
of a Point ~P .

Light-Surface-Camera

The whole Situation is drawn in figure 1.9 The Intensity which reaches the CDD-
Sensor at the Point ~p is described by:

I(p) ∝ E(p) ∝ L(p) (1.8)

Where E(~p) is the irradiance which reach the Sensor at Point ~p and L(~p) is the
radiance leaving the surface in the direction of the camera.
The Irradiance at Image Point ~p on the Image Plane (figure 1.10) is described by:

E = L
Π
4
d2

f2 cos4 α (1.9)

7
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Abbildung 1.9.: light-surface-camera

The irradiance incident on the Image Plane at the small Patch dI is proportional
to the radiance L leaving the Point ~P from the small patch dO reaching the lens
multiplied by the ratio Π

4 , by the effective Lens diameter d2, the focal Length f2

and by cos4 α. The cos4 α is an important Aspect:

Abbildung 1.10.: radiometry of the image formation process (only for understanding
no exam sketch)

That means if you use a Lens to take a Picture of a uniform Area, like a white
Wall, which is uniformly illuminated then the light is dimmed the more the Angle
α increases although the amount of light leaving the different Points from the Wall
are equal.
The white wall in your Image will not get the same Values although the White has
the same color and is uniformly illuminated !

8
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The next Important Topic is the relationship between light falling on a surface and
gets reflected.
Here we use the Bidirectional Reflectance distribution Function (BRDF)(for variable
see figure 1.11):

BRDF(ϑr, φr, ϑi, φi) = dLr(ϑr, φr)
dEi(ϑi, φi)

= reflected radiance L
incident irradiance E (1.10)

Abbildung 1.11.: BRDF Setup

1.3. Geometry and Coordinates

The Coordinate Origin is the Center of Projection. The pinhole camera model implies
perspective projection, i.e. all projection rays pass through a single point (COP).
For some Algorithm its easier to put a "Virtual Image Planeïn Front of the Lens at
the focal length f (in this case the Image is not flipped)

Extrinsic Camera Parameters

Extrinsic parameters: A set of geometric parameters that uniquely identify the trans-
formation between the unknown camera frame and a known reference frame (the
world reference frame). The relationship between the coordinates of a point P in
world Pw and camera Pc frames is:

Pc = R(Pw − ~t) (1.11)

9
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Abbildung 1.12.: World coordinate system and Camera coordinate system

• The relative position of the 2 optical centers

• The relative orientation of the two image planes

Intrinsic Camera Parameters

Intrinsic parameters: A set of geometric parameters that link the pixel coordinates
of an image point to the corresponding coordinates in the camera reference frame.

Radial Distortion

Abbildung 1.13.: Radial Distortion

The amount of distortion depends on the distance between the principal point and
the pixel of interest. The distortion can be corrected.

• Pixel size

• Focal length

• Principal point

10
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2. Image Capture

Most color cameras give a triplet of color values per pixel. Either a separate chip is
used per color, or a filter composed of a mosaic of smaller individual color filters is
laid over the CCD chip (figure 2.1).

Abbildung 2.1.: Color Camera Systems

11
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3. Noise, Filtering and Smoothing

3.1. Noise

Different Effects create Noise in our Images:

• Photon noise: variation in the #photons falling on a pixel per time interval T

• Saturation: each pixel can only generate a limited amount of charge

• Blooming: saturated pixel can overflow neighboring pixel

• Thermal noise: heat can free electrons and generate a response when there is
no real signal

• Electronic noise

• Burned pixel

• Black is not black

• nonlinearity between the sensor response and the incoming #photons

The Detector Noise can be modeled as an independent additive noise which can be
described by a zero-mean Gaussian.

3.2. Filtering

The Goal of Filtering, in the special Case of Noise is to clean the Image:

Noisy Image in −→ Filter −→ Clean Imageout (3.1)

or more General for a wide range of Transformations(which is interchangeable with
Filter):

Image in −→ Filter −→ Imageout (3.2)

From the mathematically Point of View a Filter H can be treated as a function on
an input Image I:

H(I) = R (3.3)

12
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Linear Transformation / Filter

A transformation H is linear of, for any inputs I1(x, y) and I2(x, y), here input
images, and for any constant scalar α we have:

H(α · I1(x, y)) = α ·H(I1(x, y)) (3.4)

and
H(I1(x, y) + I2(x, y)) = H(I1(x, y)) +H(I2(x, y)) (3.5)

The Interpretation is that a scaling of the input corresponds to a scaling of the
the output and Filtering an additive image is equivalent to filtering each image
separately and then adding the results.

Shift-Invariant Transformation

A transformation H is shift-invariant if for every pair (x0, y0) and for every input
image I(x, y), such that

H(I(x, y)) = R(x, y) (3.6)

we get
H(I(x− x0, y − y0)) = R(x− x0, y − y0) (3.7)

which means that the filter H does not change as we shift it in the image. In other
words the Filter is independent of the position and behaves always the same.
For Example calculating the mean of the Neighborhood and set the current Pixel to
that Value is a shift-invariant Filter. But calculating the median of the Neighborhood
and set the current Pixel ti that Value is not a shift-invariant Filter because it
depends on the Values which Neighborhood Pixel the Filter choose, and that is
not similar behavior too chose one time the Pixel-value above- and one time the
Pixel-value under the current Pixel as the target Value.

Convolution

Convolution is if a transformation respectively a Filter is linear shift-invariant then
one can apply it in a systematic manner over every pixel in the image. Convolution
is defined as:

R(x, y) =
∞∑

i=−∞

∞∑
j=−∞

H(x− i, y − j)I(i, j) (3.8)

and is denoted as:
R = H ∗ I (3.9)

13
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Another look at Convolution is that filtering often involves replacing the value of a
pixel in the input image F with the weighted sum of its neighbors.
Represent these weights as an image H. In this case H is called the Kernel. The
operation for computing this weighted sum is called convolution: R = H ∗ I.
convolution is:

• commutative
H ∗ I = I ∗H (3.10)

• associative
H1 ∗H2(∗I) = (H1 ∗H2) ∗ I (3.11)

• distributive
(H1 +H2) ∗ I = (H1 ∗ I) + (H2 ∗ I) (3.12)

An Example for such a Filter is a simple Averaging Filter which is smoothing the
Image:

H =


1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

 (3.13)

A much better smoothing Kernel is a Isotropic Gaussian Filter which increase the
weight the closer the Pixels are to the Center. The weights in the Kernel H are
assigned according to the Gaussian function(the higher σ the more it looks like the
Kernel above):

H(i, j) = e−
(i2+j2)

2σ2 HGauss =


1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 (3.14)

All Values in the Kernel sum up to 1 !(the Pixel wont get Brighter or Darker with
respect to the Image)
Convolution can be very slow cause you have to process your Kernel for each Pixel
in the Image. But the convolution has a nice property which can be used to speed
up the calculation.
You can transform the Image I and the Kernel H with the Fourier-Transformation

14
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into the frequency Domain. If you have done that the convolution ends up as a
simple multiplication.

R = H ∗ I Fouriertransform of−−−−−−−−−−−−→
H and I

R̂ = Ĥ · Î inverse Fouriertransform−−−−−−−−−−−−−−−→
of R

R (3.15)

With using FFT this is in a lot of cases much faster than the convolution in the
spacial Domain!
In Figure 3.1 you can see based on the Filters in the frequency Domain why the
Gaussian-Filter has no "ringingëffects like the Box-Filter respectively the Mean-
Filter (where all weights are the same) Gaussian Filtering works very well for images

Abbildung 3.1.: Frequency Response of Box-Filter(left) and the Gaussian-
Filter(right)

affected by Gaussian noise but not very good for images affected by Salt & Pepper
noise.
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4. Edge Detection

An edge is:

• a Significant change in intensity values

• Related to object boundaries, patterns (brick wall), shadows, etc.

• a property attached to each pixel

• calculated using the image intensities of neighboring pixels

Example of 1D Edges (figure 4.1):

Abbildung 4.1.: Different kind of Edges

4.1. Edge Detection Steps

1. Noise Smoothing

– Suppress as much noise as possible without destroying edge information

2. Edge Enhancement

– Design a filter that gives high responses at edges and low response at
non-edge pixels.

3. Edge Localization

– Decide which high responses of the edge filter are responses to true edges
and which ones are caused by noise or other artifacts

16
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The Key-Concept of detecting Edges is that the detection is equivalent to detecting
changes in intensity Values. When we differentiate the Image we can detect these
Changes.
If we take the first derivative we get an Gradient-based edge detector.
If we take the second derivative we get an Laplacian edge detector, which looks for
zero-crossings instead of extrema, which is a easier Task and so a faster computation.

4.2. Gradient-Based Edge Detection

The gradient vector G(x, y), at an image pixel I(x, y) is:

G(x, y) =
(
δI(x, y)
δx

,
δI(x, y)
δy

)
= (Ix(x, y), Iy(x, y)) (4.1)

The gradient vector points in the direction of maximum change. The Orientation
(its angle with the x-axis) can be calculated by:

θ = arctan
(
Iy(x, y)
Ix(x, y)

)
(4.2)

Our Images we use are discrete and not continuous. Therefore we get a very simple
Kernel H which detect edges based on the first derivative:

Hx =
[
−1 +1

]
Hy =

−1

+1

 (4.3)

This Kernel is sensitive to noise and evaluate at half-pixel locations. To handle this
Problems prewitt and sobel improve the Kernel:

Prewitt Kernel:


−1 0 +1

−1 0 +1

−1 0 +1




−1 −1 −1

0 0 0

+1 +1 +1

 (4.4)

Sobel Kernel:


−1 0 +1

−2 0 +2

−1 0 +1




−1 −2 −1

0 0 0

+1 +2 +1

 (4.5)
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Gradient Edge Detection Process

• Compute Ix = Hx ∗ I

• Compute Iy = Hy ∗ I

• Compute ‖G(x, y)‖

• If ‖G(x, y)‖ ≥ t
then pixel (x, y) is an edge-pixel
compute the angle θ for that pixel

4.2.1. Canny Edge Detection

The Canny Edge Detector based on gradient edge detection and is a optimal Edge
Detector. Canny describe when an edge detector is optimal:

• good detection: find as many real edges as possible

• good localization: estimate the position of the edge as close as possible to its
location in the image

• minimal (single) response: detect each edge only once (no ghost or ringing
effects)

The Canny edge detector uses as input the output from the gradient edge detectors
like Sobel or Prewitt.
There are two main steps:

1. Non-maximum suppression

Non-maximum suppression is an edge thinning technique and represents the mini-
mal response criterion.
Non-maximum suppression examines parallel edges in small neighborhood and eli-
minates the ones with the smaller (not max.) gradient magnitude

Hyteresis Thresholding

After the Non-maximum suppression there are still edges which are responses to
noise. Canny removes these ghost edges using thresholding.
To avoid Problems which occurs by using a too low (still ghost edges) or too high
(remove real edge) Canny uses two thresholds.
The main Idea is:
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• Assumption: Important edges should form continuous curves in the image.

• Idea: Follow a faint direction of a given line and discard a few noisy pixels that
do not constitute a line but have produced large gradients.

• Do this by using a high threshold.

• After the high thresholding we are left with edges which are most probably
real edges.

• Do a second pass tracing (following) the curves. During the tracing use the
lower threshold. If an edge strength is larger than the lower threshold it is a
real edge.

4.3. Second Order Derivative Edge Detectors

Another way to detect an extremal first derivative is to look for a zero-valued second
derivative. The Laplacian is a function that gives the magnitude of change without
direction (result is scalar):

∇2(I(x, y)) =
(
∂2I(x, y)
∂x2 + ∂2I(x, y)

∂y2

)
(4.6)

In the discrete World the Laplacian Kernel looks like:

HLap =


0 1 0

1 −4 1

0 1 0

 HLap =


1 4 1

4 −20 4

1 4 1

 (4.7)

The result is an new image with negative values on one side of the edge and positive
values on the other side of the edge: The computions of the second order derivative

Abbildung 4.2.: Laplacian
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is very sensitive to noise, cause of that smooth the Image first with a Gaussian and
then apply the Laplacian. Both are Filters so we can combine them and we get the
Laplacian of Gaussian:

RLapEdge = (HLap ∗HGauss) ∗ I (4.8)

the function of the combined Filters ("mexican hat") is:

∇2(Gauss(x, y)) = ∇2(e−
(i2+j2)

2σ2 ) = (x2 + y2 − σ2)
σ4 · e−

(i2+j2)
2σ2 (4.9)

the Kernel from the Laplacian of Gaussion looks in the discrete World like:

HLoG =



0 0 −1 0 0

0 −1 −2 −1 0

−1 −2 16 −2 −1

0 −1 −2 −1 0

0 0 −1 0 0


(4.10)

4.4. Gaussian Pyramid

Gaussian Pyramid is a hierarchy of low pass filtered versions of the original image
(figure 4.3). Successive Layers correspond to lower frequencies (larger σ). Each suc-
cessive layedr is also sub-sampled version of the previous level. Sub-sampling is ty-
pical by a factor of 2 in each coordinate direction. This is a form of multi-resolution
analysis.
Let l be the level of the Gaussian Pyramid, then (k is typically 2):

Gl(x, y) =
k∑

m=−k

k∑
n=−k

HGauss(m,n) ∗Gl−1(2x+m, 2y + n) (4.11)

This function is the REDUCE operation:

Gl = REDUCE(Gl−1) (4.12)

The Pyramid is recursively constructed:

G0 = I Gl+1 = REDUCE(Gl) (4.13)
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If you expand the images to the Original size you can calculate the difference. If you
do that and store the difference between two successive levels then you can build
another type of pyramid based on these difference images, called the Laplacian
pyramid.

Abbildung 4.3.: Gaussian Pyramid
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5. Texture

In CV we talk only about 2D-Texture. A Texture is a repeatable pattern of small
elements. If you have for example only one leaf or one Brick that is not a Texture.
A Brick wall or stripes are Textures!
A Texture itself can vary from highly regular to purely stochastic. Textons are the
small elements that keep repeating themselves in a regular pattern. They can be
thought of as the atomic untis of texture.
Textures are used for:

• Image Segmentation
Since texture is an important clue in images, the goal of image segmentation
is to identify continuous regions of uniform texture.

• Texture Synthesis

• Shape from Texture
The key idea behind shape from texture is to exploit texture deformations to
infer 3D shape.

5.1. Image Segmentation

The Goal is to Segment an image in disjoint regions, where each region has a distinct
texture. To Achieve that we need to identify unique textures ot at least distinguish
one form of texture from another.
Its very difficult to identify Texture in a Image because you don’t know what in the
Image a Texture is. It’s something like trying to read Language without knowing
the alphabet.
To come up with a Solution you should think of popular subelements and then design
filters which will produce a high response if a subelement is present.
The Human vision suggests that spots and bars are different scales and orientation
are valid filters for finding subelements.
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Spot-Filter

The Goal is to design a filter that when it is superimposed with a spot it will give
a high response. A common spot filter is a weighted sum of symmetric Gaussians
(figure 5.1):

S = w1G(σ1) + w2G(σ2) + w3G(σ3) where G(σ) = e
−

(
x2+y2

2σ2

)
(5.1)

Abbildung 5.1.: Example Spot Filter

Bar-Filter

The Goal is to design a filter that when it is superimposed with a spot it will give
a high response. When we stretch the Gaussian in one direction it becomes a ridge,
a bar (figure 5.2):

S = w1G(x, y1, σx1 , σy1) + w2G(x, y2, σx2 , σy2) + w3G(x, y3, σx3 , σy3) (5.2)

where G(x, yc, σxc , σyc) = e
−

(
x2

2σ2
x

+ (y−yc)2

2σ2
y

)
(5.3)

To find all orientations of bars and not only Horizontal, so use bar filters with

Abbildung 5.2.: Example Bar Filter

different Orientations

Filter Bank

Studies have shown that we need at least 6 orientations. Use a lot of dots and bar
filters with different Orientation and Scaling is called a filter Bank (figure 5.3).
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Abbildung 5.3.: minimal Filterbank

5.2. Texture Detection

5.3. Texture Mapping

wenn ich noch lust hab
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6. Color

There are inaccuracies in using the Word Color. You can use the word color to refer
to the color you perceive an object has. Or you can use the word color to describe
the part of the visible light that is not absorbed by the object (physical description).
A very Important aspect is that the Color depends also on the Illumination. There
exists different types of light sources and they differ in their spectrum. If you program
an Algorithm you should consider these fact. There are two main groups:

• Indoor Illumination

• Outdoor Illumination

A mentionable Term is the Black Body Radiator. The spectrum of a Black Body
Radiator depends only on temperature. Many lightsources are such Black Body Ra-
diators. The Sun, for example, is a black Body Radiator a fluorescent lamps are not.

6.1. Trichromacy

Instead of using the full spectrum we try to describe this spectrum with a combina-
tion of three basic colors. So most algorithms in CV and CG operate in trichromatic
space.
In other words, any light T can be described as:

T = w1P1 + w2P2 + w3P3 where w1, w2, w3 ≥ 0 (6.1)

Almost any perceived color can be expressed as a linear combination of three primary
colors. The three Colors which are used as the primary colors have to fulfill the
following conditions:

• independent

• span the space of perceived color
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6.1.1. Grassmann’s Law

The theory of mixing color is called Grassman’s Law:

• Consider 2 colord lights Ta and Tb:

Ta = wa1P1 + wa2P2 + wa3P3 (6.2)

Tb = wb1P1 + wb2P2 + wb3P3 (6.3)

1. Law Mixing the lights = Mixing the wheights (matches)

Ta + Tb = (wa1 + wb1)P1 + (wa2 + wb2)P2 + (wa3 + wb3)P3 (6.4)

2. Law If two lights are matched by using the same weights (matches) then they
must be the same:

wai = wbi , ∀i⇒ Ta = Tb (6.5)

3. Law Matching is linear:

kTb = kwb1P1 + kwb2P2 + kwb3P3 (6.6)

Simplified Model for Pixel Response

There exist a simplified model for the Pixel response in a Camera:

pk(~x) = gd(~x)dk(~x) + gs(~x)sk(~x) (6.7)

where:

• dk is the image value for the kth color filter of the diffuse reflection of an
equivalent flat frontal surface viewed under the same light.

• gd is a geometric term that captures the variation in brightness caused by
changes in the surface orientation.

• sk is the image value for the kth color filter of the specular reflection of an
equivalent flat frontal surface viewed under the same light

• gs is a geometric term that captures the variation in the amount of energy
that is specularly reflected.

26



CV Summary

7. HoughTransform

7. HoughTransform

All features before (like: edges, texture,color) are local. But Textons and color can
be used for mre general scene analysis or Edges are typically convey geometry in-
formation.
The Houghtransform generalize from edge-pixels to more abstract geometry shapes
(lines, circles,etc)

7.1. Template Matching

Is one Method (not the HT) to find geometry shapes. It works in that way that
you create a template (mask, mini-Image) of an object(e.g. curve) that you are
looking for. Convolve the image with that template, so that exact match give a high
response. A problem is that you need to create an exemplary mask that is accurate
and general enough. The advantage of that method is that the Idea generalizes to
arbitrary shapes.

7.2. Hough Transform

The basic Idea of the HT is to measure a distinct characteristic/property(for a line:
slope and intersect) of the shape. If a pixel has this characteristic/property, then it
is highly probable that it belongs to the shape you are looking for.
The advantages of the HT are:

• Edges need not be connected

• The object (line,circle) may be only partially visible

HT for line Detection

The HT can be generalized, but to understand how its works is easier to look at
core concept.
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• Each white pixel in Figure 7.1, if considered in isolation, could lie on an infinit
number of straight lines (e.g. yellow lines)

• Each pixel votes for every line it could be on

• the line(s) with the most votes win. In the case of 7.1 the line which is con-
structed by the white pixel gets #whitePixel votes in contrast to the yellow
lines with one vote

Abbildung 7.1.: HT - Line Detection

Step 1: Measure property

The equation of a line is: y = mx+ c. A line is uniquely identified by the parameter
pair (m, c). A line in the image space I is represented by a single point in the
parameter space(respectively Hough Space) (m, c)-space (figure 7.2). A Point (xi, yi)

(a) Image Space (b) Image Space

Abbildung 7.2.: HT - Line Detection

can be seen as a point of:

either line yi = mxi + c [Image Space] (7.1)

or a line c = −xim+ yi [parameter Space] (7.2)
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Step 2: Count

Create a Accumulator Array A(m, c) and initialize it with Zero. Then for each image
edgel (in figure 7.1 the white Points) compute for each m

c = −xim+ yi (7.3)

and increment count in the Accumulator Array at A(m, c) = A(m, c) + 1. Take
the local maxima in A(mmax, cmax) (the red two in 7.4) and you find your line
y = mmax · xi + cmax.

(a) Image Space (b) Accumulator Array

Abbildung 7.3.: HT - Line Detection

Foot of the normal Representation

There are two problems in the Method above:

• 1. we have a infinite number of lines where a Point can lie on but we have a
finite Accumulator Array

• 2. a vertical Line can not be represented with a Function.

The solution is to use Another representation of a line:

ρ = −x cos θ + y sin θ bounded parameter space:
0 ≤ θ ≤ 2π

0 ≤ ρ ≤ ρmax

(7.4)

In 7.5 are examples for the HT on an Image with a noisy Line (left) and on an
Image without any Line.
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(a) Foot of the Nor-
mal

(b) appropriate parameter
Space

Abbildung 7.4.: HT - Line Detection

(a) Noise Lines + Vote (b) No Lines + Vote

Abbildung 7.5.: HT - Line Detection

HT - more then Lines

The HT can more detect than Lines. If you find a characteristic/property which is
linked to the object you are looking for then you can use he HT to find it. But there
are limitations cause of the Power of the Computer, to use more than 3 variable are
not common. The calculation is to expensive.
A circle can be uniquely identified by the radius and the location of its center. For
circle detection of known radius r, a point in image space become a circle in Hough
Space (A(a, b)), if the radius unknown you get a 3D Hough space (A(a, b, r). The
Houghtransform could also use the orientation of the gradient to find the circles.
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8. Deformable Contours

The Goal of deformable Contours is to find a contour that best approximates the
perimeter of an object.
The main Idea is that the image information (usually edges) guide an elastic band
that is sensitive to the intensity gradient (or other image features). The band is in-
itially located near the image contour of interest and the band is deformed, pulled,
by the edges (or other information) to fit the target contour.
The edge-based deformable contours explicitly use the intensity gradient of the image
(not like HT which concentrate on existence of edge Points).

8.1. Procedure

• A contour (open or closed) is placed near the image contour of interest.

– The initial placement can be done manually or be the output of some
other algorithm.

– ?Seeding? the snake (step 1) can be critical in the success of finding the
contour

• During an iterative process, the active contour is attracted towards the target
contour by various forces that control the shape and location of the snake
within the image

• The active contour deformation ends either when it becomes relatively stable
(stops to evolve), or after a fixed number of iterations.

8.2. Forces

The deformation of the contour will be done by an weighted sum of three Forces:

• Continuity term (force), Econt which encourages continuity of the contour

• smoothness term (force), Ecurv which encourages smoothness in the contour
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• edge attraction term (force), Eimg whichpulls the contour towards the closest
image edge

The energy terms can be separated into internal energy (Econt, Ecurv) and external
energy (Eimg)
The contour itself is given in parametric form:

c(s) = (x(s), y(s)) (8.1)

where x(s) and y(s) are the coordinates along the contour and s is the arc length s ∈
[0, 1] (figure 8.1) Often the contour is not continues its represented by N points on

Abbildung 8.1.: HT - Line Detection

the contour. The contour is deformed by using an energy functional which measures
the appropriateness of the contour:

E = min
N∑

i=1
αiEcont + βiEcurv + γiEimg (8.2)

where α, β, γ control the relative influence of the corresponding energy terms and
can vary along c(s)(for each of the N points on the contour).
Good solutions correspond to minima of the functional!

Continuity Term

The continuity term Econt encourages continuity of the contour. It is based on the
first derivative. The Term is defined as:

Econt = (d̄− ||pi − pi−1||)2 where d̄ = 1
N − 1

N∑
i=2
||pi − pi−1|| (8.3)

The term d̄ is introduced that the Term try to move the Points p of the contours are
compact and roughly the same distance between each other(without d̄ the points
would over represent the contour at some points and at other the points would miss).
For a compact form we want to minimize the distance of the points between each
other, so the Continuity Term needs to be minimum.
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Smoothness Term

The smoothness Term Ecurv encourages smoothness of the contour and is based on
the second derivative. The Term is defined as:

Ecurv = ||pi+1 − 2pi + pi−1||2 where i = 2, 3, ..., N − 1 (8.4)

We want to avoid oscillations so we have to penalize high curvature which mean we
have to minimize the smoothness Term.

Edge Attraction Term

The edge attraction term Eimg attracts the contour towards an edge-defined target
contour and is defined as:

Eimg = −||∇I|| (8.5)

where ∇I is the spatial gradient of the intensity image I, computed at each contour
point. The minus is the consequence we want to minimize the Energy Function. The
closer the contour is to the edge the smaller (negative) will be the Force.

8.3. Minimization

There are different minimization concept which can be used.

Greedy Algorithm (special for deformable contours)

• 1. Greedy minimization: move Point pi within a small neighborhood to the
point that minimize the energy function.

• Corner Elimination: look at the smoothness value of all p′is, and set the weight
of the Point with the highest Value for this Iteration to Zero. (let move the
other points)

• Iterate until convergence

The Forces must be normalized (divide by the largest value in the neighborhood).
There is no guarantee of convergence to the global minimum and the method is very
dependent on the Initialization. The iteration until convergence is proportional to
the number of Points on the contour.
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9. Binocular Stereo

The Goal of Binocular Stereo is to infer information about the 3D structure and
distances of a scene from two or more images taken from different viewpoints. There
exists two major Problems:

• Correspondence problem

• Reconstruction

When the Correspondence Problem is solved we can compute th relative shift, the
disparity, between the two projections. The disparity data is then converted to a 3D
map. For this transformation we need some knowledge about the geometry of the
stereo system.

9.1. Basic Binocular Stereo Setup

In 9.1(a) you can see a simple Binocular Stereo Setup. There exists two image planes
(lie on the same plane) which optic axes are parallel to each other (dashed lines).
The Point Q in the scene is represented in the left Image as the point ql and in the
right Image as the point qr. Accordingly for the Point P .
When the correspondence is correct, which means ql and qr are matched together
(same for pr, pl), then the intersection of the corresponding rays gives the 3D location
of scene point that generated the projections (i.e. Q and P accordingly 9.1(a)). If the

(a) Correspondence and
Triangulation

(b) Impact of a wrong
Correspondence

(c) Noise and Corre-
spondence

Abbildung 9.1.: HT - Line Detection

Correspondence is wrong, e.g. match pl and qr, the intersection of the corresponding
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rays result in a wrong 3D location (figure 9.1(b)).
The noise in the image capture process introduces inaccuracies in the projection rays
that directly affect the triangulation process (figure 9.1(c)).

Triangulation

To recover the 3D Information of a Point we can use the Setup we introduced above.
Define the source our main coordinate system at the Center of Projection of the left
Image(figure 9.2).
The depth can be calculated with (based on the Triangles in 9.2):

Z = f
T

xL − xR
= f

T

d
(9.1)

The distance between the Center of Projections are a main variable in this trian-

Abbildung 9.2.: The triangulation

gulation equation.Due to this the distance T have a huge impact.
If you use a small Baseline (figure 9.3(left)) you get a large depth error because all

Abbildung 9.3.: Small Baseline (left); Large Baseline(right)

Points of that surrounded Area are projected to the same pair of Pixels-
If you use a large Baseline (figure 9.3(right)) you get a much better depth-value but
the scene that both cameras can see gets smaller and another big problem is that
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the cameras see a point from a different perspective which could lead to the problem
that the same Point appears differently in the Images (due to reflectance, etc.).
A Solution is Vergence ! This increases the field of View and increases the accuracy
in the correspondence.

Abbildung 9.4.: Vergence

Stereo Image Rectification

So far we have assumed that we have parallel optic axes and a scan-line coherence.
But such a setup can lead to inaccuracies.
To have a more usable setup we allow the Image plane to violate these assumpti-
ons(figure 9.5). As a preprocessing step we project the real image planes (the grey
ones) onto virtual image planes (the yellow ones). Then we can use all the math
from above for these virtual rectified (virtual) image planes.

Abbildung 9.5.: Rectification
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10. Structured Light

Structured Light is also a method to reconstruct 3D-Information. But in contrast to
the passive stereo concept, structured Light is a active method.

10.1. Parenthesis: active vs. passive

• Passive (stereo, motion)

– easy data collection (just take pictures)

– non-instrusive setup

– can produce dense depth maps

– may not work for featureless surfaces

• Active (range scanning, ToF, structured light)

– more robust correspondence

– can recover data even at featureless parts of the scene

– higher accuracy but possibly sparser deph maps

– more complex hardware

– instrusive (active illumination may alter scene appearence)

– limited range of deph

Both passive and active methods follow the same underlying principle of ray trian-
gulation.
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10.2. Basic concept

The triangulation idea can be applied in a setup that uses a projector (or laser be-
am) and a camera, instead of 2 cameras. The ray og the controlled incident light
replaces the projectionen of the second Camera.
The Object surfaces are illuminated with a known pattern if light, this structured
light is the main source of the illumination. Depending on the shape of the object the
pattern is distorted, this distortion of the known pattern is captured by the camera.
Prior knowledge that is used: known geometry of light pattern and known relative
position of light an camera.
To solve the correspondence Problem with this light pattern is much easier (figure
10.2) The pattern can be a single laser stripe or a very complex stripe pattern with

(a) Correspondence with passiv
(stereo) Method

(b) Correspondence with active
method

different color in it. The advantage of the complex colored pattern is that you need
very few images (one or two). But you need a more complex correspondence algo-
rithm.
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11. Multiview Geometry

Still we have not solved the correspondence Problem. To solve that Problem we
introduce Epipolar Geometry.

11.1. Epipolar Plane

The Epipolar Plane (Γ) is defined by the two Center of Projections O and O′ and a
point in the scene P (figure 11.1).
The Epipolar Line (OP,O′P ) is the intersection of the epipolar plane with the

Abbildung 11.1.: The triangulation

image plane.
The epipole (e, e′) is the intersection of the baseline with the respective image plan.
epipolar constraint:

If both p and p′ are projections of the same point P , then p and p′ must lie on the
same epipolar plane. They must lie on epipolar lines l and l′ respectively.

The impact of this constraint has a fundemental role in stereo and motion analysis.
It reduces the correspondence problem to a 1D search along conjungate epipolar
lines. Given an image point p, one needs to only search in the epipolar line l′ for the
corresponding point p′.
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Required Knowledge

In order to know the epipolar geometry, we need:

• The location of the two Center of Projections

• the location of the two image planes

• The orientation of the image planes

• Intrinsic camera characteristics

– Pixel size

– Focal length

– Principal point

• Extrinsic camera characteristics

– The relative position of the 2 optical centers

– The relative orientation of the two image planes

Buil up the Math

To develop a mathematical form of the epipolar constraint we assume that the int-
rinsic parameters of each camera are known. the goal is to express algebraically the
epipolar constraint, so that it can be incorporated in our correspondence, stereo and
motion algorithms.

1. Epipolar Plane Constraint

The vectors ~Op, ~O′p′ and ~O′O are all co.planar, this means they must satisfy the
following equation:

~Op · ( ~O′O × ~O′p′) = 0 (11.1)
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2. Relating the two Camera coordinate systems

Each image is unaware of the other camera, we need to express everything in terms
of a single coordinate system. Without loss of generality we choose as the reference
coordinate system the one of the camera with COP O.
The baseline T shows you how the COP O′ can move to COP O (figure 11.2):

~t = ~O′O (11.2)

After applying the translation t to every point p′ of the camera with COP O′ the
coordinate have the same origin (dashed orange rectangle π′). After the translation

Abbildung 11.2.: Way to one coordinate System

the coordinate systems are not totally matched, we need to rotate the system of the
camera with COP O′ (green arrow in 11.2). We need a rotation Matrix R to align
the two coordinate systems (dashed green rectangle π′).
We can now rewrite the epipolar plane constraint in the coordinate system of camera
O:

~Op · ( ~O′O × ~O′p′) = 0⇒ ~p · (~t× ~(Rp′)) = 0 (11.3)

rewritten as a series of matrix multiplications:

pT (t×R)p’ = 0 (11.4)

This will be represented more compactly as:

pTEp’ = 0 where E =
[
tx
]
R with

[
tx
]

=



0 −tz ty

tz 0 −tx

−ty tx 0


(11.5)
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where E is called the essential matrix(tx is the matrix representation of the cross
product with t).
The equation pTEp’ = 0 is the algebraic representation of the epipolar constraint.
For the uncalibrated case, the matrices (rotation and translation) that express point
p′ in term of the coordinate system of camera O must also incorporate the intrinsic
camera parameters:

pTK−TEK’−1p’ = 0 or pTFp’ = 0 (11.6)

where F = K−TEK’−1 and K and K ′ are the intrinsic parameter matrices of came-
ras O and O′. F is called the fundamental matrix.

11.1.1. Key Points of Epipolar Geometry

For each pair of corresponding points p and p′ in camera coordinates, the following
relationship holds:

pTEp’ = 0

E is the essential matrix

For each pair of corresponding points q and q′ in pixel (image) coordinates the
following relationship holds:

pTFp’ = 0

F is the fundamental matrix

11.1.2. Estimation of E (or F)

Recover E (or F) once, keep the camera setup stable and then reuse it for every
scene point.
To estimate the matrices you can basically use SVD, to take into account that there
exists noise, numerical errors, etc use the Longuet-Higgins Eight-Point Algorithm to
estimate E or F.

• you need 8 correspondece Points

• build up a linear equation system

• apply SVD

• Column of the singular value 0 is the solution for F, but cause of noise, nume-
rical and other influences there exists in the most cases no 0 singular value
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• apply SVD on F = UFDFV
T

F and creating D′ = DF with the smallest singular
value of DF replced by 0.

• get new estimate of F : F ′ = UFD
′V T

F
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12. Motion

In Computer Vision the Term motion is used to refer to images taken over time, the
two main goals in the Topic of motion analysis are:

• Detect which objects are moving and in which direction

• extract shape information if possible

Motion analysis typically involves motion detection, the detection and localization
(tracking) of moving-objects and derivation of 3d object properties.
An image sequence is a series of N images acquired at discrete time instants tk =
t0 + (kδt), where δt is a fixed time interval and k = 0, 1, ..., N − 1. δt is very small
as a consequence the apparent displacement between frames is at mist a few pixels,
this observation simplifies the correspondence problem.
A very simple an basic Idea to detect motion is to subtract consecutive images from
the frames. If there is a difference, then there is motion. But there are some effects
that you should keep in mind.
You cannot distinguish between the object moved to the right or the camera moved
to the left. Another effect is that you cannot detect the motion from a spinning
sphere which have uniform color (figure 12.1 (a)). You can also misinterpret motion
when the illumination change and you assign the movement to the object (figure
12.1). Another big Problem is the Aperture Problem (figure 12.2).

Abbildung 12.1.: Effects which lead to wrong conclusions by only subtract Images

The line, gray in the first Image, moves downright, black in the second image. If you
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have the full field of view i can detect the motion of the line correctly: a movement
to the bottom right. But if your camera only can see the inner circle of the blue
donut then you would detect the motion if line wrong: a movement to the upper
right.

Abbildung 12.2.: Aperture Problem

Three important Points on Motion:

• Basically you can describe Motion as an observed change in intensity values
at pixel p

• The change we associate with motion

• We try to infer which motion in 3D caused this motion in 2D

12.0.3. Optical Flow vs. Motion Field

Optical Flow

Optical flow is purely based on image the intensity and is a set of 2d vectors ,
each 2d vector shows you how the direction of motion of the intensity value is. Its
purely measuring how the color respectively gray patterns has change in the image
plane(figure 12.3).

Abbildung 12.3.: Optical Flow
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Motion Field

The projection of the motion of the points in the scene. It is a collection of 2D
vectors, each vector being the projection of the 3D velocity of a scene point on the
image plane (figure 12.4).

Abbildung 12.4.: Projection of the motion Vector on the image plane

Optical Flow 6= Motion Field

The difference of these two key Words can be shown at the Barber’s Pole Illusion
(figure 12.5).
When the barbers pole rotate it looks like that the stripes goes up. But in reality
each point on the barbers pole is just rotating clockwise, but not from the bottom
up.
The motion Field shows the true motion in the 3D-World and the projection of these
3D motion is the motion Field. The optical flow is what you, the motion on your
Image plane. Most of the time we have not a illusion like that and the optical flow

Abbildung 12.5.: The Barber’s Pole Illusion

is a good approximation of the motion field.
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Motion on a straight Line can be described as the distance traveled per unit ti-
me:

~v = ds

dt
=
(
dx

dt
,
dy

dt

)
(12.1)

If the point is moving on a circle then the best way to describe its speed, is by how
many degrees it travels per unit time, i.e. its angular velocity:

~v = dϑ

dt
(12.2)

Motion Field Basics

Let P = (X,Y, Z) point in scene and p = (x, y, f) its projection: ~p = ~P ( f
Z ) The

relative motion between the point P and the camera can be described as:

~V = −~T − ~ω × ~P (12.3)

where ~T is the pure translation part of the motion and ~ω is the angular velocity,
where ~V is the vector in 3D, the projection give ~v which is the vector for the motion
field.
Note that the rotational component of the motion field does not convey any informa-
tion about depth (without translation you cannot use motion to reconstruct depth).
In the case of pure Translation you can derive formals which tell you that that the
length of v(p) is proportional to the distance between p and p0 and inversely pro-
portional to the depth of the 3D point P . The motion field of pure translation when
there is a change in depth is radial, i.e. all vectors emanate/radiate from a common
origin named the vanishing point of the translation direction.

Optical Flow Estimation

We compute the optical flow and hope this a good approximation of the motion field
(being fully aware that the accuracy depends exactly on the direction of motion with
respect to the patterns in the scene (barbers poll)).
There are two main strategies for computing the optical flow:

• Differential Methods: motion is computed at ever pixel (based on time deriva-
tives)

• matching/prediction methods: motion is estimated only on selected featu-
res(make prediction about possible positions in the next frame)
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12.0.4. Differential Methods

We need three assumptions for these methods:

• The image brightness is continuous and differentiable

• The image brightness value (more properly the image irradiance E) of objects
doesn’t change over ?t, in other words dE

dt = 0. This assumption is called the
image brightness constancy assumption

• Points do not move very far

which leads to the Image Brightness Constancy Equation:

~GT~v + Et = 0 (12.4)

where ~G (is the gradient(edge-detection)) and E (the pixel value) can directly extract
from the Image.
When you have a sequence where the relative movement is very fast (which violates
the third assumption) you can use the Gaussian pyramid to restore the small motion
assumption.
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13. Kalman Filter

The Kalmanm Filter is a prediction Methods for optical flow.
The image brightness equation does not explicitly incorporate previous knowledge.
Such a method would work better:

• if we observe the scene for more than 2 or 3 frames

• there specific objects or regions whose motion is analyzed instead of estimating
the motion of every pixel that has changed.

13.1. Dynamic System

Motion is now analyzed in the context of a dynamic system. Attributes for such a
system are:

• We are dealing with a system that is changing over time

• we have sensors observing the dynamic scene. The measurements of compute
from them are noisy

• there is an uncertainty about how the system is changing. In other words we
have an uncertain model of the system’s dynamic

• we want to produce the best possible estimates of what is moving in which
direction and at what speed. We want optimal estimates of the state of a
dynamic system

optimal estimates means that the methodology tries to minimize the error between
what we estimates will be happening in the next time instance versus what is

really happening in the next time instance.

The Kalman Filter was designed as an optimal Bayesian technique to estimate state
variables at time t based on:

• the previous state of the dynamic system, i.e. at time t− 1

• indirect and noisy measurements at time t
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• known statistical correlations between variables and time

Consider motion as a problem where we have to estimate the values of the variables
of some dynamic system.

Motion and Kalman Filter

A dynamic system is often described via:

• a state vector~x

• a set of equations called the system model, which captures the evolution of the
state vectors over time

State Vector ~x

The state vectors describes what is the current status of the dynamic system. A
very important aspect is to choose what your state vector should be. For example
you could be interested in the speed of a Tennis ball, then your state vector should
be the velocity of the ball. But if you are interested in the position of the ball to
measure if the ball is still in the court, your state vector should be the position of
the center of the Ball. It depends in what you are interested in.
Mathematically the state vector is described as a set of variables at some time
instance t:

~x(t) = (q1(t), q2(t), ..., qn(t)) (13.1)

where q are the variables of the dynamic system. In case of motion it look like:

2D: ~x(t) = (vx(t), vy(t)) 3D: ~x(t) = (vx(t), vy(t), vz(t)) (13.2)

There is no limitation on the dimension of the state vector, for example you can
track the velocity of four different objects:

~x(t) = (~x0(t), ~x1(t), ~x2(t), ~x3(t)) (13.3)

System Model

The key Assumption is that the system is linear. That means that the relationship
between consecutive state-changes is linear!
The system model can be written as:

~xk = Φk−1~xk−1 + ~wk−1 (13.4)
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• ~wk−1 is a vector describing the random process noise. This noise does not
describe the noise from the sensors ! This noise describes unknown effects that
occurs during the transition from state k−1 to state k. For example if you want
to track a tennis ball, instead of describing wind as an influence in the state
vector you can interpret wind as a kind of noise. Which is a very important
aspect of the Kalman Filter that you can describe circumstances from the
environment as noise in the model.

• Φk−1 is the state transition matrix that captures the relationship between the
current state k and the previous state k − 1 in the absence of noise.

• Φk−1 is an n× n matrix, ~wk−1 is an n-dimensional vector

Measurements

At any time tk we have a vector ~zk ∈ Rm of measurements of the system. Also the
sensors are noise, the vector ~µk describes the uncertainty of each measurement ~zk.
The relationship between the true system state ~xk and the measurements is:

~zk = Hk~xk + ~µk (13.5)

where Hk is the measurement matrix that captures the relationship between our
measurements and the real system variables in the absence of noise, ~µ measure the
noise.

13.1.0.1. Noise

There are two types of noise:

• Process noise ~wk

• Measurement noise ~µk

Both types of noise are assumed to be white, zero-mean Gaussian !

13.1.0.2. Kalman Filter Setup (summary)

• We are observing a dynamic system

• We have a linear system model, but there is uncertainty about the accuracy
of the employed model

~xk = Φk−1~xk−1 + ~wk−1 (13.6)
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• We have noisy sensors that measure how the dynamic system behaves

~zk = Hk~xk + ~µk (13.7)

• the noise (Process noise and sensor noise) is assumed to follow a white, zero
mean, Gaussian distribution

13.1.1. KF Steps

An estimate of ~̂xk is obtained from ~̂xk−1 and ~zk in a 2-step process

• 1. Prediction Step: First, obtain an intermediate estimate, ~̂x−k , based on the
previous estimates, but without using the newest measurements ~zk

~̂x−k = Φk−1~̂xk−1 (13.8)

• 2. Update Step: Use the intermediate estimate ~̂x−k and combine it with the
newest measurements ~zk, to get ~xk (figure 13.1)

Abbildung 13.1.: Combine ~̂x−k and ~zk

This 2-step process is performed as a series of 4 or 5 recursive equations which are
characterized by:

• 1. The state covariance Matrix Pk is the covariance matrix of the estimate ~̂xk.
It is also known as the covariance of the estimates, it’s a measurement of the
uncertainty in ~̂xk

• 2. The state covariance Matrix P−k is the covariance matrix of the estimate ~̂x−k .
It is also known as the covariance of the prediction error, it’s a measurement
of the uncertainty in ~̂x−k .

• the gain matrix Kk which expresses the relative importance of the prediction
~̂x−k and the measurement ~zk.

The gain matrix is useful to emphasize either the model or the measurements. For
example if you know that you have a noisy sensor you should trust more your model.
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Abbildung 13.2.: Steps of the Kalman Filter

Optimality

A Kalman filter computes the optimal state estimate, as the maximum probability
density of given the past estimates, the past measurements and the current measu-
rement.

~̂xk = max
~̂xk

p(~xk|~x1, ~x2, ..., ~xk−1, ~z1, ~z2, ..., ~zk−1, ~zk) (13.9)

From the assumption Kalman does at the beginning this probability density function
is a Gaussian, so its maximum Value coincides with its mean:

~̂xk = max
~̂xk

p(~xk|~x1, ~x2, ..., ~xk−1, ~z1, ~z2, ..., ~zk−1, ~zk) ∼ N (~xk,Pk) (13.10)

The optimal state estimate ~̂x is the maximum of the PDF above, so it is the mean.
The true state lies within an ellipse centered an ~̂xk where the axes of the ellipse are
the eigenvectors of Pk. In tracking features we use the uncertainty ellipses to reduce
the search space for locating a feature in the next frame.

13.2. Conclusion

The Kalman Filter gives for linear system under white zero-mean Gaussian noise an
optimal solution. Many systems exhibit Gaussian noise, it’s a widely-used assump-
tion. But most robotic systems and human motion are non-linear.
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14. Particle Filter

Setup: Similar to Kalman Filtering, it explicitly predicts an estimate of the state
of the dynamic system based on an uncertain system model. The prediction is then
updated through the incorporation of information by noisy measurements.

Differences

The particle filter differ in the assumption that the Kalman filter does. The assump-
tions from Kalman that the system model is linear and the noise is a zero mean
Gaussian are very restrictive.
The particle filter does not such assumptions ! The system model can be every thing,
same counts for the noise!

14.1. Setup Particle Filters

• We are observing a dynamic system

• We have a system model, where fk is a possibly non-linear transition function
and ~vk−1 is a vector describing the random process noise. State transition
formula:

~xk = fk(~xk−1, vk−1) (14.1)

• We have noisy sensors that measure how the dynamic system behaves. Where
hk is a possibly non-linear measurement function and ~nk is a vector describing
the measurement noise.

~zk = hk(~xk, ~nk) (14.2)

There are no restrictions or assumptions regarding the dynamic system and the
measurement model, other than they are Markovian.
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PF Bayesian Framework

Goal: Estimate ~xk given the previous states (~x1, ..., ~xk−1) and the measurements up
to time tk, (~z1, ..., ~zk−1, ~zk).
In the Bayesian perspective: i want to compute how probable is it to have a particular
value ~xk occurring at time tk given all this previous history (~z1, ..., ~zk−1, ~zk).
This means compute the pdf:

p(~xk|~z1, ..., ~zk) (14.3)

and pick the value of ~xk with the highest probability.

Markovian Assumption

The assumption is that only the state respectively the measurement before is rele-
vant:

p(~xk|~x1, ...~xk−1) = p(~xk|~xk−1) (14.4)

p(~zk|~x1, ...~xk, ~z1, ...~zk−1) = p(~zk|~xk) (14.5)

PF - 2-step estimation Process

This lead us to the 2-step estimation process:

• Prediction Step:

p(~xk|~z1, ...~zk−1) =
∫
p(~xk|~xk−1)p(~xk−1|~z1, ...~zk−1)dxk−1 (14.6)

• Update Step(once the measurement ~zk is obtained):

p(~xk|~z1, ...~zk) = p(~zk|~xk)p(~xk|~z1, ...~zk−1)
p(~zk|~z1, ...~zk−1) (14.7)

So if you know the pdf p(~xk|~z1, ...~zk), then estimation ~xk is straightforward. Just
pick the max.
But this pdf can be highly complex and we may have no analytic description (In
KF this problem does not occur cause of the Gaussian assumption).
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14.2. PDF Estimation and Importance Sampling

The PDF may highly complex and we may have no analytic description. To come up
with this Problem the idea is to approximate p() by generating N random samples
from p():

x̂(i), 1 ≤ i ≤ N (14.8)

and then use these discrete samples when computing properties of p(), like the ex-
pected value or its variance. This samples are called particles!.
If you would know p() you could sample p() correctly, but you want to sample p()
without knowing p() that you get an estimate of p(). This Problem is solved with
the method importance sampling.
The Basic idea is that you use a helper function, which is called important distribu-
tion q(). So take N random samples from q() instead of p():

x̂(i), 1 ≤ i ≤ N drawn from q() (14.9)

This technique of using an importance distribution like q(), to obtain samples from
another distribution like p(), is called importance sampling.
Since q() is of course not p(), each sample must be corrected by being multiplied by an
appropriate weight, so that one can obtain an unbiased estimation of the properties of
p(). For each sample x̂(i) there is a weight w̃(i) that handles the discrepancy between
the two distributions. This weights will be normalize such that all weights sum up
to 1, normalized weights: w(i). In figure 14.1 you can see an example, the green
function g is the importance distribution q and the red function f is the unknown
function p. The blue stripes at the bottom are the normalized weights. You can see
that the density of the samples follows the function g but the values of the weight
approximate the unknown function f .

Abbildung 14.1.: importance Sampling
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Basic Particle filter algorithm

• for each of the N particles do:

– draw ~x
(i)
k from q(~x(i)

k |~x
(i)
k−1, ~zk)

– compute

w̃
(i)
k = w̃

(i)
k−1 ·

p(~zk|~x
(i)
k )p(~x (i)

k |~x
(i)
k−1)

q(~x (i)
k |~x

(i)
k−1, ~zk)

(14.10)

• end

• For each particle ~x(i)
k , compute the normalized weight, w(i)

• out of all particles, pick the ~x(i)
k with the maximum weight, or set ~xk to the

expected value of posterior density p().

Starving Samples - Resampling

There exists a point where the samples are starving and cant adapt to changes in the
dynamic system. To avoid this a weight which gets a very high value will be spitted
up in n numbers of new samples where the sum of these samples represents the old
weight (figure 14.2). Starving samples (with very small values) will be deleted. This
method is called resmapling and make sure that our particle filter can adapt to the
dynamic system and can catch the object again if its lost.

Abbildung 14.2.: Resampling Example

14.3. Advantages of Particle Filters

• Ability to represent arbitrary densities, not just Gaussians. This is particularly
important for multimodal distributions
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• Adaptive focusing on probable regions of statespace

• No Gaussian noise assumptions.

• General state and measurement models (no linear assumption)

• The framework allows the inclusion of multiple models. For example, simulta-
neously tracking multiple pedestrians, cars and bicycles

Particle Filter vs. Kalman Filter

• Same Bayesian framework and Markovian assumption

• Recursive formulation composed of a prediction and update step

• The Kalman Filter is fast, but is optimal only for linear systems with Gaussian
distributions

• Particle Filters are slow, but place no limitations on the system model or the
distributions
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15. Remarks from the Exercises

15.1. Gaussian and Kernel size

A rule of thumb is to use the Kernel size for determining σ:

σ = w

5 where w := size of Kernel H (15.1)

15.2. Perspective Projection

The Pinhole camera model implies the perspective Projection. A Point P (X,Y, Z)
in the world is projected as a point p(x, y) on the Image plane. The perspective
Projection results in a magnification factor m:

x = f

Z
·X y = f

Z
· Y m = − f

Z
(15.2)

the equation shows us, that Objects near to the camera are shown bigger and objects
far away from the camera are very small. The magnificationm is inverse proportional
to the distance.
A possible Solution is to assume f →∞, then the denominator gets negligible. This
is the orthogonal projection !

15.3. Convolution

An 2D-Filter Kernel can be spitted into two 1D-Kernels. This is called separable
Convolution. This brings advantages in computation time:

• 2D-Kernel σ = 2 with (n × n) need n × n multiplications for each Pixel ⇒
O(n2)

• two 1D-Kernel σx =
√

2 σy =
√

2 with (n) needs n multiplication for x-
direction and n multiplication for y-direction for each Pixel ⇒ O(n + n) =
O(2n) = O(n)
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15.4. Corner Detection

A corner accents that there are significant changes in all directions in contrast to
edges where you have no changes along the edge direction.
Corner detection is

• Invariant to intensity shifts. We look at difference/gradients

• Insensitive to intensity scaling. We look at differences/gradients → tendency
persists.

• Rotation invariant. eigenvectors change, eigenvalues don’t

• But not invariant to image scaling. A curved structure (edges) might become
a corner.

15.5. Gabor Filters

Are used for edge detection. They are similar to the human visual system.
By combining the Gaussian kernel with sinusoidal functions, we get the Gabor fil-
ters

15.6. Biased Hough Transform

There is an bias in after the transformation into the have space caused by the finite
size of an Image. In average, a line close to the image center are longer than lines
far away from it. This leads to the problem that lines not in the Image center have
lower values in the accumulator array.
A Possible solution either to use a wighted accumulation (less weight for center
pixels) or use adaptable threshold when detecting the maxima (higher closer to
center, lower in border region)

15.7. Hough Transform and tracking

If you want to track with the HT a circle its computational expensive due to 3-/4-D
Hough space. This leads to problems in tracking:

• Stability (e.g. maxima less prominent, b/c less pixel vote for it)

• accuracy (depending on discretization):
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– A high accuracy leads to a large hough space which leads to a computa-
tionally expensive search of the maxima

– A low accuracy leads to small hough space where you can find much faster
the maxima, but you loose accuracy

A possible solution is to use alternative detection methods like: Fast Circle Detection
(figure 15.2) another Method would be a size invariant circle detection.

Abbildung 15.1.: Fast Circle Detection using gradient pair vectors

To detect a football during the match there is a complex pipeline process proposed:

Abbildung 15.2.: An Effective and Fast Soccer Ball Detection and Tracking Method

15.8. Stereo

Another unmentioned effect on the reconstruction of the depth with triangulation
is the focal length.:
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• small focal Length: higher range of depth values mapped to one pixel⇒ higher
z error

• higher focal length: smaller field of view ⇒ harder correspondence search

15.9. Calibration

Standard calibration for cameras:

• intrinsic parameters:

– f focal length

– cx, cy principal points (COP on the image plane)

– k1, k2 image resolution

– distortion parameters, e.g. radial

• Extrinsic

– R Rotation

– t translation

• For stereo setup:

– R Rotation between cameras

– t translation between cameras

In 15.3 you can see two different calibration Patterns In the checkerboard pattern the

Abbildung 15.3.: Calibration Pattern

points where different patches contact each other are important (only inner points).
For a dotted calibration pattern the central points of the dots are important (even
blurred images can be used). The Detection can be done with the Hough transfor-
mation (lines might be distorted!) or with a direct gradient analysis (neighborhood;
circle center).
The extrinsic parameters of a camera can not be calibrated because the world coor-
dinate system is not known (they can be estimated by claiming the checkerboard to
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be at [0 0 0]).
In Contrast the intrinsic camera parameters can be all estimated with a plane ca-
libration pattern. The estimation can be done by minimizing the reprojection error
of a set of known 3-D points in many different views.
If both camera in stereo setup are not calibrated then the fundamental matrix
F = K−TEK−1, which is a 3 × 3 matrice with Rank 2, can be estimated with 7-
/8-Points (Seven-point algorithm / eight-point-algorithm) or for an over-determined
equation system use SVD.
To calibrate a time-of-flight system or a structured-light (e.g. KINECT) approach
you need a calibration pattern with depth information(and for structured-light color
information).
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