
Pattern Recognition
Michael Prinzinger

29. November 2006

Inhaltsverzeichnis
1 A/D Conversion 8

1.1 Nyquist Sampling-Theorem . 8
1.2 Quantization . 9
1.3 Characteristic Curve . 11
1.4 Alternatives . 12

2 Preprocessing 14
2.1 Filter . 14

2.1.1 Binarization . 14
2.1.2 Filters And Convolution 16
2.1.3 Bluring (Box Filter, Mittelwert�lter) 16
2.1.4 Gaussian Filter . 17
2.1.5 Kausal Filter . 17
2.1.6 Homomorph Filter . 17
2.1.7 Erosion . 17
2.1.8 Dilatation . 18
2.1.9 Edge Detection . 18
2.1.10 Median . 19
2.1.11 Sobel Filter . 19
2.1.12 La Place Filter . 20
2.1.13 Window Functions . 20
2.1.14 Low-Pass, High-Pass, Band-Pass Filter 21
2.1.15 Resolution Hierachy . 23

2.2 Normalization . 24
2.2.1 Scaling . 25
2.2.2 Translation . 26
2.2.3 Rotation . 26
2.2.4 Energy . 26
2.2.5 Moments . 27

1

3 Feature Extraction 29
3.1 Feature Computation . 29

3.1.1 Development To Orthogonal Bases 30
3.1.2 Discrete Fourier Transform (DFT) 31
3.1.3 Walsh Transformation . 32
3.1.4 Walsh-Hadamard Transform 32
3.1.5 Fast Walsh-Hadamard Transform 33
3.1.6 Haar Transformation . 35
3.1.7 Linear Predictive Coding (LPC) 36
3.1.8 Moments . 38
3.1.9 Feature Filters . 39
3.1.10 Short Term Fourier Transformation 41
3.1.11 Wavelets . 41
3.1.12 MEL-Cepstrum . 46
3.1.13 Problem Dependent Series Development 50
3.1.14 Principle Component Analysis (PCA) 52
3.1.15 Linear Discriminant Analysis (LDA) 54
3.1.16 Fisher Transform . 60
3.1.17 Minimum Distance Classi�er 61
3.1.18 Sammon-Transformation 63

3.2 Feature Evaluation And Selection 64
3.2.1 Error Rate . 64
3.2.2 Bayes Distance . 65
3.2.3 Equivocation (Conditional Entropy) 66
3.2.4 Kuhlbach-Leibler-Divergence 66
3.2.5 Bhattacharyya Distance 67
3.2.6 Divergence . 68
3.2.7 Transinformation . 68
3.2.8 Mahalanobis Distance . 69
3.2.9 Single Best Evaluated Features 69
3.2.10 Best Features Relatively To Other Features 70
3.2.11 Features For Di�cult Patterns Search 70
3.2.12 (l, r)-Search . 71
3.2.13 Floating Serach . 71
3.2.14 Branch & Bound Search 72
3.2.15 Parameter Tying . 75
3.2.16 Dynamic Programming 75
3.2.17 Genetic Algorithms . 75

4 Classi�cation 76
4.1 Introduction . 76

4.1.1 De�nitions . 76
4.1.2 Criterions For Classi�er 77
4.1.3 Variable Overview . 78

4.2 Statistical Classi�ers . 78
4.2.1 Optimal Classi�er (Bayes) 79

2

4.2.2 Gaussian Classi�er . 83
4.2.3 Mixture Densities . 84

4.3 Parametric Classi�ers . 89
4.3.1 Polynomial Classi�er . 90
4.3.2 Least Square Estimation 92
4.3.3 Linear Regression . 93
4.3.4 Logistic Regression . 94

4.4 Non-Parametric Classi�ers . 95
4.4.1 Direct Estimation . 96
4.4.2 Parzen Windowing . 97
4.4.3 Nearest Neighbour (NN) 98
4.4.4 K-Nearest Neighbour (K-NN) 99

4.5 Classi�cations Levels . 99
4.5.1 Decision Trees . 101
4.5.2 Linear Normalization . 101
4.5.3 Dynamic Time Wraping (DTW) 102
4.5.4 Context . 103

4.6 Neural Networks . 105
4.6.1 Multilayer Perceptron . 107
4.6.2 Feature Map . 109
4.6.3 Radial Basis Functions . 111

4.7 Support Vector Machines (SVM) 112
4.7.1 Basic SVM . 112
4.7.2 SVM for non-seperable classes 115
4.7.3 Quadratic SVM . 117
4.7.4 SVM with di�erent basis functions 118
4.7.5 SVM for Regression . 118

4.8 Hidden Markov Models (HMM) 120
4.8.1 Theory . 120
4.8.2 Training, Parameter Estimation (EM-Algorithm) 126
4.8.3 Computation of the marginals (Forward-Backward-Algorithm)127
4.8.4 Computation of the optimal state sequence (Viterbi-Algorithm)128

4.9 Acoustic Models For Speech Recognition 128
4.9.1 Theory . 128
4.9.2 Deleted Interpolation . 129
4.9.3 Vocabulary . 130

5 Stochastic Modeling Of Objects 131

6 Model Assessment And Model Selection 139
6.1 Bias-Variance Trade-O� . 140
6.2 Cross Validation . 142
6.3 Bootstrap (Efron 1979) . 144
6.4 The E�ective Number Of Parameters 145
6.5 Baysean Information Criterion (BIC) 146
6.6 MDL (Minimum Descritption Length) 147

3

6.7 Ada Boosting . 147

7 State Estimation (Kalman-Filter) 149
7.1 Variable Overview . 151
7.2 Least Square Estimation . 151
7.3 Best Linear Unbiased Estimator (BLUE) 153

7.3.1 linear . 153
7.3.2 best . 153
7.3.3 unbiased . 154
7.3.4 The BLUE . 155

7.4 The Linear Kalman Filter . 156
7.5 Discussion . 159

8 Basic Methods 161
8.1 Maximum Likelihood (ML) . 161
8.2 Maximum A-Posteriori Estimation (MAP) 162
8.3 Expectation Maximization (EM) 162
8.4 Histogram Estimation . 166
8.5 Newton Iteration . 166
8.6 Gradient Descent . 166
8.7 Coordinate Descent . 167
8.8 Least-Squares . 167
8.9 Hough-Transformation . 168
8.10 Lagrange Multiplier Method . 168

8.10.1 Motivation . 168
8.10.2 General Procedure . 168
8.10.3 Criterions For Maxima/Minima 169

8.11 Karush-Kuhn-Tucker Conditions 170
8.12 Singular Value Decomposition (SVD) 170
8.13 Computation Of Implicit Eigenvalues 172
8.14 Parameter Tying . 173
8.15 Disturb Signal . 174
8.16 Histogram . 175
8.17 Knowledge Representation . 175
8.18 Curse Of Dimensionality . 176
8.19 Principle Of Optimality . 178
8.20 Dynamic Programming . 178
8.21 Viterbi Algorithm . 180
8.22 Hidden Information Principle . 183
8.23 White Eage On White Background 183
8.24 Adidas Problem . 183
8.25 Maxims Of Pattern Recognition 184

4

9 Mathematics Formulary 185
9.1 Convolution . 185
9.2 Cross-Ratio . 185
9.3 Dirac-Impuls . 186
9.4 Fourier Series . 186
9.5 Fourier Transform . 186

9.5.1 1D Fourier Transform . 187
9.5.2 2D Fourier Transform . 188
9.5.3 Discrete Fourier Transform 188
9.5.4 Fast Fourier Transform 189
9.5.5 Short Term Fourier Transform 189
9.5.6 Wavelet Transform . 190

9.6 The sinc Function . 190
9.7 Special Matrices . 190
9.8 Matrix Properties 1 . 191
9.9 Matrix Properties 2 . 191
9.10 Banach's Fixed Point Theorem 191
9.11 Gram-Schmidt Orthogonalization 192
9.12 Gram-Schmidt Orthonormalization 193
9.13 Sigmoid Θ . 194
9.14 Hyperplane . 194

10 Statistics 195
10.1 Statistical Terms . 195
10.2 Distributions . 197
10.3 Properties . 197
10.4 Proof Of A Distribution . 198
10.5 Estimating A Distribution . 198
10.6 Moments . 199

11 List Of Terms 200

12 Miscellaneous / FAQ 201

13 Bibliography 205

14 Appendix 206

5

Preface
This script is intended to be a summary for students of Pattern Recognition.
It tries to capture all the topics discussed in lectures on Pattern Recognition I
& II. It often attempts to make approaches di�erent to those of the lectures.
Hopefully these approaches might be more suitable for students and enrich the
topics with examples and illustrations. It is not, however, a complete preparation
for the diplomacy/master exam in Pattern Recognition, but rather a repetition,
a summary and a source for alternative explanations. You additionally should
read the books recommended in the lecture, the script of your professor and
above all regularly attend to the lectures.

Extra Chapters
Basic Methods
In addition to the big topics of the �eld, there is a chapter dedicated to typical
methods and terms used quite often in Pattern Recognition, like ML-Estimation
or the Newton Method.

FAQ
Last but not least there's a section with frequently asked questions. I think
reading this part especially helps to get a good feeling and understanding of the
big picture in Pattern Recognition.

Notation
section Sections enclosed with two stars are to be seen as an optional ex-

tension and probably not necessary for the exam.

Copyright
This document is to be seen as OpenSource and I would be happy if anyone
decides to enrich this script by adding questions to the FAQ section, additional
concepts, better explanations or additional examples and illustrations and of
course correcting all the mistakes, that I made. The sources (.lyx or .tex) can
be acquired by writing a short e-mail to me: . However as in the GNU-
Licence, I hereby fobid anyone to postulate money for this document or use
parts from it for commercial works. It is meant to be a free help for students all
over the world and it should remain free.

6

The Big Picture

1. A/D Conversion: signal f

2. Normalization: normalized signal h

3. Feature Extraction: feature vector ~c

4. Classi�cation: class number Ωλ

5. (Labelled) Sample set: (~c,Ωk)

6. Learning / Training

7

1 A/D Conversion
Before we can deal with the actual classi�cation of features, we have to get a
digital representation of the analogue world data in our computer. In principle
we have to store several equidistant sample evaluations of the signal and build
a function out of them approximating the real signal als close as possible.

1.1 Nyquist Sampling-Theorem
Nyquist's Theorem tells us, under which conditions a digital signal can be recon-
structed without loss of information. The �rst version says that the frequence of
the sampling signal fs must be at least twice as high as the maxmial occuring
frequency fH of the signal to sample f :

fs > 2 · fH
The second version uses the bandwith B of the signal x (Bandlimit [−Bx, Bx])
e�ectively saying the same thing.

∆x <
1

2Bx

2B is also called the Nyquist Rate.

Abbildung 1: Proof Of The Nyquist Theorem

1. compute f (x) given FT−1 (inverse integral).

2. Think of F (ξ) as a periodic function continued by thought (because in
reality we only look at one period) and develop F (ξ) as Fourier Series.

Remarks:

• Because of the bandlimit, a development of the Fourier Series is possible.
Determine it's coe�cients.

• Insert F (ξ) in the inverse integral of f (x)

• Write the result as a sum:

f (x) =
∞∑

j=−∞
fj

sin [2πBx (x− j∆x)]
2πBx (x− j∆x)

• A complete reconstruction of the signal f (x) requires ∆x = 1
2Bx

sample
steps and ∞ many sample values (see the sum above).

8

Reconstruction
If a signal was sampled in respect to the Nyquist Theorem, it can be reconstruc-
ted by interpolating f as an in�nite series (e.g. Fourier Series) with the sinc
function:

f (x) =
∞∑

j=−∞
fj · sinc (π (x− j)) =

∞∑

j=−∞
fj · sin (π (x− j))

π (x− j)

Space/Time Frequency Trade-O�
This exact reconstruction is however not in our reach. This is because a signal
is either limited in the spatial resp. time domain or in the frequency resp. Fou-
rier domain. This corresponds to a trade-o� between storage requirements and
computational e�ciency and precision, i.e. the number of sample values. This
trade-o� can be formulated as

∆x∆ξ ≥ 1
4π

and illustrated as

Abbildung 2: Time/Space Frequency Trade-O�

The more narrow a function in the spatial domain, the broader it becomes in
the frequency domain and vice versa.

1.2 Quantization
Quantization is another term for the more colloquial �rounding of numbers�. A
quantization function is de�ned as

Q (x) =

⌊
10m−1x+ 0.5

⌋

10m−1

9

where m is the level of precision.

Example
Rounding to the next integer corresponds to m = 1.

For example we will round x = 4.564:

Q (4.564) =
b4.564 + 0.5c

1
= 5

Rounding with �oating point precision 1, m = 2

Q (4.564) =
b10 · 4.564 + 0.5c

10
=
b46.14c

10
= 4.6

Signal-To-Noise-Ratio (SNR)
No matter how big we choose m, we will always loose precision quantizing a
signal. After all that is what we want, since we do not have unlimited precision
in computer architecture. Shanon saw this loss of precision as a kind of noise and
applied the Signal-To-Noise-Ratio from information theory to the quantization
of signals:

signal-to-noise-ratio
r =

E
{
f2
j

}

E
{
n2
j

}dB

where fj are the sample values and nj the noise (nj = fj − f̂j , where f̂j
is fj after quantization).

It can be prooven, that for every Bit of quantization, the SNR improves by 6 dB
(x dB := 10 log 10 (x)).

Abbildung 3: Proof For The Signal-To-Noise-Ratio Improvement
For this proof we assume 8 quantization steps.
E

{
n2
j

}
=

∫ + s
2

− s
2

1
s · n2dn = s2

12

E
{
f2
j

}
= σ2

f

s = 8σf

2B for fmin = −4σf and fmax = 4σf

Quantization Error
For optimization and an objective function it is necessary to have a closed form
for the average quadratic error that occurs during quantization:

ERR =
L∑
ν=1

∫ aν+1

aν

(f − bν)2 p (f) df

10

where L is the number of quantization steps and aν , bν are determined by the
assignment of sample values aν to quantization values bν :

av =
bν−1 + bν

2
; ν = 2, 3, . . . L = 2B

bν =

∫ aν+1

aν
f · p (f) df∫ aν+1

aν
p (f) df

; ν = 1, 2, 3, . . . L

Application
speech 8 Bit
pictures 8 to 12 Bit
audio/music 16 Bit

1.3 Characteristic Curve

Abbildung 4: Characteristic Curve

At the bottom left corner you can see the sample values of the original signal.
The middle corresponds to the process of quantization. The line averaging the
quantization is called Characteristic Curve. In this case it is linear, but it
doesn't have to be.
On the right you can see the signal resulting after quantization has been per-
formed.

The characteristic curve of the quantization is optimal, if the function values
are uniformly distributed.

p (f) is constant, if f (x) is uniform. Assuming uniform distribution, bν be-
comes:

bν =

[
1
2 · f2 · p]aν+1

aν

[f · p]aν+1
aν

=
1
2 · p

(
a2
ν+1 − a2

ν

)

p (aν+1 − aν) = −1
2
· p (aν+1 + aν)

11

Now our aim is of course to minimize the quantization error:

ERR =
L∑
ν=1

∫ aν+1

aν

(f − bν)2 p (f) df

Due to the uniform distribution assumption, p becomes

p (n) =

{
1
s for − s

2 ≤ n ≤ s
2

0 otherwise

and the variance σf becomes

E
{
n2
j

}
=

∫ + s
2

− s
2

1
s
· n2dn =

s2

12

σf =
√
E

{
f2
j

}

Abbildung 5: Proof For An Optimal Quantization Curve
compute the partial derivatives of ERR for aν and bν and solve them for 0.

1.4 Alternatives
Instead of quantizing single sample values, as we did, other quantization me-
thods were proposed. In general the choice of the quantization depends on the
application, the features that will be extracted and the classi�cation. So no
method is superior to the others. Other methods for quantization are:

• Vector Quantization: Instead of quantizing single sample values, we
take a vector of sample values and deal with the whole vector.

• Run-Length Encoding: This e�ectively means to represent binary black/white
images as a series of 0/1 values indicating the color value. This allows for
a very compact representation of images.

• Chain Coding: For images that only contain a single distinct feature,
like a curve, a graph or a line, we can store a chain of direction values
(see Figure below) following the course of the curve and later restore this
curve on a solely white background.

12

Abbildung 6: Chain Coding

13

2 Preprocessing
The signal is on the computer. But the signal can not yet be used for classi�ca-
tion, since it usually:

• contains noise and super�ous data

• is too large

• is not yet adapted to / suitable for the application

• di�ers too much from training samples (it is not normalized)

Therefore depending on the application, we perform two steps before proceeding.

1. Filtering: We try to apply �lters to remove the noise and/or unnecessary
information.

2. Normalization: We try to �nd a normalized form of our samples, and
normalize incoming signals to this form.

2.1 Filter
A �lter is usually applied to remove noise from a signal. Another application is
to remove unwanted data, or to scale down signals, like high- or low-pass �lters
do. Apart from that a general improvement of quality or the emphasis of certain
features can be the intention when applying �lters.

2.1.1 Binarization
The goal of Binarization is to reduce the number of values of a signal, usually
of a picture, to two. With this procedure much information gets lost, but the
signal becomes much smaller and noise is binarized away.

Iterative Clustering

Algorithm 1 Iterative Clustering
1. Randomly choose two vectors as representatives v1 and v2.

2. Choose a metric and associate each vector either to v1 or to v2 using an
Nearest Neighbour classi�er (see 4.4.3).

3. Compute the mean vectors µ for both vector sets and set them as the new
representatives: v1 = µ1 and v2 = µ2.

4. © until the resulting sets do not change anymore.

14

Intersection Of Two Gaussian Distributions

Abbildung 7: Intersection of two gaussian distributions (binarization)

A grey value histogram is approximated by the sum of two gaussian distributi-
ons.

The idea is to approximate a histogram of values of grey with a sum of two
guassian distributions:

p (f) = αN (
f, µ1, σ

2
1

)
+ (1− α)N (

f, µ2, σ
2
2

)

p (f) = α
1

σ1

√
2π
e

„
− 1

2

“
f−µ1

σ1

”2
«

+ (1− α)
1

σ2

√
2π
e

„
− 1

2

“
f−µ2

σ2

”2
«

where α represents a weight for scaling. The weights must sum up to 1 to full�ll
the stochastic criterion (see 10.3), therefore we choose (1− α) for the second
weight.

The weight α and the density parameters µ1, µ2, σ1, σ2 can be estimated by
Maximum Likelihood Estimation (see 8.1).

Application
• edge detection

• optical character recognition

• object detection (decide for every pixel, if it belongs to the object or
background)

15

2.1.2 Filters And Convolution
A good idea is to make use of the convolution theorem (see 9.1) to apply a linear
�lter, which can be convoluted with the original signal to remove noise:

f = s⊕ g + η

where f is the signal, g is a linear system to convolute with, s is an ideal signal
without noise and η an additive noise term. Our goal is the ideal signal s. We
approximate it by looking for a convolution term γ with

f ⊕ γ = ŝ

and ŝ ' s.
To make e�cient use of the convolution theorem we use Fourier Transforms

for applying such �lter kernels (see 9.5).

2.1.3 Bluring (Box Filter, Mittelwert�lter)

Abbildung 8: Bluring

For every value of the signal: Sum over the value itself and it's neighbours and
divide by the number of values used. E.g. for a 1D signal, that gives:

fi =
fi+1 + fi + fi−1

3

This is a intuitive and e�cient method to defeat noise, yet the disadvantages
are that everything gets blurred: transitions and striking features get lost.

16

2.1.4 Gaussian Filter
A gaussian �lter is a weighted Box Filter (Mittelwert�lter). It works by moving a
gaussian bell over the signal. For preseverving transitions and striking features,
we could for example weight the original value twice as much and still reduce
the noise signi�cantly:

fi =
fi+1 + 2 · fi + fi−1

4
The gaussian �lter and the Box Filter are �lter kernels, that are best applied

using convolution (see above).

2.1.5 Kausal Filter
Kausal means that the system response does not depend on a time before the
input.

Kausal �lter are recursive �lters:

hj =
m−1∑
µ=0

aµfj−µ −
n∑
µ=1

bµhj−µ

estimate aµ and bµ to approximate the convolution term γ.

2.1.6 Homomorph Filter
If the noise is not additive, as has been assume above, we have to apply a
transformation T :

h = T−1
c {TL {Tc {f}}}

Algorithm 2 homomorph transformation
1. transform non-additive operation into an additive one by applying Tc.

2. apply the linear/kausal �lter TL.

3. apply the inverse of the transformation T−1
c to transform the signal back.

For example T can be an approximation of the signal by sums (e.g. Taylor
Series).

2.1.7 Erosion
Erosion is a �shrinking� of the signal. Assuming a 2D signal, i.e. a picture, each
pixel is set to the minimum of it's neighbourhood:

f1 f2 f3
f3 f5 f6
f7 f8 f9

→ f5 = min {f1, . . . , f9}

17

2.1.8 Dilatation
Dilatation acts just like Erosion, but instead of shrinking the signal, Dilatation
�blows it up�. Each pixel is thus set to the maximum of it's neighbourhood:

f1 f2 f3
f3 f5 f6
f7 f8 f9

→ f5 = max {f1, . . . , f9}

2.1.9 Edge Detection
Combining Erosion and Dilatation, we get an e�cient method for detecting
edges:

Algorithm 3 Edge Detection With Erosion And Dilatation
given signal/picture f

1. Dilatation (f) = f̂ blows the picture up

2. Erosion (f) = f ′ cuts the picture (comprimizes it)

3. Computing f̂ − f ′ leaves only the edges, because the edges are the only
thing Dilatation and Erosion di�er in.

Abbildung 9: Erosion and Dilatation

This �rst picture (top left) shows the sample values of the signal ~f , whose values
are ordered by size r1 ≤ r2 ≤ · · · ≤ rm.
The second picture (top right) shows the result of applying Erosion to the signal.
The third picture (bottom left) shows the result of applying Dilatation to the
signal.
The �nal picture (bottom right) shows the result of edge detection by consecu-
tively applying �rst Dilatation and then Erosion.

18

2.1.10 Median
The Median is similar to the Box Filter (Mittelwert�lter), but lacks the dis-
advantages of it's 1D correspondancy. Each pixel of the picture is set to the
medium value of it's neighbourhood:

f1 f2 f3
f3 f5 f6
f7 f8 f9

→ f5 = medium {f1, . . . , f9}

By this slight change (taking the medium and not the mean), the Median has
the following properties:

• preserves edges

• removes noise

• e�ciently implemented using dynamical programming (reuse of internim
results)

2.1.11 Sobel Filter
The sobel �ler calculates the gradient of the image intensity at each point. This
gives the level of change in the picture, what (high values) excatly corresponds
to the edges.

The gradient is vertically and horizontally approximated by the following
�lter kernels:

Gx =

−1 0 1
−2 0 2
−1 0 1

 ·A

for x direction and

Gy =

1 2 1
0 0 0
−1 −2 −1

 ·A

for y direction, where A is a approximation of the signal f .
Combining both gradients we get

G =
√
G2
x +G2

y

The direction of the gradient (important to �nd the edges) is

arctan
(
Gy
Gx

)

19

2.1.12 La Place Filter
The La Place �lter subtracts for each pixel x the brightness of each neighbouring
pixel from the central pixel x. Then it normalizies every pixel to avoid the white
eagle on white background phenomena (see 8.23).

This procedure means that regions with a constant intensity are reduced to
a color value of zero, whilst a high variance of intensity within a region results
in a larger color value. For normalization usually a grey value of 128 is added
to each pixel for better visibility. The La Place kernel looks like that:

La Place:

−1 −1 −1
−1 +8 −1
−1 −1 −1

2.1.13 Window Functions
Another kind of �lters are window functions that are moved across the signal.

Types Of Window Functions
Rectangle aν = 1

Abbildung 10: Rectangle Window Function

Hamming aν = 0.54− 0.46 · cos 2π
M−1

Abbildung 11: Hamming Window Function

20

Hanning aν = 0.5
(
1− cos 2π

M−1

)

Abbildung 12: Hanning Window Function

Gaus aν = 1√
2π·σ · e

− 1
2 · x2

σ2

Abbildung 13: Gauss Window Function

A problem of window functions is the loss of time/frequency information, since
their e�ects are local. Thus they are not suitable for e.g. digital image processing.

2.1.14 Low-Pass, High-Pass, Band-Pass Filter
low-pass A low-pass �lter cuts o� frequencies below a certain threshold and

only leaves through high frequencies.
We have an ideal low-pass �lter if the Fourier Transform corresponds to
a rectangle. It cuts edges o� in a very clean way.

21

Abbildung 14: a) Ideal Low-Pass Filter

high-pass A high-pass �lter cuts o� frequencies above a certain threshold and
only lets through low frequencies.

Abbildung 15: b) Ideal High-Pass Filter

band-pass A band-pass �lter has thresholds for both high and low frequen-
cies.

22

Abbildung 16: c) Ideal Band-Pass Filter

Both low- and high-pass �lters halve the band-width of the signal, that means,
according to the Sampling Theorem (see 1.1), we only need half as many sample
points to represent the signal.

2.1.15 Resolution Hierachy
Since edge detection and other algorithms take quite long to process pictures
having a high resolution, it might be better to reduce the resolution of the
image and process the smaller version. Low- and high-pass �lters can be used
to downsample a picture in this way. Yet every level of resolution lost, could
mean the loss of essential information. Therefore the idea of resolution hierachy
is to downsample the picture, yet preserve the possibility to fall back to a higher
resolution without lots of space or time usage.

The idea is to use a low-pass �lter g to downsample a picture to f ′ while
parallely applying a high-pass �lter h, which returns excatly the part, the low-
pass �lter downsampled away d. We keep this part and use it later on in case
we have to fall back to a higher level of resolution.

23

Hierachy

Abbildung 17: Resolution Hierachy (Principle)

Partition
This partition can be done very e�ciently using wavlets (see 3.1.11):

Abbildung 18: Resolution Hierachy (Wavelet Partition)

Reconstruction
The reconstruction is rather straight forward, just add the removed high-pass
parts back to the signal using again wavelets. Since there will be some rounding
errors, just set values close to zero to zero and you should not run into problems.

Note The wavelet theory (see 3.1.11) has prooven that this method even works
with non ideal �lters (see 2.1.14).

2.2 Normalization
Normalization is not optional but compulsory.
Bear in mind that normalization should always aim towards the maxims of
pattern recognition (see 8.25). Apart from that common normalization a�ects:

• rotation (pay attention to the 6/9 problem)

• location

• lighting

24

• intensity

• length (speech)

• size

In the follwing section the initial pattern is denoted by f (x, y) and the trans-
formed one by h (x′, y′).

2.2.1 Scaling

Abbildung 19: Scaling Of The Letter A

In this picture a scanned image of the letter 'A' is scaled down and translated
to a normalized reference version.

Scaling a picture can be done in three steps:

Algorithm 4 Scaling
1. Get the scaling factor using intercept theorems.

2. Resample according to the sampling theorem (1.1) and the sinc function:

f (x) =
∞∑

j=−∞
fj sinc (π (x− j))

3. Interpolate:

f (x, y) =
N∑

j=1

N∑

k=1

fjkg (x− j, y − k)

where g (x− j, y − k) is an interpolation function.

25

Interpolation can be a simple Nearest Neighbour Interpolation or bilinear inter-
polation with a weighted mid point (the close a point lies to the interpolation
point, the more it contributes). Bilinear interpoltaion usually works just �ne.

Application
• Letter Recognition: Find the closest bounding box around the letter

and scale this rectangle.

• Speech Recognition: Try to �nd start and ending points of words (dif-
�cult to locate! requires at least word lexica) and scale this interval.

2.2.2 Translation
Usually scaling includes translation, if not it is essentially done in the same way:
Get some kind of bounding box or interval and move it to the origin.

2.2.3 Rotation
Rotation works just like scaling, but remember always to sample and resample
the original picture and not the one that is being rotated.

Abbildung 20: Rotation without resampling

As you can see in the image above, a rotation whithout resampling, where the
function values are taken from the image, that is being rotated, leads to wrong
values.

2.2.4 Energy
The energy of a pattern is for example the intensity of an image or the wave
enegery of sound waves. It is de�ned as:

Aj =
M∑
ν=1

|ωνfj−ν |

whereM is the number of sample values and ων is a window function (see 2.1.13)
to blind out important signal values.

The normalization is then performed by:

hk =
fk
Aj

26

for 1D or
hk =

fk√
Aj

for 2D.

2.2.5 Moments
Mathematical moments (see 10.6) can be excelentely used for normalization.

Center Of Gravity (german Schwerpunkt)

We take the moments: x = xp

x0
and y = yq

y0
and get the center of gravity g by:

gx =

∫ n
1
x · f (x, y) dxdy∫ n

1
f (x, y) dxdy

gy =

∫ n
1
y · f (x, y) dxdy∫ n

1
f (x, y) dxdy

Translation
We translate by xs = m10

m00
and ys = m01

m00
.

Then the resulting translated points are simply: x′ = x−xs and y′ = y−ys.
And �nally

h (x′, y′) =
f (x, y)
m00

The central moments must have the following values: µ00 = 1 and µ01 = µ10 = 0.

Scaling
Signals can be scaled using the second moments. We replace f (x, y) by h (x′, y′)
and choose the focus point r as r =

√
m02 +m20 and get the scaled points:

x′ = x
r and y′ = y

r . And again

h (x′, y′) = r2f (x, y)

The second central moments must full�ll the postulate: µ20 + µ02 = 1 where
µ20 > µ02.

Rotation
We use a standard rotation matrix and get our rotated points with:

(
x′

y′

)
=

(
cosα sinα
− sinα cosα

)(
x
y

)

27

where angle α is choosen as

tan (2α) =
2 ·m11

m20 −m02

and h is simply
h (x′, y′) = f (x, y)

with central moment µ11 = 0.

Re�ection
Last but not least we want to re�ect the signal and choose a constant β ∈
{1,−1}, such that x′ = βx and y′ = y. That gives us for h

h (x′, y′) = f (x, y)

with central moment µ12 > 0 and µ21 > 0.
Summing up, after applying all this operations we have the following central

moments:
µ00 = 1, µ10 = µ01 = µ11 = 0, µ20 + µ02 = 1 with µ20 > µ02 and �nally

µ21 > 0 and µ12 > 0.

28

3 Feature Extraction
After normalization, we need to �nd features in signals, upon which we can
make a classi�cation.
Of course taking the whole signal as one single feature would be possible, but
wouldn't work in most cases. Imagine for examples two pictures taken by a
camera right after each other: Looking at them pixel by pixel, they already
show such a great variance, that it could not be guaranteed that they will even
be classi�ed to the same class. Apart from that we would have an enourmous
big search space and algorithms would need quite long for classi�cation.

Therefore maxims for features are:

• take not too few and not too many single features (see 8.18)

• prefer features invariant to certain e�ects (e.g. invariance to rotation)

• look for features that are characteristic for the object you want to classify
(e.g. LPC for speech 3.1.7, the radius for circles, the color for �owers and
so on)

• look for features that are very similar within a class but very di�erent to
other classes' features (see 8.25)

3.1 Feature Computation
We distinguish three types of features:

1. heuristical features

2. spectral and cepstral features

3. analytical features

The �rst category describes merely heuristic features, i.e. quantities that have
prooven to be good features in general, which though are not related to the
signals, we want to classi�y, nor to our application. They most commonly are
used because of a fast and easy computation, very valuable properties like in-
variances and simply because they have prooven to work in many cases very
well.
The second category is still kind of heuristical, but instead of merely using infor-
mations from the direct signal we focus on the signal's spectrum and cepstrum
(see 3.1.12).
The third category however uses analytical tools to �nd features suitable for a
special kind of signals. The big disadvantage of this approach is, that it usually
takes quite long to determine adapted features and is not always easy.

29

[1] Heuristic Features

3.1.1 Development To Orthogonal Bases
A �rst idea for features is to build an orthogonal basis to the subspace our signal
f is located in and represent our signal as a linear combination of the orthogonal
basis vectors ~ϕ0, . . . , ~ϕn of this space. The features are then the factors of the
linear combinations c0, . . . , cn. The advantage is that this base is canonical, i.e.
unique, which gives a good measure for comparison respectively classi�cation.

For building an orthogonal basis we can apply Gram-Schmidts-Orthogonalization-
Process (see 9.11).

~f = (~ϕ0 ~ϕ1 . . . ~ϕn−1)

c0
c1
...

cn−1

shu�ing to get the features in front gives

c0
c1
...

cn−1

 = (~ϕ0 ~ϕ1 . . . ~ϕn−1)

−1

f0
f1
...

fn−1

the matrix (~ϕ0 ~ϕ1 . . . ~ϕn−1) is probably not invertable, therefore we use the Pseu-
do Inverse to get the above shu�ing

~c =
(
AT ·A)−1 ·AT · ~f

Note Instead of an orthogonal basis, we can also build an orthonormal basis
using Gram-Schmidts-Orthonormalization (see 9.12). The advantage is,
that the basis and the linear combinations are further contracted. The
disadvantage is that certain features could get normalized away by this.
So you have to decide per application, which basis to take.

Properties
• heuristical method (not orientated on the real data)

• orthogonal / orthonormal

Pro/Contra
+ the feature space is much smaller than the signal space, yet by using line-

ar combination with orthogonal basis vectors, we do nothing else but a
projection into the image space.

+ the coe�cients of orthogonal resp. orthonormal bases are unique.

30

3.1.2 Discrete Fourier Transform (DFT)
A di�erent approach is, to transform the signal with discrete fourier transform
into the frequency space. The big advantage of this transformation is, that it is
invariant to translations (i.e. f (~x) = f

(
~x+ ~t

)
).

Abbildung 21: Translation Invariance Of A Periodic Function

F = DFT {f}
the contionous form is

FT ({f (x, y)}) = F (ξ, η) =
∫ ∫ ∞

−∞
f (x, y) · exp−i(ξx+ηy) dxdy

and the discrete form

DFT ({f (x, y)}) = F (ξ, η) =
Mx−1∑

j=0

My−1∑

k=0

f (j, k) · exp−i2π
“

ξj
Mx

+ ηk
My

”

where M is the number of sample values.
Looking closer, this is resembles an orthogonal basis F (ξ) = ϕTξ

~f where
ϕTξ ϕη = 0.

Properties
• heuristical method (not orientated on the real data)

Pro/Contra
+ translation invariant: f (~x) = f

(
~x+ ~t

)

31

3.1.3 Walsh Transformation
Remember Euler's formula eix = cosα + i · sinα. In accordance to that the
Walsh Transformation uses discrete even and odd fuctions, which approximate
sin and cos, to represent a signal.

Abbildung 22: Walsh Transformation

some walsh functions in comparison to the approximated trigonometric functi-
ons

We de�ne the walsh transformation as:

wal (x, 0) =

{
1 if − 1

2 ≤ x ≤ 1
2

0 otherwise

wal (x, 2j + p) = (−1)
j
2+p

(
wal

(
2

(
x+

1
4

)
, j

)
+ (−1)j+p wal

(
2

(
x− 1

4

)
, j

))

3.1.4 Walsh-Hadamard Transform
Hadamard matrices looks like this:

H2 =
(

1 1
1 −1

)

H4 =
(
H2 H2

H2 −H2

)
=

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

32

H8 =
(
H4 H4

H4 −H4

)

...
Combined with the idea from Walsh, they can be used to e�ciently compute
features:

~c = HM
~f = WHT

{
~f
}

where ~f is a feature vector with M components. The inverse Walsh-Hadamard
Transformation is accordingly:

~f =
1
M
HM · ~c = WHT−1 {~c}

The Walsh-Hadamard Transform requires only addition and subtraction.

Properties
• O (

M2
)

3.1.5 Fast Walsh-Hadamard Transform
This algorithm is very similar to the Fast Fourier Transform (see 9.5.4) and is
also based on decomposing the the transform using factorization.

33

Algorithm 5 Fast Walsh-Hadamard Transform
1. Partition H8 into four H4 matrices and multiply them with the correspon-

ding function values of f .

2. Partition the H4 matrices further into 16 H2 matrices.

3.

unbroken addition / multiplication with (+1)

dashed subtraction / multiplication with (−1)

Example

c1
c2
...
c8

 = H8

f1
f2
...
f8

is decomposed to

c1
c2
c3
c4

 = H4

f1
f2
f3
f4

 +H4

f5
f6
f7
f8

and

c5
c6
c7
c8

 = H4

f1
f2
f3
f4

−H4

f5
f6
f7
f8

and so on.

34

Properties
• heuristical method (not orientated on the real data)

• O (M logM)

• orthonormal:∫ π
−π cos (kx) · sin (jx) dx = 0 if j 6= 0

∫ 1
2
− 1

2
wal (x, j) · wal (x, k) =

{
0 if j 6= k

1 if (j = k)

Pro/Contra (Fast Walsh-Hadarmad Transform)
+ very fast

+ only operations are addition and subtraction

+ only real values

- the resulting order of the features is arbitrary

3.1.6 Haar Transformation
Haar Transformation is almost the same as the Walsh Transformation, it also
uses 0/1 values. The di�erence is that instead of the Walsh basis functions, we
de�ne very simple Haar basis functions that includes scaling by including a time
dependent component. We then approximate our signal by a linear combinations
of Haar basis functions of the following type:

h00 (x) =
1√
N

hpq (x) =
1√
N

+2
p
2 : q−1

2p ≤ x ≤ q− 1
2

2p

−2
p
2 : q−

1
2

2p ≤ x ≤ q
2p

0 : otherwise for x ∈ [0; 1]

where p is the degree of the function and q =

{
0, 1 : p = 0
20, 21, . . . , 2p : p 6= 0

.

35

Abbildung 23: Haar Basis Functions

Forward Transformation

Algorithm 6 Haar Forward Transformation
1. Place the discrete signal perpendicular, to make it vektorwertig:

fp =
(
. . . ,

(
f−2

f−1

)
,

(
f0
f1

)
,

(
f2
f3

)
, . . .

)

2. Multiply this function with the Haar-Transformation Matrix

H :=
1√
2

(
1 1
1 −1

)

H · fp =
(
. . . ,

(
s−1

d−1

)
,

(
s0
d0

)
,

(
s1
d1

)
, . . .

)

where sk = f2k+1+f2k√
2

and dk = f2k+1−f2k√
2

3.1.7 Linear Predictive Coding (LPC)
The goal of Linear Predictive Coding is to �nd a set of parameters a1 . . . an,
which allow to predict the n + 1th value as linear combination of the 1 . . . n
previous function values. Concerning feature computation, we can use the coef-
�cients a1 . . . an as feature vector.

f̂n = −
m∑
µ=1

aµfn−µ

36

The error of this approximation is given by

ERR =
n∑
n=1

(
fn − f̂n

)2

=
m∑
µ=0

m∑
ν=0

aµaνr|µ−ν| =
m∑
µ=0

aµrµ

with
r|µ−ν| =

∑
n

fnfn+|µ−ν| =
∑
n

fn−µfn−ν

Algorithm 7 Linear Predictive Coding / Model Spectrum
LPC can be used to e�ciently calculate a model spectrum:

1. First we calculate the LPC coe�cients {a0, . . . , am} (the convolution ker-
nel)

f̂n =
n∑

k=n−m
akfn−k

2. We apply Discrete Fourier Transfer to these coe�cients

DFT (a0, . . . , an)→ FT (~a)

3. Our model spectrum is

|FT (a0)| . . . |FT (an)|

LPC Coe�ecients
The LPC coe�cients can be computed using the Pseudo Inverse. We are starting
with:

f̂2
f̂3
...

 =

f1f0f−1 . . . fl−k
...
...

a1

...
an

we call the midpart the matrix A:

f̂ = −A · ~a

Now we build the Pseudoinverse from A and shu�e:

AT f̂ = −AT ·A · ~a

−~a =
(
ATA

)−1
AT · f̂

37

Properties
• practise has shown that LPC parameters are ideally suited for modelling

the human speech tract.

• the error introduced above can be used as additional featrure cn+1.

• further possibilities for additional featrures are coe�cients of the DFT.

Practice
• for speech modelling, usually 10-15 parameters are su�cient (1 feature per

10-25 ms time frame)

• in general we take: sample frequency (in KHZ) + 4 or 5 parameters

3.1.8 Moments
In chapter two we used moments (see 10.6) for normalization, yet they also make
very good features, since they show many invariances. For example the center of
gravity is always the same, no matter the rotation or translation a object has.
A central geometrical moment is de�ned as

continous mpq =
∫ ∫∞

−∞ xpyqf (x, y) dxdy

discrete µpq =
∑M−1
j=0

∑M−1
k=0 (xj − xs)p (yk − ys)q fjk∆x∆y

where (xs, ys) is the center of gravity of the object.
Given this de�ntion, we can build features out of those moments:

[A] Central Moments
we choose the feature vector:

c1 = µ20 + µ02

c2 = (µ20 − µ02)
2 + 4µ2

11

because this feature vector has the following invarainces:

• invariant to rotations

• invariant to translations

[B] Legendre Moments
Legendre Moments are de�ned as:

λpq =
(2p+ 1) (2q + 1)

4

∫ ∫ +1

−1

Pp(x)Pq(y)f (x, y) dxdy

where P is the so called Legendre Polynom. The advantage of these moments
is, that there is an e�cient recursive computation procedure for them.

38

[C] Zernike Moments

cpq =
p+ 1
π

∫ 1

0

∫ +π

−π
Rpq (r) exp[−iqφ] f (r, φ) · r drdφ

Rpq (r) =

(p+|q|)
2∑
s=0

(−1)s
(p− s)!

s!
(

(p+|q|)
2 − s

)
!
(

(p−|q|)
2 − s

)
!
r(p−2s)

r =
√
x2 + y2

φ = tan−1
(y
x

)

where the parameters underly the conditions −1 < x, y < 1, n > 0 and 0 ≤
|m| ≤ n.

The Zernike Moments also have an e�cient recurisve computation procedure
and c can be partitioned in < and =.

3.1.9 Feature Filters
The idea of feature �lters is to �nd a linear system g, which allows for a good
di�erentiation of two patterns f0, f1 belonging to di�erent classes. That means
after the �lter was applied, f0 and f1 should be as far apart from each other as
possible.

We imagine a typical signal/noise model, where noise is added to an ideal
signal:

where s denotes the ideal pattern/signal and n the noise.
Now we say that:
f0 = n
f1 = s+ n

We start with computing the noise energy of the signal: Σ(f1)
2 = ~fT ~f .

Furthermore we use convolution theory (see 9.1) and move a indicator signal
over our pattern, which makes 'peep' (1), when the optimal signal has been
found.

noise energy Pn = E
{(
gT · n) (

gT · n)T}
= gTΣng

signal energy Ps =
(
gT · s)2

The covariance matrix Σ can be estimated using Maximum Likelihood Esti-
mation(see 8.1). The next step is, to have a closer look at the Signal-To-Noise
ratio:

SNR =
Ps
Pn

=

(
gT · f)2

gTΣng

we choose g in accordance to maximizing the SNR:

g∗ = max
g

SNR

39

g∗ =
gTΣng
gT s

· Σ−1
n · s = αΣ−1

n · s

In Ps

Pn
, α drops out (so we can choose an arbitrary value for it, e.g. α = 1) and

we get the adapted feature �lter:

g∗ = Σ−1
n · s

40

[2] Spectral And Cepstral Features

3.1.10 Short Term Fourier Transformation
The problem with Fourier Transformation is that information about time gets
lost, because of the translation invariance. Yet with time dependent signals (e.g.
speech signals) time information is fundamental. The idea of short term fourier
transform is to use time windows (see 2.1.13) for the fourier transform.
In speech recognition these windows have shown through practical application,
that 10-25 ms is a good width for such windows. Yet in general this is a problem,
because the window resolution has to be:

• small enough, to allow for a good resolution in time

• high enough, to allow fot a good resolution in frequency

This trade-o� is called the uncertainty principle:

∆t∆w ≥ 1
4π

where w is the signal's bandwidth and t the time spread.
Carefully choosing our window resolution in accordance to the uncertainty prin-
ciple, we get the window function ω and can give a de�ntion of a Fourier Trans-
form based on window functions:

STFT (τ, ω) =
∫
f (t) · ω (t− τ) e−2πiωtdt

Properties
• evenly distributed partition of the time/frequence area

• preserves time information

3.1.11 Wavelets
Waveltes are a set of waves on the time-axis. A basis wave type, called Mo-
therwavelet, is de�ned and Childrenwavelets are derived from this basic
type by operations like scaling (α) and translation (τ). The Short Time Fourier
Transform above is a special kind of wavelet. That means just like the STFT,
wavlets preserve information about the time spread.

Wavelet Transformation
The Wavelet Transformation is given by:

WT (τ, α) =
1√
α

∫ ∞

−∞
f (t)⊕ ψ

(
t− τ
α

)
dt

41

and the Inverse:

f (t) =
1
cψ

∫ ∫ ∞

−∞
WT (τ, α)

1√
α
ψ

(
t− τ
α

)
dτdα

α2

where α is the parameter for scaling mentioned above and τ the parameter
for translations.

Features
Having the Wavelet Transform Ψ(ω) we can take the features, just as we did
with the Fourier Transformation (see 3.1.2):

cψ =
∫ ∞

−∞

|Ψ(ω)|
|ω| dω

where Ψ (ω) is the Wavelet Transform1 of the basis wavelet ψ (t).
Wavelets ψ (t) underly the condition:

∫∞
−∞

|Ψ(ω)|
|ω| dω <∞, that means Ψ(0) =

0, which is equivalent to
∫∞
−∞ ψ (t) dt = 0.

Other possible features are, like with the Fourier Series, the coe�cients of the
wavlet series.

Wavelet Series
Like the Fourier Series, the summation over wavelets is called Wavelet Series:

f (t) =
∞∑

i=−∞

∞∑

k=−∞
cikψik (t)

where
cik =

∫ ∞

−∞
f (t)ψik (t) dt

are the wavelet coe�cients, which can be taken as additional features.

Resolution Hierachy
As mentioned in the chapter about �lters, Wavelets are excellent to use for
building high pass (h) / low pass (g) �lters for resolution hierachies (see 2.1.15).
Every application of a low/high pass �lter reduces the bandwith by 1

2 (↓ 2). The
signal d resulting from the application of the high pass �lter, is kept fpr restoring
the resolution, while the signal f ′ is the original signal of a lower resolution.
The part that has been removed from f to get f ′ is exactly d. According to the
Nyquist Theorem (see 1.1) having 1

2 the original bandwith, we only need half
as many sample points resulting in a picture of reduced resolution.

1Since Wavelet Transforms also transform the signal into the frequency or Fourier space,
Ψ(ω) ist often also referred to as the Foruier Transform.

42

Abbildung 24: Resolution Hierachy

Again the basic idea of resolution hierachies is, that:

• a low resolution allows for a fast computation of features

• a high resolution allows for a exact computation of features

GIBBS
All window functions, like wavelets or short time fourier transformation, have
the problem of GIBBS, swings over or under the top. That is, because they are
approximating a continous function, and at some spots discontinouities occur.
At these spots we the phenomena of GIBBS occur (see illustration below).

Abbildung 25: GIBBS

The image shows a Fourier series approximation of a signal. The number of
terms in the Fourier sum is indicated in each plot, and the square wave is shown
as a dashed line over two periods. With increasing number of summands the
GIBBS' excess over resp. under the top is reduced but not their number.

STFT sets those swings simply to 0, Wavelet Theory models them with gaussian
bells (GIBBS→ N).

43

Example
We illustrate the realization of a resolution hierachy by using simple Haar mo-
ther wavelets φ (t) , ψ (t) and child wavelets φ3,j , φ2,j , ψ2,j where the �rst index
corresponds to the scaling parameter α and the second one to the translation τ :

The mother wavlets are de�nes as:

Using these wavelets we can build a resolution hierachy:

2D
Dealing with images the above process can be illustrated very nicely:

44

where f is the original picture, f1 and f2 are the results of low-pass �ltering
f to a lower resolution and di,j are the parts we low-pass �ltered away, that are
gained by applying a high-pass �lter. Because of the second dimension, we get
three di�erent such parts, by consecutively applying a 1D Wavelet Transform
to the rows and then to the columns (or vice versa).

Example

Properties
• like the Fourier Transform, the Wavelet Transform has a band limit. At

some point the FT is 0.

• the impulse respone determines the �lter kernel (impulse respone:= f (t))

• the short time fourier transformation is a form of wavelets (see 3.1.10)

• The afore mentioned Haar basis functions are also a form of wavlets (see
3.1.6)

45

Pro/Contra
+ preserves information about the time

+ Using Wavelets we get a hierachy in the spatial space and not only in the
frequency space.

+ allows the modelling of GIBBS

3.1.12 MEL-Cepstrum
A cepstrum is the result of taking the Fourier Transform (FT) of the decibel
spectrum as if it were a signal. Its name was derived by reversing the �rst four
letters of "spectrum".

Features are won by a short term analysis of window functions (Rectangle,
Hamming, Hanning, see 2.1.13). One feature per time window is extracted by
the following procedure:

Algorithm 8 MEL-Cepstrum
1. take the absolute values of the Discrete Fourier Analysis coe�cients

2. take the logarithms

3. calculate LPC coe�cients with the resulting function values

4. build the model spectrum (see 7)

5. partition into MEL-frequency-components: 32 ∆-Filter building fre-
quency groups

6. apply Fourier Transfrom to the model spectrum to get the cepstrum and
according coe�cients
calculate MEL-cepstrum coe�cients by cos-transformations

7. features are time sequences of these cepstrum coe�cients

46

∆-Filter

Abbildung 26: ∆-Filter

a triangle �lter bank consiting of seven �lters linearily stepped by mid frequen-
cies

One speech signal is partitioned/�ltered into 32 �ltered speech signals. They
become increasingly longer parallel too having less features (see image).

Those �lter summarize over the coe�cients of the spectrum.

MEL cepstrum coe�cients

Abbildung 27: Speech Production

The computation of the MEL cepstrum coe�cients is modelling the system of
human speech production (see image):
A stimulation signal is convoluted with the impuls answer of the vocal tract.
This convolution becomes an additive operator, when moving to the cepstrum.
That means we may apply the logarithm, and therefore we can use quadratic
Fourier Coe�cients.

Properties
• preservation of time information by the use of window partitioning

• if the number of coe�cients is too high, it can be reduced by applying
PCA (see 3.1.14).

• An additional feature often combine with the mel coe�cients, is the audi-
tory level (german �Lautheit�).

47

Pro/Contra
+ almost exact modelling of the human hearing system

+ very well suited for speech recognition

- not suited for image processing (because of the separation)

Application
• a practical number of coe�cients is 20-30

48

[3] Analyitcal Features The goal of analytical feature computation is to
�nd a transformation φ, that allows for the computation of features ~c, which
optimally describe a signal ~f :

~c = φ · ~f
where φ ∈ RN×M with N being the dimension of the features and M being the
dimension of the signal.

Criterions Criterions for an optimal description are:

• the maxims of pattern recognition (see 8.25)

• a low error rate of the classi�er

The maxims can be represented mathematically by four criterions of compact-
ness:

Compactness Criterions
1. The �rst criterion is the average distance (quadratic) of all features to

each other feature:

S1 =
1
N2

N∑

i=1

N∑

j=1

(ci − cj)T (ci − cj)

S1 does not require labeled samples (features labeled with class numbers).

2. The second criterion is the average distance (quadratic) of all features
with one class κ to all features from other classes λ 6= κ:

S2 =
2

K (K − 1)

K∑
κ=2

K−1∑

λ=1

1
NκNλ

Nκ∑

i=1

Nλ∑

j=1

(cκi − cλj)T (cκi − cλj)

S2 does require labeled samples. It corresponds to the �rst maxim of pat-
tern recognition.

3. The third criterion is the average distance (quadratic) of all features with
one class κ to other features of the same class:

S3 =
1
K

K∑
κ=1

1
N2
κ

Nκ∑

i=1

Nκ∑

j=1

(cκi − cκj)T (cκi − cκj)

S4 also requires labeled samples. It corresponds to the second maxim of
pattern recognition.

4. The fourth criterion is S2 with the Lagrange constraint S3 (see 8.10):

S4 = S2 + θ · S3

49

3.1.13 Problem Dependent Series Development
As stated above, our goal with analytical feature computation methods is to
�nd a transformation φ, such that feature vector ~c optimally represents signal
~f .

~c = φ · ~f
For Problem Dependent Series Development we choose φ to maximize S1, the
distance from all features to all other features, and de�ne the objective function:

φ̂ = argmaxφ S1 (φ)

φ̂ = argmaxφ
1
N2

N∑

i=1

N∑

j=1

(
φ~fi − φ~fj

)T (
φ~fi − φ~fj

)
+ λ (‖φ‖2 − 1)

The Lagrange constraint (see 8.10) at the end is necessary, because without we
would optimize S1 to ∞.

Look at the vector product in the middle: We are able to proove that the
row vectors of φ correspond to the eigenvectors of the kernel matrix (see below).
Of course S1 can be replaced by any other criterion of compactness. In the
following section we will show exemplarily how to �nd φ choosing the criterion
S1.

Sloving For φ Optimizing Criterion S1
Spread Maximization is de�ned as:

S1 (φ) =
1
K

N∑

i=1

N∑

j=1

(
~ci − φ~fj

)T (
~ci − φ~fj

)

thus maximizing for φ (φ̂ = argmaxφ) corresponds to the maximazition of

=
N∑

i=1

N∑

j=1

(
φ~fi − φ~fj

)T (
φ~fi − φ~fj

)

Douh! That's quadratic in φ and that's bad!

=
N∑

i=1

N∑

j=1

(
φ

(
~fi − ~fj

))T (
φ

(
~fi − ~fj

))

we substitute
(
~fi − ~fj

)
by ~gij

=
N∑

i=1

N∑

j=1

~gTijφ
Tφ~gij

50

applying some matrix properties (see 9.9), we get

=
N∑

i=1

N∑

j=1

trace
(
φTφ~gij~g

T
ij

)

~gij~g
T
ij is called Measurement Matrix (ME).

=
N∑

i=1

N∑

j=1

trace
(
φTφMEij

)

=
N∑

i=1

N∑

j=1

trace
(
METij φ

Tφ
)

=
N∑

i=1

N∑

j=1

trace

METij

(
~t1 · · · ~tN

) ·

~t1
...
~tN

=
N∑

i=1

N∑

j=1

trace

(
METij

N∑

k=1

~tk · ~tTk
)

=
N∑

i=1

N∑

j=1

N∑

k=1

trace
(
METij ~tk · ~tTk

)

=
N∑

i=1

N∑

j=1

N∑

k=1

~tTk METij ~tk

=
N∑

k=1

~tTk

N∑

i=1

N∑

j=1

METij

~tk → maximize

∑N
i=1

∑N
j=1 METij is called Kernel Matrix Q. Now we can maximize this term

by partial derivation with Lagrange constraints. We have shown that the rows
of φ (~tk) are the Eigenvectors of Q (Q · ~tk = λ~tk).

A crucial advantage gained by the usage of Kernel Matrices is that the
optimization of Si is reduced to solving an eigenvector, eigenvalue problem.

A crucial disadvantage is, that this matrix is simply too huge to be solved
for eigenvectors (see 3.1.14 for an example). But some bright man discovered a
way to simplify this eigenvector computation by factorizing Q and computing
implicit eigenvectors of the resulting factorization, which in fact correspond
to the eigenvectors of Q: see 8.13.

Properties
• since the resulting vectors ~tk depend on the features, respectively the

samples, this method was called problem dependent series development.

51

3.1.14 Principle Component Analysis (PCA)

Abbildung 28: Principle Component Analysis

ϕ1, ϕ2 denote the new found axis, that is seperating the features: 1 . . . 4 best.

Theory
In PCA we try to �nd a Transformation T that maximizes the distance between
any two features: T := ~aT ∈ Rn

What we do is, we look for an axis in the feature space that seperates the
features best. The eigenvector corresponding to the biggest eigenvalue (absolute
values) of the covariance matrix corresponds to the �most� information in the
features. Then we use this axis as a new coordinate system (sub-space) and
project the features onto it.

Abbildung 29: Principle Component Analysis Theory
In a theoretical point of view, PCA corresponds to an orthogonal regression L
of features L (~c) = (c1 . . . cp)y ~y (y1 . . . yq) where q ¿ p.
ci := feature
c̄ := mean value
~u := direction vector
yi := ~uT · (ci − c̄)
use Pytagoras: z2

i = (ci − c̄)2 − y2
i

The goal is now to minimize ~u, which corresponds to a maximization of y2
i :

∑
y2
i =

∑
~uT (~ci − c̄) (~ci − c̄)T · ~u

52

L
(
~uT

)
= uT

∑

i,j

(~ci − ~cj)T (~ci − ~cj)

 ~u→ max

(~ci − ~cj)T (~ci − ~cj) is the covariance matrix Σ.
We add the Lagrange constraint ‖~u‖2 = 1 to avoid in�nite spread:

~uTS~u− λ~uT~u = 1

and apply the Lagrange Multiplyer Method:

argmax~uT

{
~uTΣ~u− λ (

~uT~u = 1
)}

deriving to ~uTdraws
2Σ~u− 2λ~u = 0

�nally we try to solve the resulting eigenvector, eigenvalue problem:

Σ~u = λ~u

Algorithm

Algorithm 9 PCA
1. calculate covariance matrix Σ of the features xi:

Σ =
1
N2
·
N∑

i

N∑

j

(~xi − ~xj)T (~xi − ~xj)

2. calculate eigenvalues and eigenvectors of Σ.

3. �nd the eigenvector which corresponds to the biggest eigenvalue (absolute
values).

4. use this vector as �rst row of the transformation T .

T =

x1 y1 · · ·
x2 y2 · · ·
...

... . . .

where vector 1 (x1y1 · · ·) is the eigenvector corresponding to the biggest
eigenvalue (absolute values) and vector 2 (x2y2 · · ·) the eigenvector corre-
sponding to the second biggest eigenvalue, and so on.

5. get the features: ci = T (xi)

53

Example
Example (memory requirements)
Let's take X-Ray images with resolution 1024× 1024.

Our covariance matrix is Σ = (~ci − ~cj)T (~ci − ~cj) ,Σ ∈ R220×220

that means in Byte (B): 220 ·220 ·4B = 230 ·4KB = 220 ·4MB = 210 ·4GB =
4TB

Σ should be kept in RAM to work e�ciently!

Properties
• reduces the dimension

• maximizes the distance between any two feature vectors

• non-supervised learning

• instead of the covariance matrix, you can also take the kernel matrix (see
10.1)

• PCA is related to linear regression (see 4.3.3), as has been illustrated in
the picture at the beginning of this section

Pro/Contra
+ no requirements on the features and samples

- Adidas-Problem (see 8.24)

- huge memory requirements (for a solution, see 8.13)

- not suitable for image processing, because of the memory requirements (see
example above)

- not suitable for modelling rotations, take geometrical moments instead (see
3.1.8)

3.1.15 Linear Discriminant Analysis (LDA)
LDA is an extension to PCA. LDA resembles gaussian classi�ers, with the dif-
ference, that it assumes the covariance matrices of all classes to be equal. This
is a form of Parameter Tying.

54

1 Parameter Tying
In LDA we assume all covariance matrices to be equal: ∀κΣκ = Σ (see 8.14)
As a consequence the decision boundary becomes linear in the components of ~c:
Start:

λ = argmaxλ log p (Ωλ)− 1
2

log det (2πΣλ)− 1
2

(~c− ~µλ)T Σ−1
λ (~c− ~µλ)

log det (2πΣλ) is constant, and can be left out for maximization.
λ = argmaxλ log p (Ωλ)− 1

2
~cTΣ−1~c− 1

2
~µTλΣ−1~µλ + ~cTΣ−1~µλ

1
2~c
TΣ−1~c is also constant, what remains is:

λ = argmaxλ log p (Ωλ)− 1
2
~µTλΣ−1~µλ + ~cTΣ−1~µλ

which is in fact linear. ¤
(For classi�cation a linear function can be built out of that: α0κ + αTκ~c)

2 Data Normalization
We can choose to not only set the covariance matrices equal, but to normalize
them to 1. For that we use SVD and decompose Σ to Σ =

(
UDUT

)
. We then

add the decomposed Σ components to the rest of the decision boundary and get
a new covariance matrix equal to 1:

(~c− ~µ)T Σ−1 (~c− ~µ) =
[
(~c− ~µ)T UD−

1
2

]
1

[
D−

1
2U (~c− ~µ)

]

By that we are moving towards a Nearest Neighbour Classi�er with all cova-
riances equal to 1 and the mean corresponding to the neighbours. Still we have
additional a-priori knowledge.

55

Algorithm

Algorithm 10 LDA

given: M =

~M1

~M2

...
~Mk

, k classes

1. compute the common covariance matrix of all classes: ∀κΣκ = Σ
e.g. compute all Σλ and take the average of all:

Σ =
∑K
κ=1

∑N
i=1 (~ci − ~µκ) (~ci − ~µκ)T

N −K

2. normalize the covariance matrix to Σ = 1 by transforming the features
with SVS decomposition.
Σ = UDUT and T = UD−

1
2 .

3. compute normalized mean vectors: µ∗ = µ · U ·D− 1
2 .

4. apply 3.1.14 to the normalized mean vectors µ∗.

Properties
• assumes gaussian distribution and equal covariance matrices

• these two assumptions result in a linear decision boundary

• reduces the dimension (limitation to the subsapce spanned by the mean
vectors µ)

• maximizes the inter class distance

• minimizes the intra class distance

• supervised learning

• Bias-Variance Trade-O� (see 6.1): We take the bias of a linear decision
boundary, because it can be computed with a much lower variance.

• O (
N · p2 + p3

)
where p is the number of predictors and N the number of

features

Pro/Contra
+ solves the Addidas problem because of the normalization.

56

+ decision boundaries created by LDA are linear leading to easy to implement
decision rules

+ its simplicity gives a natual low-dimensional view of the data

+ it generally has a very low variance

- requires labelled training vectors (~ci,Ωλ)

- for every feature, we want to classify, the Mahalonobis distance has to be
computed

- classes are not always linear seperable, QDA can help you there, but a method
to produce a general irregular decission boundary would be preferable

- LDA uses one prototype (the centroid) and a common covariance matrix to
model the spread of a class, this is quite often insu�cient. Often several
prototypes are more appropriate. A solution for this issue is MDA.

Quadratic Discriminant Analysis (QDA)
Just let those covariance matrices be di�erent and use other tricks to gain e�-
ciency.

δκ (~c) = log p (κ)− 1
2

log |Σκ| − 1
2

(~c− ~µκ)T Σ−1
κ (~c− ~µκ)

Regularized Discriminant Analysis (RDA Friedmann 1989)
Only assume equality in some components (Σ) of the covariance matrices and
allow others class dependent (Σκ) to vary.

Σκ (α) = αΣκ + (1− α)Σ

Flexible Discriminant Analysis (FDA)
FDA follows a di�erent approach than LDA. It formulates the LDA problem as
a problem of regression making it much more general and �exible.

argminα,f
N∑

i=1

(
f (gi)− ~cTi α

)2

where f : G → R1 is a function assigning scores to functions.
This can also be minimized by minimizing the average squarrd residual:

ASR =
1
N

L∑

l=1

[
L∑

i=1

(
fl (gi)− ~cTi αl

)2

]

That means LDA can be performed by a sequence of linear regressions,
followed by classifying to the closest class centroid. We can choose any regression

57

Abbildung 30: Flexible Discriminant Analysis

FDA with the MARS regression method.

method with FDA and exploit its advantages combined with the advantages of
LDA.

Properties
• runtime behaviout depends on the regression methods of choice. E.g. ad-

ditive models and MARS are linear in O (N), others like splines however
run in O

(
N3

)
.

Penalized Discriminant Analysis (PDA)
In the case of a too high feature dimension, we might apply PDA, penalizing
features to be smooth or otherwise coherent in the spatial domain (This applies
usually for images). PDA uses a penalized form of the Mahalanobis Distance (see
3.2.8) to evalute features. Furthermore the classi�cation subspace is decomposed
using a penalized metric. This penalized evaluation gives less weight too �rough�
features and more too �smooth� ones.

58

Abbildung 31: Penalized Discitriminant Analysis

The images appear in pairs, and represent the nine discriminant coe�cient func-
tions for the digit recognition problem. The left member of each pair is the LDA
coe�cient, while the right member is the PDA coe�cient, regularized to enforce
spatial smoothness.

Properties
• PDA is very similar to FDA using penalized regression methods.

• Of course penalizing �roughness� makes not always sense. Therefore PDA
is mainaly a classi�cation method for image processing.

• O (
N · p2 + p3

)
where p is the number of predictors and N the number of

features

Mixture Discriminant Analysis (MDA)
MDA overcomes the issue that one single prototype per class (the class centroid)
is often insu�cient. Instead each class is modelled with a mixture of two to three
gaussians giving the class a total of two to three prototypes and combinations
between them. Because of the mixture densities ML is ine�cient for estimating
the estimates for the mixture distributions, instead we use the EM Algorithm
(see 8.3).

59

Abbildung 32: Mixture Discriminant Analysis

MDA with two classes and �ve mixture centers per class

Properties
• This is connection of LDA and Mixture Densities (see 4.2.3).

3.1.16 Fisher Transform
Idea Find a linear mapping ~aT of the features ~c: ~c′ = ~aT~c, such that the

inter class distance is maximized and the intra class distance is minimi-
zed. It corresponds to a new combination of the criterions of compactness
(see3.1.12):

S5 =
S2

S3

Theory
The objective function, called Rayleigh-Quotient, is according to S5:

~aT = argmax~a
~aTA~a

~aTB~a

where A denotes the inter class covariance and B denotes the intra class cova-
riance. This corresponds to a maximization of ~aTA~a subject to ~aTB~a = const,
to keep the intra class distance constant, while maximizing the inter class di-
stance. (See similarity to 3.1.15). This is a generalized eigenvalue problem, with
~a given as the eigenvector corresponding to the largest eigenvalue of B−1A.

Apply the Lagrange Multiplyer Method to solve this problem by deriviations.

60

δ (~c) =
(
~c− 1

2
(µΩ1 + µΩ2)

)T
Σ−1 (µΩ1 − µΩ2)

Properties
• Fisher Transform reaches the same result as LDA (see 3.1.15), with a

di�erent approach

• Fisher Transform is also closely related to linear regression (see 4.3.3): We
get the same results if we take the ~y from linear regression and take ~a from
~yT~y using eigenvalue decomposition as above.

Pro/Contra
+ simple classi�cation due to a linear function (LDA requires calculation of

Mahalonobis Distances (see 3.2.8) for every feature

3.1.17 Minimum Distance Classi�er
The goal of Minimum Distance Classi�ers is to �nd a feature transformation
B, that minimizes the classi�ed distances between feature vector and class.
Therefore it is not, as the previous sections were, independent of the chosen
classi�er. Note, that we will use some terms that are later introduced in 4.2.1.

Having this goal in mind, we de�ne a new criterion of compactness S6:

S6 =
K∑
κ=1

p (Ωκ)
N

uκ (~c)

uκ is measure for distance called Prüfgröÿe:

uκ (~c) = (~c− ~µκ)T Σ−1
κ (~c− ~µκ) + γκ

where γκ is a class speci�c constant. The classi�er will decide for the class Ωκ,
where uκ is minimal. uk can be simpli�ed by dropping the class speci�c constant
γκ. uκ measures the distance or rather deviation between the feature ~c and the
mean value of a class ~µκ respecting the class covariance Σκ.

We look for a transformation B minimizing S6:

~c′ = B~c

(
B · ΣκBT

)−1
= BT

−1
Σ−1
κ B−1

This time we try to minimize the de�ned distances using statistics. Therefore we
try to derive an euclidean distance measure from a probability density function
(see 10.1).

p (~c | Ωκ)→ euclidean distance

61

We assume gaussian distribution: p (~c | Ωκ) = N (~c, ~µκ,Σκ):

argmaxκN (~c, ~µκ,Σκ) = argmaxκ logN (~c, ~µκ,Σκ)

a maximizing of N corresponds to a minimization of the exponent:

argminκ (~c− ~µκ)T Σ−1
κ (~c− ~µκ)

After minimizing, we take the result as distance and optimize B accordingly,
for example by using Corrdinate Descent (see 8.7).

Abbildung 33: Minimum Distance Classifer

As can be seen, we indeed use the distance measure uκλ as an euclidean measure
of distance, used to de�ne the class borders Hκλ. µκ denotes the mean value of
the corresponding class.

Principle
This works, because under three circumstances our pdf exactly corresponds to
the euclidean distance:

• Every covariance matrix is equal to the identity matrix: ∀κ : Σκ = Id

• The prior probability of the classes is uniformly distributed: ∀κ,λp (Ωκ) =
p (Ωλ)

62

• The pdf is gaussian: p (c | Ωκ) = N (~c, ~µκ,Σκ)

Then the optimization above is reduced to the minimization of argminκ (~c− ~µκ)T (~c− ~µκ)
which is in fact the euclidean distance.
This means, even if not all of those circumstances are given, the pdf is stil closely
related to the euclidean concept of distance and instead of maximizing a pdf,
we can minimize distances.

Pro/Contra
- requires gaussian distribution in the classes. It does work without, but with a

much lower performance.

See Also
• Optimal Classi�er, Bayes (maximization of pdfs): 4.2.1

• How are distances and probabilities related: 12

3.1.18 Sammon-Transformation
Sammon's idea was to �nd a projection of the feature space into 2D, like a
topographical map. This has not only the advantage of simpler classi�cation,
but also that the pattern recognition process can be illustrated and explained to
the user, e.g. a patient at the hospital. The important thing is that the desired
transformation T must preserve topographical properties.

So again we look for a transformation T

~c′ = T {~c}

and minimize the Sammon Criterion Ss

T̂θ = argminθ Ss (θ)

where argmin must be preserve topograhical properties.
To minimize Ss we use gradient decent (see 8.6).

Pro/Contra
+ good visualization, especially for non-technical users (e.g. patients at the

hospital)

+ reduction of dimension

+ easy classi�cation

- lost information due to the projection

63

3.2 Feature Evaluation And Selection
Finding many features is no problem at all, in the last section we introduced
various approaches of possible features, yet classi�cation with so many features
is a problem. That is above all because of the Curse Of Dimensionality (see 8.18).
and because many features lead to computational expensive classi�cations. That
is why in this chapter we will discuss some methods with that, given n di�erent
features, we will be able to �nd the n − x best ones. This gives us two basic
taks:

1. �nding a measure how good features are

2. developing search strategies for �nding the best ones, using the found
measure from

Also keep in mind that parameter tying (see 8.14), i.e. combining two features
into one, as performed in for example PCA, is always a valiant alternative to
abolishing features completely.

Pro/Contra
+ Avoiding the Curse Of Dimensionality

+ Reducing the search space

- Assumes that all features are statistically independent (execpt for gaussian
distribution)

- Geometrical moments above second order can not be evaluated

- Most measures assume gaussian distribution and are very di�cult to calculate,
having a di�erent distribution (i.e. the probability denisty functions of the
classes have to be estimated resp. approximated by gaussians)

[A] Measures

3.2.1 Error Rate
The most intutive measure is the following one:

p̂f =
number of correctly classi�ed patterns
number of wrong classi�ed patterns

We use the estimation indicator ,̂ because pf is estimated from a training set.
Of course the error rate additionally depends on the classi�er and not merely
on the features.

64

Pro/Contra
+ very good

- very expensive

- depends on the chosen classifer

3.2.2 Bayes Distance
The Bayes Distance works with quadratic a-posteriori probabilities as measure
respecting the piror probability of the feature occuring:

B =
∫

Rc

K∑
κ=1

p2 (Ωκ | ~c) p (~c) d~c

with

p (~c) =
K∑
κ=1

p (Ωκ) p (~c | Ωκ)

The bigger the Bayes Distance B, the better the feature ~c.

Pro/Contra
+ very good

- very expensive

65

3.2.3 Equivocation (Conditional Entropy)

Abbildung 34: Equivocation

As you can see the term re�ered to as equivocation enters the signal, while the
dissidation gets lost. The Transinfromation denoted by I (X;Y) is the amount
of original information that is contained in the �nal signal.

The Equivocation H is a measure for the transinformation(see 11):

H =
∫

Rc

(
−

K∑
κ=1

p (Ωκ) p (Ωκ | ~c) log p (Ωκ | ~c)
)
p (~c) d~c

where Rc denotes the complete feature space.

Pro/Contra
+ very good

- very expensive

3.2.4 Kuhlbach-Leibler-Divergence
The Kuhlbach-Leibler-Divergence also models the transinformation (see 11), it
is based on similarities of distributions:

Kl (p, q) =
∫
p (x) log

p (x)
q (x)

dx

66

maximizing the Kulbach-Leibler similarity corresponds to
maximizing the transinformation corresponds to
maximizing the statistical dependency:

max
∫
p (~c,~c′) log

p (~c,~c′)
p (~c) · p (~c′)

d~cd~c′

Properties
• Kl (p, q) 6= Kl (q, p) The Kulbach-Leibler-Divergence is not symmetric

• The information is the better the more statistical dependent features ~c
are.

3.2.5 Bhattacharyya Distance
The Bhattacharyya distance measures the similarity of two discrete probability
distributions:

GBκλ = − ln
(∫ √

p (~c | Ωκ) p (~c | Ωλ)dc
)

assuming gaussian distribution, we can �nd a closed formula:

GBκλ =
1
8

(~µκ − ~µλ)T
(

Σκ + Σλ
2

)−1

(~µκ − ~µλ) +
1
2

ln

∣∣1
2 (Σκ + Σλ)

∣∣
√
|Σκ| |Σλ|

Example
given

~c Ω1 Ω2

1 0 2
2 0 3
3 1 2
4 4 0
5 3 0

the Bhattacharyya Distance is:

GB1,2 = − ln
(√

p (~c3 | Ω1) p (~c3 | Ω2) + 0 + 0 + 0 + 0
)

GB1,2 = − ln

√
1
8
· 2
8

= − ln

√
2
64

= 1.7328

Properties
• monotonic

• relates to two classes

67

3.2.6 Divergence

E

{
log

p (~c | Ωκ)
p (~c | Ωλ) | Ωκ

}
− E

{
log

p (~c | Ωκ)
p (~c | Ωλ) | Ωλ

}

GDκλ =
∫

(ln p (~c | Ωκ)− ln p (~c | Ωλ)) (p (~c | Ωκ)− ln p (~c | Ωλ)) d~c

assuming gaussian distribution:

GDκλ =
1
2

(~µκ − ~µλ)T
(
Σ−1
κ + Σ−1

λ

)
(~µκ − ~µλ) +

1
2
Sp

(
Σ−1
κ Σλ + Σ−1

λ Σκ − 2 · Id)

Properties
• monotonic

• relates to two classes

3.2.7 Transinformation
After talking about measures modelling the transinformation, we can take it
itself as a distance measure:

GT =
K∑
κ=1

p (Ωκ) · p (~c | Ωκ) · log
p (~c | Ωκ)
p (~c)

A good illustration of what transinformation means can be found here: 11.

Example
~c 1 2 3 4 5

p (~c | Ω1) 0 0 1
8

4
8

3
8

p (~c | Ω2) 3
8

3
8

2
8 0 0

p (~c) 3
16

3
16

3
16

4
16

3
16

GT =
1
2
·
[
1
8
· log

1
8
3
16

+
4
8

log
4
8
4
16

+
3
8

log
3
8
3
16

+
3
8

log
3
8
3
16

+
3
8

log
3
8
3
16

+
2
8

log
2
8
3
16

]

GT =
1
2
· 0.49 = 0.2492

Properties
• relates to all classes

• the transinformation can be estimated using Parzen Windowing (see 4.4.2)

68

3.2.8 Mahalanobis Distance
The Mahalanobis Distance is a distance measure for the special case, that all
covariance matrices are equal:

∀κ,λ : Σκ = Σλ

For this case it, Mahalonibis gives a good measure for the quality of features:

GMκλ = (~µκ − ~µλ)T Σ−1 (~µκ − ~µλ)

in the special special case, that we only have one feature, we get:

Gνκλν = 2 · (~µκν − ~µλν)
2

σ2
κνσ

2
λν

respectively

Gνκλν = 2 · (~µκν − ~µλν)
2

σ2

because we assumed the covariances to be equal Σκ = Σλ.

Properties
• Given equal covariance matrices the Mahalanobis Distance GMκλ corre-

sponds to:

� the Bhattacharyya Distance: GMκλ = 8 ·GBκλ
� the Divergence: GMκλ = GDκλ

• the Mahalanobis Distance is a generalization of the euclidean distance,
in fact if the covariance matrices euqal the identity matrix Σ = Id, Maha-
lanobis Distance equals the euclidean distance.

• In case of di�ering covariances, we can try Parameter Tying and setting
all covariance matrices equal (see 8.14).

• monotonic

[B] Search Strategies

3.2.9 Single Best Evaluated Features
After having a measure to evaluate features, the �Single Best Evaluated Featu-
res� method simply evaluates all features and chooses the best ones.

69

Pro/Contra
+ easy, intuitive and fast

- does not respect interrelations between features

- does not respect hard-to-classify and easy-to-classify patterns (It might be
better to concentrate on the di�cult ones and choose the features accor-
dingly)

3.2.10 Best Features Relatively To Other Features
A feature might get a good evaluation singled out, yet in a set with other features
it might be not as good.

Algorithm 11 Selecting Features In Respect To Other Features
1. choose a measure (e.g. Mahalanobis Distance)

2. choose the single best evaluated feature (see 3.2.9) c1 and set the selected
feature set S = {c1}.

3. © compute the measure for the already selected feature set S =
{c1 . . . ck} ∪ {ci} for index i passing all not yet selected features.

4. select the ci maximizing S and add it to S = S ∪ {ci}.
5. continue at 3, as long as the desired number of features has not been

reached.

Pro/Contra
+ does respect interrelations between features

- does not respect hard-to-classify and easy-to-classify patterns (It might be
better to concentrate on the di�cult ones and choose the features accor-
dingly)

3.2.11 Features For Di�cult Patterns Search
A good strategy is not to focus on patterns that are simple to classify, but
to look closer at the di�cult ones. Accordingly �Features For Di�cult Patterns
Search� proposes to choose features that make classi�cation of the most di�cult
patterns easier.

Pro/Contra
+ does respect hard-to-classify patterns

70

- prior knowledge about the di�culty of the classi�cations of di�erent patterns
is required

- does not respect a-priori probabilities of di�cult patterns, that means a di�-
cult pattern that almost never arises, might greatly in�uence the feature
vector

3.2.12 (l, r)-Search
Start with a feature set S containing a couple of single best evaluated features.
Then parallely add the l best evaluated features to S while removing the r worst
evaluated features, until the desired number of features n′ has been reached.

Algorithm 12 (l,r)-Search
We want to �nd the n′ best features of a total number of features n.

Initialization: Choose values for l and r (with l 6= r).

1. If l > r: Initialize an empty set S, with currently chosen features.
If l < r: Initialize S with all n features.

2. © l times:
Choose from all features ~c 6∈ S the best evaluated feature and add it to S.
If S contains n′ features, end the search here and return S.

3. © r times:
Choose from S the worst evaluated feature and remove it.
If S contains n′ features, end the search here and return S.

4. back to 2.

Properties
• optimal method for non-monotonic measurement functions

Pro/Contra
- always chooses single best/worst evaluated features

3.2.13 Floating Serach
Floating Search is very similar to (l,r)-search, yet we abolish l and r and rather
look on how much features contribute to a set, rather than choose the single
best evaluated ones.

71

Algorithm 13 Floating Search
Again we want to choose n′ features out of a total number of n features.

1. Initialize S with the single best evaluated feature.

2. Choose the feature best in respect to all remaining features and add it to
S.
If S contains n′ features, end the search here and return S.

3. Choose the feature ~c that contains the least amount to the evaluation of
S.
If the evaluation of S rises by eleminating ~c, eleminate it and continue
with step 3.
Otherwise keep it and continue with step 2.

Properties
• does not require monotonic measurement functions

Pro/Contra
+ does respect interrelations between features

3.2.14 Branch & Bound Search
Precondition for branch & bound is a monotonic measure function (e.g. Ma-
halanobis Distance, Divergence, Bhattacharyya Distance). Having a monotonic
measure function means that the evaluation of S can never be bigger than the
evaluation of S∪{~c} no matter what feature ~c represents (Gj1 ≤ Gj+1

1). The goal
of Branch & Bound is not to �nd the best features, but to �nd features which
can be removed from the feature set with the least possible loss of information.

72

Algorithm 14 Branch & Bound Search
1. The �rst level contains n + 1 − x nodes, ordered (<) by a measurement

function, where x is the number of nodes you want to remove from your
feature set.

2. Start with the biggest node of the current level, the one on the right hand
border.

3. Evaluate all nodes whose index succeeds this nodes to build the next level.

4. . . . repeat 2 and 3 untill you have removed x nodes. Then set the current
optimal path to this sequence of nodes, if their evaluation overpasses the
current optimal path's evaluation.

5. © Iterate over all paths that have not been visited yet.
→ skip branches whose current evaluation is already worse than the cur-
rent optimal path.

6. End when all paths have been processed.

Example
Our goal is to eliminate three out of ten features, thus we need to choose three
di�erent measures for each level of eleimination. We choose very simple ones,
based on the index of the featrure to keep the example simple:

G9 = 10 + i
G8 = 10− 1

2 (i+ j)
G7 = 10− 1

2 (i+ j + k)
Start

i 1 2 3 4 5 6 7 8
G9 11 12 13 14 15 16 17 18

We stop at feature 8, because we have to keep at least two features for the
other two levels, we want to remove three features after all. So our �rst feature
to choose is i = 8, Let us continue with j.

j 9
G8 1,5

We already have to stop after the �rst feature, to leave one for the last level.
We choose j = 9 and continue with k

k 10
G7 -3,5

73

We choose k = 10 and have our �rst current optimal path 8-9-10 with an
evaluation of G = 16. Now we do backtracking and choose the next untouched
branch. We reckognize that this is at the �rst level. We choose the second best
evaluated feature i = 7 and continue at level 2.

j 8 9
G8 2,5 2

we choose i = 8, because it got the best evaluation at this level and continue
to level three

k 9 10
G7 -2 -3,5

We choose k = 9 having the best evaluation in this level and get a new
current optimal path: 7-8-9 with evaluation G = 17.5. We continue to the next
unvisited branch at j = 9 and so on, until we visited every possible path. If you
want to do it till then end, the best path results to be 1-2-3 with an evaluation
of G = 26.5. Thus we remove these three features from our set, since speaking
in Branch & Bound the best evaluations corresponds to the worst features.

Note that usually we would not have to visit all paths. As soon we we'd
encounter that the evaluation of the �rst branch node is worse than our current
optimal path, we can skip this whole branch.
E.g. We are at index i = 8 and have an current optimal path of 17.5. Now via
backtracking we would have to check the branched starting with index i = 7.
Yet the node at 7 has an evaluation of 17. According to the rules of monotony,
removing features (i.e. going down one level) can only worsen the evaluation, so
we could never top 17.5 and only get worse. The result we draw from that is,
that we can skip all branches rooting in i = 7 as well as for all indices smaller
than i = 7, since we ordered them by evaluation from left to right (<). So in fact
we are done at this point and can �nish the algorithm having found the optimal
path. This example illustrates, that branch&bound can in fact be pretty fast
and usually never has to visit all branches (the worst case).

Properties
• optimal method for monotonic measurement functions

the worst case runtime usually is never reached. On the contrary, because of the
monotony huge branches of the search tree can be skipped.

74

Abbildung 35: Branch&Bound

This part of a branch & bound search tree has been taken somewhere out of an
application. Yet it illustrates, that whole branches can be skipped, if the weight
total is already worse than that of the parent node.

3.2.15 Parameter Tying
The idea of parameter tying is to choose one parameter that is actually modelling
two. The hope with this method is, that because of interrelations (e.g. statistical
dependency of random variables) both parameters can be expressed by one,
without loosing to much information of any one of them.

Concerning feature selection, we might decide to tie two features that were
evaluated very badly, since the information loss would be minimal or choose to
tie two parameters that were evaluated very similar, depending on the measure
(e.g. measures basing on statistical dependency: Equivocation, Kuhlbach-Leibler
Distance, Bhattacharyya Distance, Transinformation, etc.). For more details on
Parameter Tying see 8.14.

3.2.16 Dynamic Programming
Use the methods of Dynamic Programming in respect to Bellman's Optimality
Principle (see 8.19) to choose a �sequence� of good features.

3.2.17 Genetic Algorithms
The �eld of genetic algorithms can be applied to choose a set of good features.
For more information about genetic algorithms, check e.g. Wikipedia / Genetic
Algorithms http://en.wikipedia.org/wiki/Genetic_algorithms.

75

4 Classi�cation
4.1 Introduction
Last but not least we want to assign our features to a class. This is the job of a
classi�er. Restricting to two classes, we can formulate it like this:

4.1.1 De�nitions

classi�er δ (~c) =

{
−1 if ~c belongs to Ω1

+1 if ~c belongs to Ω2

This can be expanded for any number of classes. In some cases we even introduce
a special class Ω0 used for rejection, we call it the rejection class.

Abbildung 36: Rejection Class

If the classi�cation cannot decide whether to assign ~c to Ω1 or Ω2, e.g. because
of an overlapping as in the picture above, ~c is assigned to the rejection class Ω0.

rejection class if a feature cannot savely be asserted to any class, we assert it
to a special rejection class Ω0.

Most classi�er need a set of labelled samples for training or even afterwards for
comparrison. So we need a set of sample features, which we already know the
corresponding class number of. We call it the training set:
training set a set of features labelled with the class they belong to

{(
~c1,Ωκ(1)

)
, . . . ,

(
~cn,Ωκ(n)

)}
where κ→ {1, . . . ,K} where K is the number of classes.

No classi�er will always make only correct decissions, so we will get misclassi�-
cations. We introduce costs for this case. In real world applications it might be
usefull to also have costs for correct classi�cations, which naturally have to be
less than the wrong classi�cation for the system to work correctly.

cost function r (Ωκ | Ωλ) =

rc,κ if Ωκ = Ωλ
r0,κ if Ωκ = Ω0

rf,κ otherwise
where rc,κ is the cost of class Ωκ for a correct classi�cation, r0,κ for rejec-

76

tion and rf,κ for misclassi�cation. Furthermore we have 0 ≤ rc,κ < r0,κ <
rf,κ.

The easiest cost function however simply assigns costs 0 for correct and costs 1
for misclassi�cations. We therefore call it the 0/1-cost function:

0/1 cost function r0/1 (Ωκ | Ωλ) =

{
0 if Ωκ = Ωλ
1 if Ωκ 6= Ωλ

Based on this cost concept we introduce the concept of risk.

risk the risk V is simply the average over all costs: V (δ) =
∑
λ

∑
κ p (Ωκ) ·

p (Ωλ | Ωκ) · r (Ωλ | Ωκ)
where we call p (Ωλ | Ωκ) the confusion probability:

p (Ωλ | Ωκ) =
∫
p (~c | Ωκ) δ (Ωλ | ~c) d~c

We de�ne an additional Prüfgröÿe uλ (~c) for comparissons.

Prüfgröÿe uλ (~c) =
∑K
κ=1 r (Ωλ | Ωκ) · p (Ωκ) · p (~c | Ωκ)

Finally you should remeber that every good classi�er approximates the Baysean
Classi�er (see 4.2.1).

4.1.2 Criterions For Classi�er
There are various goals when designing a classi�er, that can be optimized. In
the following we will concentrate on the �rst two: the risk and the error proba-
bility and �nd an optimal classi�er minimizing the risk. But of course any other
criterion could be used for �nding a corresponding optimal classi�er.

• error probability

• risk

• runtime behaviour

• trainability

• robustness

• generalization

• size

• maintenance

• the margin between classes (see SVM 4.7)

77

4.1.3 Variable Overview

Tabelle 1: Classi�er Variable Lookup Table
Variable Interpretation De�nition

Ωλ class with number λ \
λ, κ indices for class numbers \
K the number of classes \
~c feature vector \
N the number of features \
δ decission rule λ = argmaxκ p (Ωκ | ~c)

r costs for decissions r (Ωκ | Ωλ) =

rc,κ if Ωκ = Ωλ
r0,κ if Ωκ = Ω0

rf,κ otherwise
V (δ) risk V (δ) =

∑K
λ

∑K
κ p (Ωκ) · p (Ωλ | Ωκ) · r (Ωλ | Ωκ)

uλ (~c) Prüfgröÿe uλ (~c) =
∑K
κ r (Ωλ | Ωκ) · p (Ωκ) · p (~c | Ωκ)

4.2 Statistical Classi�ers
We start this chatpter by listing some arguments for using statistical models:

• Signals characterize a statistical process

• We can use the optimal Bayes classi�er

• We can make use of a known statistical model for the classi�cation

• With mixtures we can also combine di�erent distributions respectively
approximate di�cult distributions with simpler ones

• We can use marginalization to get rid of unwanted parameters (e.g. the
third dimension in 2D pictures of 3D objects)

• We can use methods like, ML, MAP and EM to estimate parameters.

Statistical classi�ers are espeically useful in the following cases:

• when features are classwise approximately gaussian distributed

• when features are classwise approximately statistically independent

• the probability denisty function of the classes is known

• a mixture of gaussians to approximate the pdf can be estimated

Applying a statistical classi�er is composed of many di�erent steps, that can be
summatrized like this:

78

Algorithm 15 Applying A Statistical Classi�er
1. Preliminary

• collect a representative set of labeled sample patterns
• preprocessing
• feature computation
• feature selection (decide for a �xed number of good features)
• partition the labeled sample set into two parts for training and testing

2. Learning/Training Phase

• estimate a-priori probabilities for the classes p (Ωκ)

• estimate the probability density functions of the classes p (~c | Ωκ)

3. Workphase

• get a new pattern, preprocess it and extract feature vector ~c
• compute Prüfgröÿen uκ (~c) for each class
• decide for the class corresponding to the highest Prüfgröÿe

4. Fine Tuning

• estimate the error rate ERR

• tune step 1, repeat step 2 and 3 until a reasonable error rate has been
stabilized

(for both see Chapter 6)

Furthermore refer to Chapter 10 to look up some statistical terms and proper-
ties, that will be used in this chapter.

4.2.1 Optimal Classi�er (Bayes)
Those who refuse Bayes techniques only show - by arguments used - their igno-
rance about what Bayes techniques are (JAYNES).
In this chapter we will try to �nd the optimal classi�er, i.e. a classi�er δ∗ with
minimal risk:

V (δ∗) = min
δ
V (δ)

our risk looks like this:

V (δ) =
K∑
κ=0

p (Ωκ) ·
K∑

λ=1

r (Ωλ | Ωκ)
∫

Rc

p (~c | Ωκ) · δ (Ωκ | ~c) dc

79

or using the Prüfgröÿe from above:

V (δ) =
∫

Rc

K∑
κ=0

uκ (~c) · δ (Ωκ | ~c) dc

where Rc is the feature space and ~c ∈ Rc. We see that minimizing V (δ) corre-
sponds to a minimization of the Prüfgröÿe uκ (~c):

min
δ
V (δ) , min

κ
uκ (~c)

integrating over Rc:
K∑
κ=0

uκ (~c) · δ (Ωκ | ~c) ≥
K∑
κ=0

min
κ
uκ (~c) · δ (Ωκ | ~c)

since δ (Ωκ | ~c) is either 0 or 1, it only depends on minκ uκ (~c).
Now we formulate the optimal decission rule:

δ∗ (Ωλ | ~c) =

{
1 if uλ (~c) = minκ uκ (~c)
0 if λ 6= κ

Algorithm 16 Finding An Optimal Classi�er
1. compute the risk V (δ): confusion probability + costs.

2. minimize the risk in respect to the decission rule δ.

Warning It is not su�cient to optimize the error probability unre�ected. E.g.
think about a medicinical application to recognize tumors. The probability
for a tumor is only 0.001%, so the optimization would simply always say
�No� to get a very low error probability, but that is not what we wanted.
The solution is to optimize in respect to certain Lagrange constraints (see
8.10).

In Summa The optimal classi�er, minimizing the risk V (δ), computes the
K + 1 Prüfgröÿen uκ (~c) and decides fpr the class Ωλ, whose Prüfgröÿe
shows the minimal value.

Baysean Classi�er
The Baysean Classi�er is such an optimal classi�er. It's principle to minimize
the Prüfgröÿe is to maximize the a-posteriori probabilities. The Bayes Classi�er
has three preconditions:

• no rejection class Ω0

80

• the optimal decission rule δ∗ (Ωκ | ~c) =

{
1 if uκ (~c) = minκ uκ (~c)
0 if λ 6= κ

• a 0/1 cost function r0/1

A feature is assigned to the class which maximizes the a-posteriori probability:

λ = argmaxκ p (Ωκ | ~c)

Theory
1. abolish the cost factor, by mkaing the cost independent of the class

false classi�cation: r (Ωκ | Ωλ) = rf

correct classi�cation r (Ωκ | Ωκ) = rc

rejection: r (Ωκ | Ω0) = r0.

2. update Prüfgröÿe
uλ (~c) =

∑K
κ=1 r · p (Ωκ) · p (~c | Ωκ)

3. update risk
V (δ) =

∫
Rc

∑K
κ=1 uκ (~c) · δ (Ωκ | ~c) d~c becomes aplying the new cost func-

tion
V (δ) = pc · rc + pf · rf + p0 · r0
Because of the 0/1 cost function and the precondition of having no rejec-
tion class, pc · rc = p0 · r0 = 0.
That means the Prüfgröÿe is simpli�ed to:

uλ (~c) =
K∑

κ = 1
κ 6= λ

p (Ωκ) · p (~c | Ωκ)

This is going to be minimal, if the element removed from the sum (κ = λ)
is the biggest one. Since it is set to zero because of rc = 0.

4. maximize a-posteriori probability
κ = argmaxκ p (Ωκ | ~c), aplying the rule of Bayes (see 10.3)
κ = argmaxκ

p(~c|Ωκ)p(Ωκ)
p(~c) , p (~c) is constant (respectively independent of

maximizing over κ) and thus unimportant for optimization
κ = argmaxκ p (Ωκ) p (~c | Ωκ), because of reasons of numerical robustness,
we scale everything down using the log-likelihood:
κ = argmaxκ log p (Ωκ) log p (~c | Ωκ)

81

p (~c | Ωκ) is the probability density function of class Ωκ.
Most commonly taken for that is gaussian distribution:

p (~c | Ωκ) = N (~c, ~µκ,Σκ)

p (~c | Ωκ) is they key. If however we have no information about the density, there
are some approaches to estimate it: 10.5.

In Summa
The BAYES-classi�er, minimizing the confusion probability under forced decis-
sions (no rejection class), computes k a-posteriori probabilities and decides for
the class showing the maximal a-posteriori probability.

Properties

• 0/1 cost/loss function: r (Ωκ,Ωλ) =

{
0 if Ωλ = Ωκ
1 if Ωλ 6= Ωκ

• no rejection class Ω0

• requires probability information: a-priori, a-posteriori, class dependent de-
nisty

• optimal decision rule: λ = argmaxλ p (Ωλ | ~c) (choose the class with the
highest a-posteriori probability)
Proof:

λ = min
κ∑

λ

r (Ωκ,Ωλ) , p (Ωκ | ~c) = argminλ (1− p (Ωλ | ~c)) = argmaxλ p (Ωλ | ~c)

• the computation of the Prüfgröÿe uκ (~c) is numerically a computation of
K scalar products

• minimizing pf equals maximizing pc, since pc + pf + p0 = 1

Pro/Contra
+ optimal. There is no better one.

- requires probability density information for the �eld of application.

- costs are independent of the classes (e.g. the costs for classifying a healthy
patient ill are the same for classfying a ill patient healthy)

- no rejection class

82

4.2.2 Gaussian Classi�er
Assumption p (~c | Ωκ) = N (~c, ~µκ,Σκ)

Method
1. a-priori probability: p (Ωκ) = #~ci

#Ωκ

2. use ML, MAP to determine ~µκ,Σκ:

µ̂κ =
1
Nκ

Nκ∑

j=1

~cj(κ)

where ~cj(κ) is a feature associated to class Ωκ and

Σ̂κ =
1
Nκ

Nκ∑

j=1

(
~cj(κ) − µ̂κ

) (
~cj(κ) − µ̂κ

)T

Decision Boundary
from Bayes: λ = argmaxλ p (Ωλ) · N (~c, ~µλ,Σλ)
log likelyhood: λ = argmaxλ log p (Ωλ) + logN (~c, ~µλ,Σλ)
einsetzten: λ = argmaxλ log p (Ωλ)− 1

2 log det (2πΣλ)− 1
2 (~c− ~µλ)T Σ−1

λ (~c− ~µλ)
As you can see the �rst part is independent of the observation and the second

part (the former exp part) resembles the Mahalonobis distance.

Pro/Contra
- quadratic in components of ~c (see also 3.1.15)

+ linear decision boundary if ∀κ : Σκ = Σ

+ reasonable memory requirements (information can be derived from the pa-
ramertic family and statistical knowledge)

Tricks
the coe�cients of a quadratic function (here decision boundary) can be estima-
ted linearly.

1. Decision Boundary: δ̂κ (−→c) =
∑

i, j
i ≤ j

aijcicj

2. Least Square:

∑

i, j
i ≤ j

aijcicj − δ̂κ (−→c)

2

→ min

83

3. Matrix Form:

c10c
1
0 c10c

1
1 . . .

c20c
2
0 c20c

2
1 . . .

...
cd0c

d
0 . . . cddc

d
d

a00

a01

...
add

 =

δκ

(−→
c1

)

δκ

(−→
c2

)

...
δκ

(−→
cd

)

4.2.3 Mixture Densities
Idea Use a linear combination of gaussians (or other standard denisties) to

approximate the real distribution.

p (~c | Ωκ) =
M∑
e=1

p (Ωe)N (~c; ~µe; Σe)

where M is the number of gaussians. A mixture density is thus de�ned as a
weighted sum of standard densities. In our case we have chosen a convex com-
bination of gaussians to illustrate the principle. Of course this mixture has to
ful�ll the stochastic criterion (10.3). We can verify this by Integration:

∫
p (~c | Ωκ) d~c =

M∑
e=1

p (Ωe)
∫
N (~c; ~µe; Σe) d~c =

M∑
e=1

p (Ωe) = 1

Parameter Estimation
[A] Maximum Likelihood (see 8.1)

θ̂ − argmaxθ
N∏
m=1

p (~cm; θ) = argmaxθ
N∑
m=1

log p (~cm; θ)

We have to seperately estimate the parameters for every density of the mixture.

Example
given ~c ∈ R500,M = 300

we would have to estimate

numberof p1;l + numberof ~µ1;l · dof (~µ1;l) + numberof Σ1;l · dof (Σ1;l) =

= 300 + 300 · 500 + 300 · 501 · 500
2

= 37725500

since ML already takes quite a while for a few paramters, we should not even
consider trying to estimate this amount of parameters by ML, and rather use
the related EM-Algorithm. A second problem, and argument to take EM, is
the high dimension of the feature space, which quickly leads to the Curse Of
Dimension (8.18).

84

[B] Expectation Maximization (see 8.3)

1. what we need:

• a training set {~c1, . . . ,~cn}
• a probability denisty function p (~c;B) =

∑M
l=1 p (l)N (~ci; ~µl,Σl)

• the parameter vector to estimate B = {p1 . . . pM , ~µ1 . . . ~µM ,Σ1 . . .ΣM}
• observable information(X): ~ci the feature vectors
• hidden information (Y):l the indices of the convex combination
• the Q-function:

Q =
M∑

l=1

N∑

j=0

p (l)(i) · N
(
~cj ; ~µ

(i)
l ,Σ(i)

l

)

∑M
k=1 p (k)(i) · N

(
~cj ; ~µ

(i)
k ,Σ(i)

k

) ·log
(
p̂ (l)(i+1) · N

(
~cj ; ~µ

(i+1)
l ,Σ(i+1)

l

))

where l corresponds to one part of the convex combination, j sums
over all features and i is the current step of the iteration (the i-th
estimate for B̂).

2. start:
Estimation Step: p (l)

∂Q

∂p̂ (l)(i+1)
=

M∑

l=1

N∑

j=0

p̂ (l)(i) · N
(
~cj ; ~µl

(i),Σ(i)
l

)

∑M
k=1 p (k)(i) · N

(
~cj ; ~µk

(i),Σ(i)
k

) · 1

p̂ (l)(i+1)
+ η

Remark 1:
∑M
l=1 can be dropped, since for estimation one parameter is

su�cient
Remark 2:

∑M
k=1 p (k)(i) ·N

(
~cj ; ~µk

(i),Σ(i)
k

)
must sum up to one (see 10.3),

therefore we add the condition: +η
(∑M

k p
(i+1)
k − 1

)
which becomes +η

after the partial derivitaion performed above. Then

∂Q

∂p̂ (l)(i+1)
=

N∑

j=0

p̂ (l)(i) · N
(
~cj ; ~µl

(i),Σ(i)
l

)

∑M
k=1 p (k)(i) · N

(
~cj ; ~µk

(i),Σ(i)
k

) · 1

p̂ (l)(i+1)
+ η = 0

is our term for optimization.

3. compute η:

η :
N∑

j=0

p̂ (l)(i) · N
(
~cj ; ~µl

(i),Σ(i)
l

)

∑M
k=1 p (k)(i) · N

(
~cj ; ~µk

(i),Σ(i)
k

) = −η · p̂ (l)(i+1)

85

multiplying both sides with
∑M
l=1

N∑

j=0

∑M
l=1 p̂ (l)(i) · N

(
~cj ; ~µl

(i),Σ(i)
l

)

∑M
k=1 p (k)(i) · N

(
~cj ; ~µk

(i),Σ(i)
k

) = −η ·
M∑

l=1

p̂ (l)(i+1)

reducing the fraction
N∑

i=1

1 = −η

and
η = −N

inserting this result into our optimization term

N∑

j=0

p̂ (l)(i) · N
(
~cj ; ~µl

(i),Σ(i)
l

)

∑M
k=1 p (k)(i) · N

(
~cj ; ~µk

(i),Σ(i)
k

) = −N · p̂ (l)(i+1)

4. now we can give a closed formula:

p̂ (l)(i+1) =
1
N

N∑

j=0

p̂ (l)(i) · N
(
~cj ; ~µl

(i),Σ(i)
l

)

∑M
k=1 p (k)(i) · N

(
~cj ; ~µk

(i),Σ(i)
k

)

Estimation of µ and Σ
(see also 9.8)

remember that:

N (~ci; ~µl,Σl) =
1

(2π)
d
2

√
det (Σl)

· exp−
1
2 (~cj−~µl)

T Σ−1
l (~cj−~µl)

1. Insertion I: Vector Di�erential
The gradient: ∇~xF (~x) =

(
∂F (~x)
∂~xn

)
1≤k≤n

, ~x ∈ Rn

(a) LinAlg I: consider
∇~y

(
~yTA~y

)
, A ∈ Rn×n, ~y ∈ Rn

∇~y

y1
...
yn

T

a11 . . . a1m

...
an1 . . . anm

y1
...
yn

 =

∂

∂yk

∑

j

(∑

i

yiaij

)
yj

applying product rule
∑

j

akjyj +
∑

i

yiaik =
(
A~y +AT~y

)
k

that means:
∇~y

(
~yTA~y

)
=

(
A~y +AT~y

)

86

(b) LinAlg II: consider

∇~y
(
(~x− ~y)T A (~x− ~y)

)
= − (

A (~x− ~y) +AT (~x− ~y))

(c) estimating ~̂µ(i+1)
l

∇µl
Q

(
B̂(i+1) | B̂(i)

)
=

M∑

l

N∑

j

p̂
(i)
l N

(
~cj , ~µ

(i)
l ,Σ(i)

l

)

∑M
k p̂

(i)
k N

(
~cj , ~µ

(i)
k ,Σ(i)

k

) ·∇µl

[
−1

2
(~cj − ~µl)T Σ−1

l (~cj − ~µl)
]

we de�ne Fj as

Fj =
M∑

l

p̂
(i)
l N

(
~cj , ~µ

(i)
l ,Σ(i)

l

)

∑M
k p̂

(i)
k N

(
~cj , ~µ

(i)
k ,Σ(i)

k

)

and get
N∑

j

Fj · Σ−1
l (~cj − ~µl) .= 0

solving for µ wet get our closed formula:

~̂µ
(i+1)
l =

∑N
j Fj · ~cj∑N
m Fm

2. Insertion II: Matrix Di�erential
The gradient: ∇AF (A) =

(
∂F (A)
∂ai,j

)
1≤i,j≤n

, A ∈ Rn×n

(a) LinAlg I: consider
∇AA−1

∇A
(
AA−1

)
= (∇AA)A−1 +A

(∇AA−1
)

= 0

−A (∇AA−1
)

= (∇AA)A−1

∇AA−1 = −A−1 (∇AA)A−1

(b) LinAlg II: consider
∇A det (A)

use the adjoint matrix A]i,j ∈ R(n−1)×(n−1) (leave out ith row and
jth column, see 9.7) and the LaPlace Extension Formula for solving
determinants:

det (A) =
n∑

k 6=i
ai,k det

(
A]i,j

)
, i ∈ {1, 2, . . . , n}

87

partially dervied to ai,j

∂ det (A)
∂ai,j

= det
(
A]i,j

)
= a{

i,j

and thus we draw the result that

∇A det (A) = A{

where A{ is the complementary matrix (see 9.7) to A.
(c) estimating Σ̂(i+1)

l

combining (a) and (b), we get

∇A det (A) =
(
A−1

)T
det (A)

since
A{ =

(
A−1

)T
det (A) · IdT

Now the partial derivation to Σl of our optimization term looks like
this

∇Σl

(
Q

(
B̂(i+1) | B̂(i)

))
=

N∑

j

Fj∇Σl

[
log p̂(i+1)

l − 1
2

log
[
(2π)d

]]
−

−1
2

log det (Σl)− 1
2

(~cj − ~µl)T Σ−1
l (~cj − ~µl)

using the LinAlg tricks
N∑

j

Fj

[
−1

2
1

det (Σl)
(
Σ−1
l

)T · det (Σl)
]
−1

2

[
(~cj − ~µl)T

(−Σ−1
l

)
(∇Σl

Σl) Σ−1
l (~cj − ~µl)

]

(∇Σl
Σl) is just the identity matrix

N∑

j

Fj

[
−1

2
(
Σ−1
l

)T
+

1
2
Σ−1
l

]
(~cj − ~µl) Id (~cj − ~µl)T Σ−1

l
.= 0

− 1
2

(
Σ−1
l

)T
+ 1

2Σ−1
l equals Σ−1

l

N∑

j

FjΣ−1
l (~cj − ~µl) (~cj − ~µl)T Σ−1

l
.= 0

solving for Σl we get our closed formula

Σ̂(i+1)
l =

∑N
j Fj (~cj − ~µl) (~cj − ~µl)T∑N

m Fm

88

Properties
• convex combination of gaussians: p (~c | Ωk) =

∑M
l plN (~ci; ~µl,Σl)

convex combination means, the probabilities sum up to 1.

• use EM to decompose the search space of the parameters, to estimate the
pdf parameters more e�ciently

• see also Parzen Estimation (4.4.2)

Pro/Contra
+ allows good approximations of complicated distributions

- approximates the world normal

- big memory requirements (the whole training set must be stored and evaluated
in every step)

4.3 Parametric Classi�ers
The core idea of parametric classi�ers is to replace the density by a parametric
function, e.g. a polynom. Then of course we also have to replace the probability
p by some metric distance measure.

Example
dλ (~c) = a1 · c1 + a2 · c2 + a3 · c1 · c2 + a4 · c21 + a5

The general procedure of parametric classi�ers is to approximate the optimal
decission rule δ∗ by a metric dλ (~c):

dλ (~c) = aTλϕ (~c)

We decide for the class that maximizes d:

if dκ (~c) = max
λ

dλ (~c) then assign ~c ∈ Ωκ

a can be computed by optimization methods, e.g. by minimizing the mean
squared error:

ε = E

{
K∑

λ=1

(δ∗λ (~c)− dλ (~c))2
}

89

Pro/Contra
+ probability density functions do not have to be computed, estimated or sta-

tistically approximated

+ in theory the approach of using a parametric familily of functions is more
general than using parametric densities

+ A∗ can be computed e�ciently by nummerical methods

+ experiments show little to no di�erence between parametric and statistical
classi�ers

4.3.1 Polynomial Classi�er
The simplest form of parametric functions are polynomials. Designing a poly-
nomial classi�er you choose the degree of the polynomial and then compute the
parameters.

We have given a metric d (~c) =

d1 (~c)
d2 (~c)

...
dK (~c)

,

a decission rule to approximate δ (~c) =

δ1 (~c)
δ2 (~c)
...

δK (~c)

and our parameters A =

a1

a2

...
aK

.

We choose the metric: d (~c) = ATϕ (~c), but of course any other metric could
be choosen instead. ϕ (~c) is the seperating function we are looking for.

That gives us the goal of minimizing the expectation of the least square
error: ε (A) = E

{(
δ (~c)−ATϕ (~c)

)2
}
, and we want

A∗ = argminA ε (A)

A∗ is called the optimal parameter matrix.
Applying linear algebra, we �gure that we have to build the pseudo inverse:

A∗ =
[
E

{
ϕ (~c)ϕ (~c)T

}]−1

· E
{
ϕ (~c) δ (~c)T

}

Remeber that the expectation is de�ned as:

E {g (x)} =
∫
g (x) p (x) dx ' 1

N

N∑

i=1

g (xi)

90

So we get

E
{
ϕ (~c)ϕ (~c)T

}
=

1
N

N∑

i=1

ϕ (ci)ϕ (ci)
T

E
{
ϕ (~c) δ (~c)T

}
=

1
N

N∑

i=1

ϕ (ci) δ (ci)
T

To proove this we would build the �rst partial derivatives and set them equal
to zero.

So we have computed our parameter matrix A∗, now we can build the seperating
function ϕ (~c)

ϕ (~c)T ·A∗
Since each class Ωκ is represented by its own distance metric dκ (~c), we have to
repeat this procedure for every class. Having dκ (~c) = ATϕ (~c) for every class
we classify ~c to the class it has the minimal distance to.

Example

given ϕ (~c) =

1
c1
c2

 and computed A∗ =

1
2

1
2

1
2 − 1

2
0 0

,

then we get the decision rule by matrix multiplication:

1
2

1
2

1
2 − 1

2
0 0

(1c1c2)

The vector multiplied with the �rst column gives ϕ1 (~c) = 1
2 + 1

2 · c1
and the vector multiplied with the second column gives: ϕ2 (~c) = 1

2 − 1
2 · c1.

In Summa
The Polynomial Classifer minimizes the expection of the least square error
E

{
(δ (~c)− d (~c))2

}
by approximated the ideal decision boundary δ (~c) by di-

stance metric function d (~c). For that it uses polynom functions ϕ (~c), d (~c) =
ATϕ (~c).

Properties
• There are various other methods to �nd A∗, e.g. by iteration, by stocha-

stical approximation, or by a recursive procedure.

• Having a metric distance function, we can easily include a rejection class
Ω0 by adding a threshold θ. If the minimal distance of a feature ~c to a
class Ωκ is greater than the threshold: minκ dκ (~c) > θ, then we reject this
feature ~c→ Ω0.

91

• If there are no restrictions for the distance metric function, like number of
parameters or a parameter range, then we exactly get the Bayes classi�er

Abbildung 37: Proof that polynomial classi�er can be equal to the Baysean
classi�er
we choose the �optimal� metric d∗

d∗ =

p (Ω1 | ~c)
p (Ω2 | ~c)

...
p (ΩK | ~c)

the vector composed of the a-posteriori probabilities.
If the decission rule δ was choosen according to the optimal one δ∗, we get:

(d∗ = E {δ∗ | ~c})

Pro/Contra
- the degree of the polynomial is limited by the number of coe�cients

- because polynoms of degree p with n variables have
(
n+ p
n

)
coe�cients,

the degree is practically limited to p = 2 or p = 3.

4.3.2 Least Square Estimation
Alternatively to the method above, we can also use Least Square Estimation to
approximate the optimal decission rule δ∗:

K∑

λ=1

N∑

i=1

‖δλ (~ci)− dλ (~ci)‖2 → min

we can achieve this by holding λ �xed:

∀~c : δλ (~c) = dλ (~c)

92

Example

given δλ (~c) =

{
1 if ~c ∈ Ωλ
0 if ~c 6∈ Ωλ

and a parametric function of degree 5.

dλ (~c) =

a1

a2

a3

a4

a5

(
c1 c2 c1c2 c21c

2
2 1

)

that gives

~c ·

a1

a2

a3

a4

a5

=

0
1
0
0
...
1
0
0

where

a1

a2

a3

a4

a5

= AT

0
1
0
0
...
1
0
0

and �nally using SVD we compute the pseudo inverse
(
AT ·A)−1

AT

and are able to solve the above equation.

Properties
• To reduce the dimension Parameter Tying can be applied. E.g. try to

set a1 = a2, or something like that, that seems to make sense in your
application. For more on Parameter Tying, see 8.14.

4.3.3 Linear Regression
In general Linear Regression means the estimation of a statistic variable y (in
our case δκ (~c)) that is dependent on a vector ~a. The relation between ~a and

93

y is assumed to be linear and approximated as such, giving the technique its
name. Regression, in general, is the problem of estimating a conditional expected
value. While this relation is linear, the function approximating the relation is
not restricted to linearity (i.e. lines) and can also be quadratic or of higher
dimension (i.e. arbitrary curves).

In our case we want to approximate a probability density function by a
parametric function, i.e. a polynomial.

δκ (~c) =
d∑

i=1

aici + a0

where d is the degree of the polynomial.

Computation of ai
To get the parameters of our polynomial ai we apply Linear Algebra:

we can write the above formula like this (a0, a1, . . . , ad) ·

1
c1
c2
...
cd

and get a system of linear equations:

1 c11 . . . cn1
...

...
1 cdn . . . cdn

a0

...
ad

 =

δ
(
~c1

)
...

δ (~cn)

which we can solve with:

a0

...
ad

 = M t

δ
(
~c1

)
...

δ (~cn)

 whereM t is the pseudo-

inverse of the above matrix.

4.3.4 Logistic Regression
In Logistic Regression we want to approximate the Bayesean a-posteriori quo-
tient by functions linear in ~c (e.g. a polynomial) ensuring at the same time that
they sum up to one and remain in [0; 1]:

log
p (Ωκ | ~c)
p (Ωλ | ~c) → ~αT~c+ α0

For the stochastic criterion we use Lagrange constraints verifying the postula-
tion.

94

Theory
assume gaussian distribution.

log
p (Ωκ | ~c)
p (Ωλ | ~c) = log

p (Ωκ)
p (Ωλ)

+ log
1√

2πΣκ
exp−

1
2 (~c−µκ)T Σ−1

κ (~c−µκ)

1√
2πΣλ

exp−
1
2 (~c−µλ)T Σ−1

λ (~c−µλ)

· · · = log
p (Ωκ)
p (Ωλ)

+ (µκ − µλ)T Σ−1~c+
1
2

(µκ − µλ)T Σ−1 (µκ − µλ)

We see that we have achieved linearity in the components of ~c. Thus we can
express the above as a linear function:

α0 + ~αT~c

For arbitrary probability density functions we can estimate α0 and ~αT by Ma-
ximum Likelihood (see 8.1).

∏

i

p
(
Ωδ(−→c) | ~c

)

where δ (~c) is a class number given by a trainer. We set the ML parameter vector

to θ =

α0

...
αK−1

and get

Θ̂ = argmaxΘ L (Θ) = argmaxΘ p
(
Ωδ(~c) | ~c

)

Derive L (Θ) and solve for critical points. Since this is going to be non-linear,
methods like Newton Iteration (see 8.5) can be applied.

Decision Boundary
Consider maximal a-posteriors with the Bayes classi�er. In accordance here we
have the objective: log 1 = 0

δκ,λ =
{
~c | α0 + ~αT~c = 0

}

Properties
• results in the same linear function as LDA (see 3.1.15) does, but is more

general than LDA, since it makes less assumptions

4.4 Non-Parametric Classi�ers
In this chapter we look into classi�er, which do neither use probability density
functions nor parametric approximations of the same.

95

Pro/Contra
+ Does not require any parameters and parameter estimation

- While it was su�cient to store a parameter vector in the previous two sections,
with the non-parametric approach we have to save the whole sample set

4.4.1 Direct Estimation
Direct Estimation makes use of volumes. The goal is to estimate

p̂ (c | Ωκ) =
Pκ
V

Tabelle 2: Direct Estimation Variable Lookup Table
variable interpretation
Pκ the probability that a feature from class Ωκ lies within the volume V
P̂κ

mκ

Nκ
, Pκestimated from a sample set

V the Volume containing ~c
m the number of patterns in V
N the sample set

probability estimation
p (Ωκ) p̂ (Ωκ) = Nκ

N

p (~c) p̂ (~c) = m
N ·V

p (~c | Ωκ) p̂ (~c | Ωκ) = P̂κ

V = mκ

Nκ·V
p (Ωκ | ~c) p̂ (Ωκ | ~c) = p̂(Ωκ)·p̂(~c|Ωκ)

p̂(~c) = mκ

m

Example
The simplest way to apply this theory is Histogram Estimation. In this case
the Volume is constant, since the area of interest is equally partitioned into
intervals.

E.g. throw a dice 1000 times, draw a histogram and estimate the probabilities
from it.

Properties
• good estimations postulate: Nκ →∞ and V → 0

Pro/Contra
+ it works without saving the sampleset, since the result of the estimaton is

just an estimate of the parameter vector of the previous two approaches

96

- Curse Of Dimensionality (see 8.18)
especially un�t for analogue values in Rn, imagine a histogram of such va-
lues: There would be an endless number of gaps and only single entries on
petty specks. That again means, referring to the Curse Of Dimensionality,
that apllying distance measures, all features will be clos to each other.

+ A possible solution is to choose V variable (great activity → small V , low
activity→ broad V) and set mκ to a constant value. That means we count
per area and can avoid most gaps.

- Yet a variable V also means, that now we have to store the complete sample
set though.

4.4.2 Parzen Windowing
The initial idea of Parzen Windowing was to compare the statistics of incoming
patterns with the sample set:

p (~c | Ωκ) =
1
Nκ

Nκ∑

j=1

δ (~c− ~cjκ)

when the incoming pattern is to befound in the sample set, the classi�er δ will
return 1, else 0:

δ (x, y) =

{
1 x = y

0 x 6= y

This is a good approach, but the probability that an exact copy of the incoming
pattern is stored in the sample set is relatively low. Here comes Parzen's second
idea into play: We use gaussian bells to blur our peaks (the sample patterns in
the sample set ~cj) to make them much broader:

p (~c | Ωκ) =
1
Nκ

Nκ∑

j=1

f

(
~c− ~cjκ
hn

)

This now approach converges to the density in the quadratic mean.

Tabelle 3: Parzen Windowing Variable Lookup Table
variable interpretation
Nκ the sample set
~cjκ jth vector of the sample vector, labeled to belong to class κ
f windowing function (usually gaussian bells)
hN determines the width of the window function

97

Properties
• because of the stochastic criterion, window functions f have to full�ll two

requirements

1. f (x) ≥ 0

2.
∫ +∞
−∞ f (x) dx = 1

• combining this with Parameter Tying (see 8.14), we assume all covariance
matrices are equal: ∀κ : Σκ = Σ

Pro/Contra
- the whole sample set has to be stored and for each sample vector parameters

for an additional gaussian bell

+ a possible solution is to combine several gaussian bells to one mixture (see
4.2.3)

- that again makes the system less dynamical for adding new vectors to the
sample set

4.4.3 Nearest Neighbour (NN)
The Nearest Neighbour classi�er is probably the most intuitive and widest
known classi�cation method. It stores a couple of reference vectors ~cκ for each
class, compares the distance of a new pattern ~c to these references and decides
for the class corresponding to the reference vector having the smallest distance
to the new pattern.

Properties
• requires a metric distance measure, e.g. the euclidean distance: d (~c,~cκ) =√

(~c− ~cκ)T (~c− ~cκ)

• approximates the a-posteriori probabilities: p (Ωκ | ~c) = mκ

m

• the classi�cation error ERR can be bounded to: ERRBayes ≤ ERRNN ≤
2 · ERRBayes

• the nearest neighbour can e�ciently be found using branch & bound search
(see 3.2.14)

98

Pro/Contra
+ easy to implement, fast and intuitive

+ at least half as good as the Baysean classi�er

- makes no use of any statistical background knowledge

- it is very di�cult to �nd a good metric distance measure in high dimensional
spaces

4.4.4 K-Nearest Neighbour (K-NN)
K-Nearest Neighbour is a modi�cation to the standard NN classi�er. Here we
compare patterns to several reference vectors at once deciding for the class
the average of those vectors belongs to. Thresholds decide how many reference
features will be used.

K-Threshold Use the K nearest reference vectors

D-Distance Use no reference vectors that are farther away than D

Example
Given metric: euclidean distance, dimension: 1, K = 3, D = 5, class 1 Ω1 =

{0, 1, 5}, class 2 Ω2 = {8, 10, 11}, pattern to classify c = 6.

The three (K) nearest samples to c are 5, 8 and 10.
The NN classi�er would classify 6, to class Ω1, since 5 is the nearest sample

vector and 5 belongs to class Ω1.
K-NN however classi�es 6 to class Ω2, since the average of those three (2

3)
belong to class Ω2.

Properties
• having two thresholds it is easy to introduce a rejection class:

� If the minimal occuring distance is above a threshold, the pattern is
rejected

� If K is below a threshold, the pattern is rejected

• in praxis K is choosen between K = 3 and K = 7

4.5 Classi�cations Levels
These classi�ers partition the classi�cation process in several sublevels. In ge-
neral we distinguish two kinds of such partitions: seperation in a hierarchy and
in sequences.

99

Hierachy
A hierarchical classi�cation order means that on the root level an aspect is
classi�ed that ideally seperates the number of possible classes in half, or allows
the application of a specialized classi�er with a much better error rate. Classi�ers
using hierachical classi�cation are decision trees (see below, 4.5.1).

Example
A good example is speech recogition. At the root level the decission could be felt,
what language the participant is speaking. At a second one could be determined
whether the participiant is female or not. Then at a third level could be decided
whether the speaker is of age or not. Eventually in the last level a classi�er
specialized for the resulting group could be applied. E.g. a classi�er specalized
to old russian women.

Sequences
Sequential classi�cation is similar. At �rst a minor classi�er classi�es the pattern
roughly with a small number of features. Then depending on this classi�cation,
additional features are computed and the next classi�er is choosen. That means
features are a temporal sequence of single vectors: f1f2 . . . fn. That also means
features now have a variable not necessarily equally long length. This gives
our classi�cation problem a new aspect: �nding the best mapping between two
sequence:

Optimization Problem:

κ = argminκ,ζ
N∑

i=1

∥∥fi − fκ,ζ(i)
∥∥2

where κ symbolizes the class a�liation and ζ a discrete mapping (e.g. mapping
c1 to m1 . . .mk).
Ergo we know have two major goals for classifying patterns:

1. mapping of the elements
2. deciding for a class using a distance measure

In respect to application dependent restrictions that help to minimize the search
space (e.g. monotony, or λ-contraints)

Example
A good example for this kind of classi�cation is the diagnoses of diseases, because
the features are expesinve to compute. At a �rst step an assistent doctor could
decide what features are needed from the patient to classify her disease (e.g.
EKG, Radiology,...). Then afterwards a more specialized examination, according
to these new features follows. Evenntually a doctor will classify the disease
relying on many preclassi�cations from the previous steps.

100

Requirements
• a set of prototypes / reference samples

• a proper distance measure

Prototypes
• the average of all samples within one class (statistical classi�ers)

• all samples (NN)

Suitable Distance Measures
• average contribution di�erence: dλ =

∑M−1
j=0 (fλj − fj)

• average quadratic distance: dλ =
∑M−1
j=0 (fλj − fj)2

• Levenstein Distance: the smallest distance between two chains of sym-
bol is the smallest amount of replacements, insertions and deletions of
symbols to transform the �rst chain into the other:

dλ =
N∑

j=0

d (~νλj , ~νj)

with
d (~νλj , ~νj) =

{
1 ~νλj 6= ~νj

0 ~νλj = ~νj

Pro/Contra
+ The number of features and the feature space is drastically reduced

+ Strongly specialized classi�cators can be applied

- Overhead for the organisation

- Many parameters for all the di�erent classi�ers

- Comparisson of samples (e.g. for distance) becomes harder, since they are now
also di�erent in length

4.5.1 Decision Trees
4.5.2 Linear Normalization
Linear Normalization is an intuitive and easy method to bring two sequence
vectors to the same length, to allow comparisions between them. The idea is to
simply strech respectively shrink the new pattern vector until it has the same
length as the sample to compare with.

101

Properties
• reference sample vector are usually strechted respectively shrinked to a

normalized length to make the classi�cation process more simple and faster

Pro/Contra
+ intuitive, fast

- apparently this doesn't work for many applications.
For example imagine speech recognition; the word �sword�, spoken �ss-
woooord�. Linear Normalization would normalize the sequence to some-
thing like: �sswwoorrdd� which is entirely nonsense!

Abbildung 38: Linear Normalization

Intuitively the test pattern looks much more like reference pattern 1. Yet linear
normalization draws that it is equally equal to both references.

4.5.3 Dynamic Time Wraping (DTW)
The idea of Dynamic Time Wrap is an answer to the problems of Linear Norma-
lization. We still want to expand and shrink the sequence, but no longer linearly.
We seek a wraping ω that minimizes the distance:

D∗λ = dλ (ω∗) = min
ω
dλ

102

The idea is not new, it is just an application of Bellman's Optimality Prin-
ciple (see 8.19) to our problem: In an optimal sequence of decisions is every
subsequence itself an optimal sequence of decisions.

Requirements
• monotonic cost function (no negative costs)

• speperable cost function (c (a) + c (b) = c (a+ b))

• independent normalization for each reference pattern

Optimization
The space of every possible mapping between two sequences is immense, there-
fore we apply di�erent techniques and add some restrictions to it:

1. Predecessor Function

The idea is only to allow a certain amount of predecessors (see illustration),
which may add di�erent costs depending on the path (e.g. delete/insert 1,
replace 2).

2. Level Restrictions
restrict the mapping per level

Properties
• complexity: O

(
n2

)
(two for loops)

• typical applications: row matching of car stereo pictures, pull a baby with
tongs out of the mother womb

4.5.4 Context
Context per se is no classi�er, but many classi�er can bene�t from using context
knowledge. An example from natural language would be the probability that 'i '
is followed by 't '.

[1] N-Gram The idea of N-Grams is to restrict the number of neighbouring
features a feature depends on:

p (wi | wi−1, wi−2, . . . , wi−n−1)

where indices i− 1 . . . i− n− 1 refer to predecessors of wi.

103

Example
Handwriting detection:

Try to detect the follwoing word by yourself

Without context knowledge such words are impossible to classify.2

The most promionent application of this form of context knowledge are Hidden
Markov Models (see 4.8):

p (~ci | ~ci−1)

where N usually is choosen as 1 or 2, since a higher degree would go beyond the
scope of computer computation.

[2] Simpli�cations We need a couple of additional simpli�cations to be able
to work with context:

1. statistical independency
features have to be statistically independent of each other:

p (A ∩B) = p (A) · p (B)

respectively

p (~c | Ω) =
N∏

j=1

p (~cj | Ωj = Ωκ)

that gives us K ·N densities instead of KN ones.
Note: This assumption is critical, because although we simplify the sta-
tistics, we de facto cancel the possibility of context relations, by saying
features are independent of each other.

2. dependency on only the direct predecessors

p (~ci | ~ci−1 . . .~ci−n−1) ' p (~ci | ~ci−1)

3. a-priori knwoledge
e.g. for speech a lexicon or a dictionary. Such a dictionary can be used for:

• additional probabilities: p (′t′ |′ i′), the probabilty that 'i' is followed
by 't'

2The word is Aluminiumminimum

104

• a list of all valid words: the classi�er has decided that the most pro-
bable sequence is the word 'blod', yet 'blod' is not in the dictionary,
so the classi�er decides for the second best guess 'plot' (or Nr. 3:
'plod').

Having all that we can compute p (~cj | Ωκ) applying the Viterbi Algorithm (see
8.21).

4.6 Neural Networks

Abbildung 39: Neural Network (Multilayer Perceptron)

A multilayer perceptron (see below) as example for a neural network.

Neural Networks or Arti�cial Neural Networks intend to reconstruct the
human Natural Neural Network. Neural networks consist out of a set of
nodes (perceptrons, neurons) with connections between them (nerves). The
neurons are modelling natural human neurons, little nodes that �re an impulse
under certain circumstances (modelled by thresholds). Those neurons are often
orderd in layers, where one layer serves as input layer and one as output layer.
The layers in between are called the hidden layers. The perceptrons have an
(usually very simple) internal function or process-function that in�uences the
data sent through them. In restricting the number of perceptrons, the number

105

of layers and the allowed connections between perceptrons, Neural Networks are
modelled.

Components
Perceptron/Neuron nodes with an internal processing function and a thres-

hold β

Threshold β a real valued vector, each component corrsponds to the threshold
of a neuron

Process Function a rule in�uencing the trigger behaviour of a neuron

Nerve edges, connections between the neurons

Structure the number of neurons for input, output and the hidden layer (very
di�cult to determine)

Type restrictions: e.g. backcoupling, number of layers, number of edges per
layer

Training
The most fundamental aspect of Neural Networks is the training. Usually this is
an iterative process that determines the weights and thresholds of the neurons β.
More advanced learning algorithms may also in�uence the function's structure.
Yet the best learning algorithm can do nothing if the network structure and
type were choosen poorly. So the most di�cult part, that can almost solemly
be learned by practice, is to decide for a structure and restrictions on it.

The objective function is as usual to minimize the least square error ε

ε =
∑

i

‖ζ (~ci)−ANN(~ci)‖2 → min

Extrema for this function can be found with standared methods like gradient de-
scent (see 8.6) or coordinate descent (see 8.7). In coordinate descent alternately
the threshold β and the weights wij remain �xed.

The result in�ucences the weights additive, multiplied with a step variable
λ:

w
(l)
ij = ŵ

(k)
ij + λ∇fij

Properties
• the process-function of the neurons is usually the same for all nodes within

a neural network

• there are many types without �xed layers and much backcoupling

• structure optimization can be connected with evolutionary algorithms

106

Pro/Contra
- there is no method to �nd the optimal structure + restrictions

-

- trainability

- generalization: towards di�erent applications and often new unmodelled fea-
ture vectors

- e�ciency compared to other classi�ers

- �xed number of inputs→ input of variable length not allowed→ unsuited for
speech recognition

+ parallelism

+ self-adaptability

+ focused on learning

Types
There are various di�erent types for neural networks, designed for various app-
lications. We will discuss some of the more general ones.

4.6.1 Multilayer Perceptron
Multilayer Perceptrons are very powerful. They are ordered in hierachical layers.
Connections are only allowed between one layer and the following one. They
allow non-linearities, like the Sigmoid Θ (see 9.13), as perceptron processing
function and thus are able to model arbitrary class borders. Because of that,
training algorithms do not operate linearly. Quadratic learning algorithms do
exist. Also because of their power, the weights wij and the threshold β can not
be optimizied simultaneously. This would lead into the Curse Of Dimensionality
(see 8.18). They are rather to be optimizied seperately by e.g. using coordinate
descent (see 8.7). Once the Multilyer Perceptron Neural Network was trained,
it works in three steps:

107

Algorithm 17 Multilayer Perceptron
1. for all nodes: compute the weighted (wij) sum of the input fi

y
(l+1)
j =

Ml−1∑

i=0

w
(l+1)
ij f

(l)
i − w(l+1)

j

for 0 ≤ j ≤Ml+1 − 1

2. choose a non-linear function, e.g. the Sigmoid Θ

Θ(y) =
1

1− e−y

3. compute the output, apply the process-function with the non-linearity

f
(l+1)
j = Θ

(
y
(l+1)
j

)

Training
1. We choose supervised learning and label our sample vectors by the desired

output δ of the process-function.

2. Determine the actual output δi.

3. Compute the error between them ε.

ε =
M(l)∑

i=1

(
δi − f (l)

i

)2

4. Change the weights using gradient descent, until the error ε has reached
a minimum:

w
(l)
ij ← w

(l)
ij − γ

∂ε

∂w
(l)
ij

= w
(l)
ij + ∆w(l)

ij

where γ determines the step width amd direction of the descent.

Properties
• 2 layers for all boolean functions

• 3 layers for approximating non-linear functions (⇒ arbitrary class bor-
ders!)

• supervised learning

• high degree of parallelism

108

Pro/Contra
+ arbitrary class borders

+ high degree of parallelism

4.6.2 Feature Map

Abbildung 40: Neural Network with a Feature Map

y0, . . . , yM ′−1 output neurons

f observation, signal, features

wj weight vectors

Vκ training area, that is compacti�ed during training

A feature map pursues the same idea as the Sammon Transformation (3.1.18),
namely to project features unto a 2D space to illustrate the classi�cation process
visually. So the features themselves are the input of the Neural Network and
the output are the 2D pointvectors on a 2D map. The classi�cation underlies
the following objectives:

• features belonging to the same class should be projected to the same out-
put

• features belonging to similar classes should be projected to neighbouring
outputs

109

That means Feature Maps model similarity of observation grouping them in
neighbouring regions according to their degree of similarity. A core aspect re-
sulting from this, is that we have no static classes, but build them during the
learning process by grouping features according to their similarity.

Algorithm 18 Feature Map
Find the weight vector wκ closest (= most similar) to the input vector f using
a Minimum Distance Classi�er:

wκ = argminwj
|f − wj |2

activiate the output neuron corresponding to this weight vector yκ.

Training
Training works in two steps:

1. initialize the weights by random values

2. © until a good error rate: ε =
∑
i (fi − wij)2 has been reached

• specify the neighbourhood of an output (i.e. when are outputs neigh-
bours)
• determine the output neuron yκ, that would be activated:

�nd the weight vector closest (= most similar) to the input vector in
this neighbourhood using a Minimum Distance Classi�er:

wκ = argminwj
|f − wj |2

the output neuron corresponding to this weight vector is yκ.
• adjust the weights according to the new input vector using gradient

descent (see 8.6):

wij ← wij − γ ∂ε

∂wij
+ γ (fi − wij)

• compactify the neighbourhood along proceeding training time

Properties
• unsupervised learning

110

4.6.3 Radial Basis Functions

Abbildung 41: Neuro Network with Radial Basis Functions

The idea of Radial Basis Functions is similar to that of Parzen Windowing (see
4.4.2). Neurons represent radial basis function (e.g. a gaussian bell). Incoming
feature vectors are then reckoned up with the radial basis functions (the pro-
cess functions) then the di�erence is taken and a Norm is applied. This means
another di�erence to the Multilayer Perceptron is that while the Sigmoid has a
global e�ect, these radial basis functions do have localy limited e�ects.

Properties
• only 1 hidden layer

• the simple structure allows simple direct computation of the weights

• a regulation term (e.g. a polygon) can be added to the process function of
the perceptrons modelling in prior knowledge:

f (β,w) + λ (1− w) + Vβf (β,w)

111

4.7 Support Vector Machines (SVM)
4.7.1 Basic SVM
Idea
Assume two linear seperable classes. Maximize the margin between the two clas-
ses and choose this margin as decision boundary. The margin will be �xed to
the so called support vectors. Vectors of both classes which lie on the border
of the margin and de�ne the margin by that. This is very similar to classi�ers
called Separating Hyperplanes(see for Hyperplane: 9.14), which search for
a hyperplane seperating the classes. Those seperating hyperplane classi�ers are
restricted to linear seperable classes, SMV however can be extended to overlap-
ping classes, as we will see later.

Abbildung 42: Support Vector Machine with seperable classe

As you can see the margin is built by three support vectors. Two from the upper
class and one from the lower. xTβ + β0 is the optimal seperating hyperplane,
that maximizes the margin. There are many more seperating hyperplanes, but
they are less optimal and show a worse generalization ability (when new features
are classi�ed).

Theory
[A] The margin

1. Two feature vectors ~c1,~c2 of the margin L have to ful�ll the decision
boundary equation:

~αT~c1 + α0 = ~αT~c2 + α0

⇔ ~αT (~c1 − ~c2) = 0

112

2. The margin is then de�ned as

L =
{
~c | ~αT~c+ α0 = 0

}

3. Distance of a feature vector to the decision boundary: We have a para-
metric representation f (~x) of the margin and thus only need to plug in ~c
and consider the normalisation: 1

‖α‖f (~c) to get the distance.

[B] Rosenblatt's Perceptron Rosenblatt's Perceptron learning algorithm
tries to �nd a seperating hyperplane by minimizing the distance of misclassi�ed
points to the decission boundary.

Assume a two class problem.

1. decision rule:
δ (~c) =

{
−1 f (~c) < 0
+1 f (~c) ≥ 0

= y

2. training vectors labelled by yi:

yi ·
(
~αT~ci + α0

)
=

> 0 correct classi�cation
= 0 rejection?
< 0 wrong classi�cation

where
(
~αT~ci + α0

)
is the classi�er which returns a scaled (~αT is not nor-

malized) distance to the separating plane and yi ∈ {−1,+1} a training
label.

3. objective function
D = −

∑

i∈M
yi ·

(
~αT~ci + α0

)

whereM is the set of misclassi�ed vectors. The − is because yi will always
be negative for misclassi�ed vectors.

4. optimization problem
(
~αT , α0

)
= argmin·~αT ,α0

D

5. optimization procedure

∂D

∂~α
= D′~α = −

∑

i∈M
yi~ci

.= 0

∂D

∂α0
= D′α0 = −

∑

i∈M
yi

.= 0

113

use stoachstic gradient descent (see also 8.6):

Algorithm 19 Stochastic Gradient Descent
(a) Randomly select a misclassi�ed feature vector ~ci (stochastical element)

(b) Update!
(

~α
α0

)
←

(
~α
α0

)
+ λ

(
yi · ~ci
yi

)

6. Pro/Contra

+ converges if the training set is linear seperable

- result depends on the initialization of ~α and α0

Can be outmaneuvered by adding Lagrange constraints to the seperating
hyperplane: Optimal Separating Hyperplanes seperates two classes
and maximizes the distance to the closest point of either class.

- if the training set is not linear seperable, the algortihm does not converge and
cycles are hard to �nd

- even if conversion is guaranteed, the number of ��nite� steps can be pretty
large

[C] Combination Of Margin And Perceptron Goal: Determine a li-
near function f (~c) = ~αT~c+ α0 with maximal margin M .

max
~α,α0,‖~α‖=1

M

subject to
yi

(
~αT~c+ α0

) ≥M
draws

L (~α, α0) =
1
2
‖~α‖2 +

N∑

i

λi
(
yi

(
~αT~ci + α0

)− 1
)

deriving for ~α gives
∂L

∂~α
= ~α+

N∑

i

λiyi~ci

~α = −
N∑

i

λiyi~ci

deriving for α0 gives
∂L

∂α0
=

N∑

i

λiyi

114

yi = −
N∑

i

λi

That tells us ~α is a linear combination of feature vectors (support vectors) that
build the margin.
Pluging in ~α and yi in L (~α, α0) draws

L (~α, α0) =
1
2

∑

i

∑

k

λiλkyiyk~c
T
i ~ck −

∑

i

λi

Remark: On this point extended Lagrange Multiplier constraints, called Wolfe
Dual, are added for optimization.

Properties
• pretty good

• concentration on the interesting, di�cult regions in the feature space

• requires no probability information of the feature vectors (like Bayes)

• SVM can be extended to multiclass problems, essentially by solving mul-
tiple two class problems

• O (
m3 +mN +mpN

)
where m is the number of support vectors, N the

number of features and p the number of predictors

4.7.2 SVM for non-seperable classes
We �rst assumed that our two classes are linear seperable. If they're not, we
have too adjust the SVM method and introduce slack variables ξi, which
model vectors on the wrong side of the margin:

yi
(
~αT~ci + α0

) ≥M (1− ξi)
where ξi ≥ 0 and

∑
i ξi < const.

115

Abbildung 43: Support Vector Machine with non-seperable classes

By ξi we can model the proportional amount by which the predicition f (~c) =
~αT~c + α0 is on the wrong side of the margin. All features on the wrong side
of the margin are added to the set of support vectors and have an additional
weight ξi. The original support vectors remain and gain a weight of ξi = 0.

The change in classi�cation is:

1. features ~ci on the correct side of the margin are weighted with ξi = 0

2. if ξi ≤ 1 then ~ci is element of the correct stripe

3. if ξi > 1 then ~ci is misclassi�ed

adapted optimization
by minimizing 1

2 ‖~α‖2 we get rid ofM . We furthermore have to consider the two
conditions for ξi, ξi ≥ 0 and

∑
i ξi < const. The adapted Lagrange Multiplier

term is:

L (~α, α0) =
1
2
‖~α‖2 +

∑

i

λi
(
yi

(
~αT~c+ α0

)− 1
)

+ ξi + λ
∑

j

ξj +
∑

j

γiξi

deriving this term and considering the Wolfe Dual and the Karush-Kuhn-Tucker
(see 8.11) conditions, we get our closed formula for the parameters.

Suport Vectors
Vectors on the wrong side of the margin are added to the support vectors. In
addition we still have one ore more support vectors on the correct side of the
margin, that lie very close to the margin's border.

116

Properties
• The maximization of the Wolfe-Dual under the Karush-Kuhn-Tucker con-

ditions can be improved by adding a tuning variable γ. Points on the edge
of the margin (ξi = 0) will be characterized by 0 < αi < γ. The remaining
points (ξi > 0) have αi = γ. This tuning variable γ can be obtained by
Cross Validation (see 6.2).

4.7.3 Quadratic SVM
Estimating the SVM paramters (~α, α0) for a quadratic decission boundary with
for example ML results in quadratic terms:

∑

i

‖δ (~ci)− f (~ci)‖2 → min

To avoid this we can apply a trick from Computergraphics and lift the dimension
of the feature space by transforming the features. By this we are able to keep
the function linear.

Example

~c′ =

c1
...
cn
c1c2
...
c25
...

⇒ f
(
~c′

)
= ~αT ~c′ + α0

By that we get a linear decision boundary in a higher feature space.

Adapted Optimization

L (~α, α0) =
∑

i

λi − 1
2

∑

i

∑

k

λiλkyiyk

(
~ci
T ~ck

)

where
(
~ci
T ~ck

)
is replaced by a kernel function3 〈h (~ci) , h (~ck)〉 which performs

the transformation in the new feature space.

3for example: k (~ci, ~ck) =
“
1 + ~ck

T ~ci

”d
for d-th degree polynomials

117

4.7.4 SVM with di�erent basis functions
Untill now we have restricted ourselved to linear and quadratic basis function to
de�ne the margin of the SVM. Because in training only scalar products ~cT~c have
to be computed, in principle we could also take any non linear basis functions,
but praxis has shown that it is much better to lift the space and look for linear
functions in a feature space of higher degree, as we did in the previous section.
You still have to pay attention not to overdo this, else you might run into
over�tting.

For that we choose a kernel function K (~c,~c′) for the homomorphism into
the space we'd like to build the margin in, and keep the linear function. Some
possible kernels are:

dth degree polynomials: K (~c,~c′) = (1 + 〈~c,~c′〉)d

radial basis: K (~c,~c′) = e

„
−‖~c−~c′‖2

z

«

where z is a constant

neural network K (~c,~c′) = tanh (κ1 〈~c,~c′〉+ κ2)

That changes our original SVM decission boundary

L (~α, α0) =
1
2

∑

i

∑

k

λiλkyiykK (~c, ~ci)−
∑

i

λi

and gives us the linear function:

f (~c) =
N∑

i=1

λiyiK (~c, ~ci) + α0

Pro/Contra
- Lifting can feature space easily leads to the Curse Of Dimensionality (see 8.18)

- Lifting the feature space too much makes it also hard for adaptive Kernel
methods to produce an ideal kernel for a certain space

4.7.5 SVM for Regression
Regression means to deal with continous values instead of discrete class numbers.
In SVM Regression we want to concentrate on a problematic region and pay
less attention to the rest.

Theory
given linear model f (~x) = ~αT~x + α0 and sample points {(~yi, ~xi) ; i = 1 . . . N}
then yi = αixi+α0 and we get the least square estimation:

∑
i ‖yi − αixi + α0‖2 →

118

min and thus ~y = A

(
α0

αi

)
. Solving this with the Pseudoinverse, our parame-

ters are: (
α0

αi

)
=

(
ATA

)−1
AT~y

Now to focus on the problematic region, we change the residual function (Feh-
lerfunktion), i.e. the sum of squared di�erences.

Vε (t) =

{
0 |t| < ε

|t| − ε otherwise

This error measure is called ε-Intensive Error Measure. This means we are
ignoring errors of size less than ε. This roughly corresponds to the SVMmethods,
where points far away from the margin are ignored in the optimization. We can
then deal with the two di�erent regions with di�erent adapted care: For the
region falling through the ε-Intensive Error Measure we apply a simple function
(i.e. linear) and for the di�cult problematic region a quadratic one.

Example
We want to combine the abs function |r| with a quadratic function r2. Then our
residual would simply be:

VH (r) =

{
r2

2 |r| ≤ c
c |r| − c2

2 |r| > c

Adapted Optimization
The general form of our residual function is:

Vε (t) =

{
0 |t| < ε

|t| − ε otherwise

our optimization term is then:

L (~α, α0) =
∑

i

Vε (yi − f (xi)) + λ
(
‖−→α ‖2 − 1

)

where the last λ term is for regularization and can be estimated by e.g. Cross
Validation (see 6.2).

119

4.8 Hidden Markov Models (HMM)
4.8.1 Theory

Abbildung 44: HMM

A Hidden Markov Model is a method to classify sequences of random variables.
A sequence of random variables is de�ned as

p (~c) =
n∏

i=1

p (~ci | ~c1, . . . ,~ci−1)

where p (~ci | ~c1, . . . ,~ci−1) is the probability that ~ci occurs, given ~c1, . . . ,~ci−1 are
the previous features occurances, also called the history. Taking this histo-
ry unre�ected into account, results in astronomically large search spaces (see
Pro/Contra 4.8.1). Therefore we discuss some simpli�cations:

• many histories will turn out similar, therefore a many-to-one mapping of
histories won't e�ectively worsen our model Φ:

p (~c) =
n∏

i=1

p (~ci | Φ(~c1, . . . ,~ci−1))

• a large vocabulary is not required, since the majority of the words contai-
ned will never occur in the language

• another idea is the usage of a grammar having a certain state Φi, then we
could replace the history by this state, implicitely containing past happe-
nings:

p (~c) =
n∏

i=1

p (~ci | Φi−1)

120

• usage of n-gramms: reducing the history to the last n−1 observed features.
Most commonly used are Trigrams:

p (~c) =
n∏

i=1

p (~ci | ~ci−2~ci−1)

That means sequences are considered to be equal if the end in the same
two words.

• n-grams alone are very crude, because they model any possible combina-
tion of features. For example with recognizing words, many combinations
result in a probability of 0. Therefore we add a smoothing to the n-grams,
e.g. by interpolation:

p (~ci | ~ci−2~ci−1) = λ3f (~ci | ~ci−2~ci−1) + λ2 (~ci | ~ci−1) + λ3 (~ci)

where the non negative weights λi sum up to 1.
This last idea is what HMMs do:

121

Abbildung 45: Linear Smoothing Of HMMs

In HMMs those interpolating smooth variables become initial probabilities (πi =
λi) and state transition probabilities (aij = f (νj | ~c)). Here comes the aspect
of similar histories into account: All transitions from state si to state sj are
considered to have the same probability, therefore aij is independent of ~c. The
states itself are called output probabilities (bi (~c) = si (~c)).

The HMM theory assumes that there is a hidden process behind such a se-
quence of random variables, that can be seen as an automata with states and
state transitions. This hidden process is to be estimated by observing visible
output symbols (Estimating the state sequence). In this automata or graph one
distinguishes between three fundamental probabilities:

1. initial state probabilities: πi
initial probability for a certain state. Often determined by relative fre-
quencies.

2. state transition probabilities: ai,j
probability to go from state si to state sj .

122

3. output probabilities: bi (x) (alternative notation: p (x,Bi), where Bi is a
density parameter belonging to state si)
probability to produce output symbol x, being in state i, according to the
probability density function associated with state si.

Note that
∑M
j=1 ai,j = 1 and

∑M
i=1 πi = 1 where M is the number of states (see

10.3).
The probability for a certain state sequence is then:

p (~c1, . . . ,~cn) =
N∏

i

M∑

l

πlp
(
~ci, ~Bl

)

the computational complexity is O
(
N ·M2

)
.

N number of features

M number of states

A complete HMM stands then for a e.g. a word. The probability for a HMM is
p (λ | ~c1 . . .~cn), where

p (λ | ~c1 . . .~cn) is p (λ | ~c1 . . .~cn) = p(λ)p(~c1...~cn|λ)
p(~c1...~cn)

p (λ) is the prior probability for the word

p (~c1 . . .~cn | λ) is p (~c1 . . .~cn | λ) =
∑M
l1...lN

πl1p (~c1, B1)·al1l2 ·p (~c2, B2)·al2l3 · · ·

De�nition

λ =

~π,A,

p (~c1, B1)
...

p (~cn, Bn)

where n is the number of features and A the matrix of the transition probabi-
lities for any two states ai,j . p (~ci, Bi) is the probability to observe ~ci, having
parameters Bi (state and pdf).

Types
1. discrete

features are discrete random variables.
training: relative frequencies.

2. continous
features are continous random variables
training: state parameters

123

3. ergodic
the graph associated with the HMM is complete (maximum number of
transitions for each node)

4. left-right
only forward edges are allowed: ai,j = 0⇔ i > j

Example
given: c ∈ {0, 1}, s1 : p (0) = 1

3 , p (1) = 2
3 and s2 : p (0) = 1

4 , p (1) = 3
4

wanted: p (00)
sum over all possible state sequences:

result: p (00) = p (00; s1, s1) + p (00; s1, s2) + p (00; s2, s1) + p (00; s2, s2) =
= π1 · b1 (0) · a11b1 (0) + π1 · b1 (0) · a12b2 (0) + π2 · b2 (0) · a21b1 (0) + π2 · b2 (0) ·
a22b2 (0) =
= 1

3 · 1
3 · 2

3 · 1
3 + 1

3 · 1
3 · 1

3 · 1
4 + 2

3 · 1
4 · 1

2 · 1
3 + 2

3 · 1
4 · 1

2 · 1
4 = 0.08256172

Problems
1. Training of the HMM (estimating πi, ai,j .bi (x))
⇒1.4.2. EM-Algorithm

2. computation of the marginal over all possible state sequences
⇒1.4.3. Forward-Backward-Algorithm

3. computation of the optimal state sequence
⇒1.4.4. Viterbi-Algorithm

Properties
• complexity O

(
N ·M2

)
with, O

(
MN

)
without rearangement of the sums

and products (see 4.8.3)

• works with and only with sequences of random variables

• the initial probabilities πi do not have to be computed seperately. Simply
assume an initial state so having πo = 1 and you get the state transition
probabilites ai,j and πi in one e�ort (πi = a0i).

• referring to the discussion of modelling histories: As you can see in the
�gure on 4.8.1, HMMs strongly resemble mixture densities (see 4.2.3). The
weight of the distributions are πi and aij , which indeed both sum up to 1.
And the mixtures themselves are modelled in the states bi (x) = p (x,Bi)
where Bi denotes the parameter vector of the distribution

124

• the initial probabilities πi and the state transition probabilities aij can also
be computed by Deleted Interpolation (see 4.9.2). This is especially usefull,
when the available sample set to estimate both the relative frequencies as
πi and aij is sparse

• referring to the discussion of modelling histories: a very known way to
realize the idea with the grammar is Part Of Speech Tagging, where
grammatical functions like verb, noun, adjective, etc. are assigned to se-
quences of features. This e�ecively leads to a second layer HMM, where the
second HMM answers the question: Given an observed sequence of features
~c1,~c2, . . . ,~cn, which was the most likely tag sequence g1, g2, . . . gnunderlying
~c1,~c2, . . . ,~cn? As �rst layer HMM this is resolved by the Viterbi-Algorithm
and the parameters can be estimated by the Baum-Welch-Algorithm (resp.
EM).

Pro/Contra
+ statistical knowledge can be used (Bayes: argmaxλ p (λ | ~c1 . . .~cn), Bayes

means optimality)

+ di�erent statistical models can be considered for the output probabilities
(mixture densities)

- a more realistic modelling of the history is impossible, because the combina-
tions are just too many, resulting in an astronomically large search space.
E.g. with a vocabulary of 5000 words and a history of degree 3, we'd have
125 billion combinations.

Application
Above all in speech recognition to classify phonems out of speech windows,
words out of phonems and sentences out of words.

125

Abbildung 46: HMM in Speech Recognition

4.8.2 Training, Parameter Estimation (EM-Algorithm)
parameters to be trained: πi, ai,j , bi (x)
Apply EM!

hidden: state sequence l1 . . . lN
observable: features (output) ~c1 . . .~cn

Q
(
B̂(i+1) | B̂(i)

)
=

M∑

l1...lN

p
(
(~c1 . . .~cn) | l1 . . . lN , λ̂(i)

)

∑M
k1...kN

p
(
(~c1 . . .~cn) | k1 . . . kN , λ̂(i)

) log p
(
(~c1 . . .~cn) | l1 . . . lN , λ̂(i+1)

)

126

replacing the probabilites

Q
(
B̂(i+1) | B̂(i)

)
=

M∑

l1...lN

πl1

(∏M
i=1 alili+1

) ∏M
i=1 b

(i)
li

(~ci)
∑M
k1...kN

πl1

(∏M
i=1 akiki+1

)∏M
i=1 b

(i)
ki

(~ci)
log πl1

(
M∏

i=1

alili+1

)
M∏

i=1

b
(i+1)
li

(~ci)

1. π1 . . . πM

Use Lagrange Multiplier Method with the additional condition:
∑M
i πi =

1 (see 10.3)
see EM-Algorithm(8.3) for details.

2. ai.j
calculate the gradient regarding ai,j in respect to the stochastic criterion∑M
j aij = 1:

∇ai,j
Q

(
B̂(i+1) | B̂(i)

)
=

M∑

l1 . . . lN

∃m :
lm = i
lm+1 = j

πl1

(∏M
i=1 alili+1

) ∏M
i=1 b

(i)
li

(~ci)
∑M
k1...kN

πl1

(∏M
i=1 akiki+1

) ∏M
i=1 b

(i)
ki

(~ci)
· 1

ˆai,j(i+1)
+
∂λ

(
1−∑

i âij
(i+1)

)

∂âij
(i+1)

3. bi (x)
The output probability is dependent on the HMM type, initial and state
transition probability are independent of it.

4.8.3 Computation of the marginals (Forward-Backward-Algorithm)
We look for an e�cient way to compute the marginal

p (~c1 . . .~cn | λ) =
M∑

l1...lN

πl1

(
M∏

i=1

alili+1

)
M∏

i=1

b
(i)
li

(~ci)

without considering every possible state sequence alone (O
(
MN

)
).

Key Idea ∑
i

∑
j qirj =

∑
i qi

∑
j rj

M∑

l1...lN

πl1bl1 (~c1) · al1l2 · · · · ·
M∑

lN

alN−1lN blN (~cN)

alN is independent of al1 . . . alN−1 so we take it out (blN (~cN)→ alN ,lN−1)

M∑

l1...lN

πl1bl1 (~c1) · al1l2 · · · · ·
M∑

lN−1

alN−2lN−1blN−1 (~cN−1) alN−2,lN−1

127

alN−1 is independent of al1 . . . alN−2so get it out (blN−1 (~cN−1) → alN−1lN−2) ...
and so on.
What we get out of this reordering is a reduction of the complexity toO

(
M2 ·N)

.

M

(
M∑

l1...lN

)
·M

(
M∑

lN

)
·N (l1 . . . lN)

Algorithm 20 Forward-Backward-Algorithm

backward step p (~c1 . . .~cn | λ) =
∑M
l1...lN

πl1bl1 (~c1) · al1l2 · · · ·∑M
lN
alN−1lN blN (~cN)

forward step p (~c1 . . .~cn | λ) =
∑M
l1
π1bl1 (~c1) ·

∑M
l2...lN

al1l2bl2 (~c2) . . .

4.8.4 Computation of the optimal state sequence (Viterbi-Algorithm)
We estimate the optimal state sequence by maximizing

max
l1...lN

p (~c1 . . .~cN , sl1 . . . slN | λ)

simply replace the marginals of the Forward-Backward-Algorithm with this ma-
xmimum operator.

max
l1...lN

πl1bl1 (~c1) al1l2 . . .max
lN

alN−1lN · blN (~cN)

see also 8.21.

4.9 Acoustic Models For Speech Recognition
4.9.1 Theory
We observe a sequence of features (speech windows w1 . . . wm), yet for classifying
them we are still missing a mapping w1 . . . wm → ~c1 . . .~cn. In Baysean notation
that means:

ŵ1 . . . ŵm = argmaxw1...wm
p (w1 . . . wm | ~c1 . . .~cn)

= argmaxw1...wm

p (w1 . . . wm) p (~c1 . . .~cn | w1 . . . wm)
p (~c1 . . .~cn)

Note Due to the Curse Of Dimensionality (see 8.18) p (w1 . . . wm), can only be
estimates for small m.

A solution to this problem, by that we can �nd the correct sequence of features,
is to use n-grames and apply Deleted Interpolation:

128

1. n-grames
p (wm | w1 . . . wm−1) = ξ1

1
m+

∑m
i=1 ξip (wi)+

∑m
i=2 ξip (wi | wi−1)+

∑m
i=3 ξip (wi | wi−1wi−2)+

. . .

2. Deleted Interpolation

4.9.2 Deleted Interpolation
Motivation Estimate probabilities from a sparse set of obervation (e.g. a Hi-

stogram with gaps).

A solution to this is either to apply Parzen Windowing (see 4.4.2) or to use
Deleted Interpolation. For Deleted Interpolation we use adjusted n-grames:

p (wn | w1 . . . wn−1) = ξ1
1
M

+ ξ2p (w1) +
n∑

i=2

ξip (wi | wn−i+1 . . . wn−1)

where
∑
i ξi = 1 and M denotes the number of all possible 'words'. Using these

parameters ξi we can '�ll the gaps' and get reasonable results (see also 10.3).

Parameter Estimation
[A] Least Square Estimation

ξ̂1 . . . ξ̂n = argminξ1...ξn

∥∥∥∥∥p (wn | w1 . . . wn−1)− ξ1 1
M

+ ξ2p (w1) +
n∑

i=2

ξip (wi | wn−i+1 . . . wn−1)

∥∥∥∥∥

2

This does not work, since w1 . . . wn−1 are unknown, and Least Sqaue Estimation
requires known parameters.

Since we see that this n-gramms ressemble very much mixture densities, we
come to the idea to use the EM-Algotrithm.

[B] Expectation Maximization We observe that p (wn | w1 . . . wn−1) is
approximated by a mixture of densities, where ξi denote the mixture coe�cients
(weights). Therefore we can apply the EM-Algorithm.

For details see 8.3.

Example

p (w4 | w1w2w3) =
4∑

i=1

ξip (wi) +
4∑

i=1

ηip (wi | wi−1)

ξi and ηi are then estimated by the EM-formulas for mixtures (see 4.2.3).

129

4.9.3 Vocabulary
Every speech recognizer needs a vocabulary of �nite size. If the vocabulary is
too large, our search space increases dramatically, so every word in it should be
carefully selected. On the other hand will unkown words quickly lead to erros
in the classi�cation. Therefore we have two somewhat contradictory postulates
on vocabularies:

1. The vocabulary should be as small as possible

2. The recognizer should encounter as few as possible unkown words

One basic idea to model both claims, is to limit the vocabulary to the �eld of
application. That means to model scienti�c terms, that are typical for the �eld
of application, to model words �tting the education of the people that will use
it, and so on.
Another idea is to use dynamic vocabularies consisting of the L last words used.
These words are extracted from saved texts of previous applications.
A third idea is the use of several dictionaries. We would have one dictionary
containing a couple of core words, found in any thinkable �eld of application and
several dictionaries for certain domains. Now the recognizer �rst estimates the
domain incoming words belong to and than choose the corresponding dictionary
as extension to the core words.

Example
We want to use a vocabulary of size L = 15.000. To produce the 15.000 most
last used words, we however need a textsize from approximately 640.000 words.
The good thing, with this vocabulary about 99% coverage is reached.

130

5 Stochastic Modeling Of Objects
Theory
Model classi�cation divides into six parts:

• object modelling (e.g. by a pdf)

• model learning (e.g. parameter estimation of this pdf)

• statistical inference (evaluation of the pdf)

• matching (usually between image and model features)

• pose estimation (maximize the probability)

• class�ciation (Bayes decission rule)

Although there are many purely geometry based methods, we decide for hybrid
approach using both statistics and geometry. This solves one major problem of
geometry based approaches: They are very vulnerable to noise and variances in
illumination etc. With a probabilistic approach we can model these phenome-
na and take them into account. Furthermore we are provided with many well
studied methods for parameter estimation and can make use of the Baysean
decision rule, prooven to be optimal with respect to misclassi�cation rates.
In general model based approaches di�er in the following aspects:

• model representation

• the measure / method for comparison

• judgement /estimation of object classes and pose parameters

In this approach we choose probability density functions as model represen-
tation and make use of the ML- and EM-Algorithm for parameter estimation
(translation, rotation, projection).

Problems
There is usually more than one object on a picture, the object looks di�erent
from di�erent angles, it is just a projection from the real 3D-object and it is not
always on the same place in the picture. Last but not least pictures include a high
level of noise and di�erences in illumination, that easily trick edge-detectors.

A lot of problems. We start trying to include projection, translation and
rotation of the object into the probability density function. Let ~c be a feature
of the object and ~c′ the same feature after translation and rotation.

131

Rotation And Translation
We start with simply including parameters for rotation (rotation matrix R) and
for translation (translation vector ~t) into the probability densisty function:

p
(
~c′;B, R,~t)

where B denotes the parameter vector for the density (e.g. ~µ and Σ for B = N).
How do we get the extended density? Consider the density transform: Y =

g (X) with ∃g−1. The pdf of Y given the pdf of X is:

py (Y) =
∣∣Jg−1 (Y)

∣∣ pX
(
g−1 (Y)

)

We further consider the special case of a�ne mappings4, that means ~c′ = R·~c+~t.

p
(
R · ~c+ ~t

)
=

1
det (R)

px

(
R−1

(
~c−−→t

))
=

1
det (R)

px
(
RT

(
~c− ~t))

Specializing even more, we now assume B = N , that gives us

N (
R · ~c+ ~t; ~µ; Σ

)

since J = 1 (because of the assumed a�ne mappings), we still got a normal
distribution after the density transform:

Σ′ = RΣRT

~µ′ = R~µ+ ~t

What remains is estimating the parameters R and ~t.

Parameter Estimation
The simplest way to get estimates for R and ~t is to use Maximum Likelihood
Estimation:

R̂, ~̂t = argmax
R,
−→
t
p

(
~c′;B, R,~t)

for details see 8.1. Note that standard optimization techniques like Newton ite-
ration cannot be applied, because we need to �nd optimal maxima. That means
we have to fall back to global optimization techniques. Usually pose parameters
are estimated by geometrical relations. But we excluded such relations by ass-
uming statistical independency and thus have to use ML. See below (5) for a
reduction of the search space and such global techniques.

4a�ne mappings are translation, isotropic scaling, re�ection and shearing

132

Projection
We still have not factored in the projection of the object, so let's do it now. For
convenience let us assume an orthographic projection5.

−→c ′ =

c1
c2
c3

y

(
c′1
c′2

)

we use the old trick: �To get rid of a random variable, just marginalize it away�:

p

((
c1
c2

)
;B, R,~t

)
=

∫
p

(
~c′;B, R,~t) dc3

Combining projection with rotation and translation, we get the density trans-
form:

c1
c2
c3

y R

c1
c2
c3

 +

−→
t yprojection R

′

c1
c2
c3

 +

(
t1
t2

)

with R =
(

R′

r31 r32 r33

)
. As far as good, but are we still in a normal

distribution? Sure we are. If

c1
c2
c3

 was normally distributed, R′

c1
c2
c3

 +

(
t1
t2

)
is also normally distributed with Σρ = R′ΣR′T and µρ = R

µ1

µ2

µ3

 +

(
t1
t2

)
.

Now that we have incorporated rotation, translation and projection into the
pdf. Let's take a look at our features. We got

p
(
~ci;Bk,j(i)

)

where B is the parameter vector of the pdf (see above), k refers to the object
and j is the index of the 3D feature associated to the 2D feature ~ci. Now let
us assume that all features are mutually independent of each other (what they
ain't, yet it makes things a lot easier, i.e. linear), then we get

p (~c1 . . .~cn) =
n∏

i=1

p
(
~ci;Bk,j(i)

)

respectively p
(
~c1 . . .~cn;R,~t, ρ

)
incorporating rotation, translation and projecti-

on. Since the 3D feature vector corresponding to index j, is not observable, we
5an a�ne, parallel projection of a 3D object unto a plane (without perspective transfor-

mations).

133

better marignalize it away6:

p (~c1 . . .~cn) =
∑

j

∏

j

p (j (i)) p
(
~ci;Bk,j(i)

)

We already indicated, that parameter vector Bk,j(i) can be estimated using ML.
For p (j (i)) however, we need to apply the EM-Algorithm, since j (i) is not
observable (hidden). See 8.3.

Neighbourhood Relationships
We extend our model by respecting neighbourhood relationships, i.e. that two
points that build an edge of the object, build a line in the projection. We can
get such relationships by an edge detector (see 2.1.9). Extending our pdf with
this knowledge, we get

p (~c1 . . .~cn;χ (~c1,~c2) , χ (~c2,~c3) . . . χ (~cn−1,~cn)) =

where
χ (~ck,~cl) =

{
0 if ~ck and ~cl are not connected by a line
1 if a connection between them exists

Combining this extension with our knowledge about projection, we get

=
∑

j

∏

j

p (j (i))

 ·

(∏

i

∏

k

p
(
χ

(
~cj(i),~cj(k)

))
j (i) j (k)

)

This relationship χ can of course be extended to arbitrary neighbourhood rela-
tionsships.

Object Localization
Yet line detection alone won't su�ce, since there will be many lines detected,
that are created by noise. The main problem with that is, that the low probabi-
lity of background noise, makes the above product collapse. The solution of this
problem is to simply include noise into the statistical modelling and training.
We call them background features. What we get out of that is a two stage
assignment :

In the �rst stage features are classi�ed either as background or object fea-
tures. In the second stage background features are modelled by an uniform
distribution with density parameter vector BB and object features by a statisti-
cal model (e.g. gaussian) with parameter vector Bk corresponding to the object
k. Object features are then matched to features of the corresponding model.

6The alternative would be to solve a discrete search problem of �nding the best match.
Marginalization simply considers all possible assignments.

134

The result is a mixture density between uniform distribution and the chosen
statistical model.
N∏

i=1

p (assign ~ci to background)·p (~ci,BB)+p (assign ~ci to object)·p (
~ci;Bk,j(i);R,~t, ρ

)

We can model the assignment to background and object by simple prior proba-
bilities: the prior probability for the background is p (B), and the prior for the
object is than simply p (O) = (1− p (B)):

N∏

i=1

p (B) · p (~ci,BB) + (1− p (B)) · p (
~ci;Bk,j(i);R,~t, ρ

)

Alas the modelling of background noise / features makes real time classi�cation
really slow.

Dimension Of The Search Space
The dimension of the search space is 6: 3 (due to translation) + 3 (due torota-
tion). Yet we can apply several tricks to deal with it:

1. If we assume orthographic projection, t3 (moving forward and backward)
does not in�uence the projection and we get dimension 5.

2. We reduce the dimension further by orthographically projecting the object
unto the x-axis (gaining invariance to moving up and down, t2). By that
we also make rotations around the x-axis (φx) e�ecless. This this trick
gives us a dimension of 3. Applying this restrictions to our pdf, we simply
marginalize y away:

p (1D feature) =
∫
p

({~c1 . . .~cn} ;Bd, R,~t
)
dy

Abbildung 47: Orthographic projection unto the x-axis

135

3. We can repeat 2. for the y-axis, classify with both methods and combine
the results.

4. Adaptive Random Search:

Abbildung 48: Adaptive Random Search

The left image corresponds to a grid search with contours, the right illustra-
tes the same search with adapative random search. Grid points are choosen
in equidistant positions, while the adapative random search illustraions shows
how points are choosen according to the evaluation of previous randomly picked
points.

Since a grid search of the search space is une�ctive for such large dimensi-
ons, we can apply adaptive random search. By that we partition the search
space in statistical areas and pick points accordingly:

Algorithm 21 Adaptive Random Search
(a) set the probability of all points according to uniform distribution (they are

all equally probable).
(b) randomly pick a number of points and evaluate them.
(c) store the k best evaluated points into a list (if the list already contains

better evaluated points, dismiss the point)
(d) place a gaussian bell over each point in the list (peak = evaluation value),

to e�ect the probability of all neighbouring points respectively
(e) use the pdf generated in 4. to generate new sample points
(f) ª3.
(g) a termination criterion is for example the di�erence in evaluation between

the �rst and the last point in the list

By this algorithm we ensure that points are picked according to how close
they are to the correct one.

These steps provide us with the follwing procedure to estimate e.g. pose para-
meters R and ~t:

136

1. compute the set of maxima M of the model density corresponding to 1D
features projected to the x-axis (adaptive random search)

2. starting with the elements of M compute the maxima for projection to
the y-axis (adaptive random search)

3. use the resulting set and start with local optimization

Properties
• The cross-ratio (see 9.2) e.g. is a feature that is invariant (11) to projection.

• We can not apply HMM for object modelling, since we have a set of
features and no sequence of features. The di�erence is, that sets are not
ordered.

• Use an illustration of a 3D Cube to derive the methods of statistical object
modelling (projection, rotation, translation, features (corners), relations
(indicator variables), noise modelling, reduction of the search space).

• j (i) should have constraints, that two di�erent model features can not be
assigned to the same image features. This could happen, due to noise and
segmentation, but is not desirerable. The other way round is more di�ciult:
For the same reasons not every model feature will �nd a corresponding
image feature.

• p (~c1 . . .~cn) =
∏n
i=1 p

(
~ci;Bk,j(i)

)
can be evaluated in O (n ·K), where n is

the number of features and K the number of objects

• Choose the most discriminating views on your objects for training. To
determine the best views, you can apply the entropy as a measure.

Pro/Contra
+ statistical independency and marginalization proove to be a valid weapon

against the Curse Of Dimensionality

- background noise can lead to problems (collapsing product)

- real time e�ciency is pretty bad, especially when modelling background fea-
tures

- another problem is that due to noise and segmentation errors not every model
feature has a corresponding image feature

- the decomposition of the search space performed in the EM-Algorithm pre-
vents e�ective use of line features, because they are e�ectively decomposed
to point features again

137

Alternatives
• Geometrical Modeling Of Objects: the old school method. Lacks qua-

lity espeically with objects showing a complex geometry

• Appearance Based Modeling Of Objects: focuses on the appearance
of objects on a signal, rather than real life geometrical properties. Thus
this method makes heavily use of all the methods introduced in pattern
recognition (preprocessing, automatic feature extraction, probaility based
classi�cation, etc.). Objects are then e.g. modelled as feature manifolds
(a kind of interpolation between features).

Abbildung 49: Apearance Based Object Modeling: Manifold

Appearance based object modeling in fact hates geometrical items, as
praxis has shown. The worst accuracy in a test set was gained by using
a edge picture showing lines etc. The best results are gained with simple
graylevel images. That means never combine this technique with any form
of segmentation.

138

6 Model Assessment And Model Selection
By now we have a broad variety of classi�ers and models with very di�erent
approaches, yet what is still missing is a way to determine, which classi�er
works better for an application.

Quality Criterions
• the chosen model: LDA, PCA, SVM, HMM, ANN

� how good is the choosen parameterization for the model
� how good are the estimates for those parameters

• generalization of the chosen model (does it still work on a test set entirely
di�erent and disjoint to the training set?)

• learning/training strategy: supervised, unsupervised, ML, MAP, EM

• measured data: speed, number of mistakes (which classi�er works best)

Furthermore we distinguish two phases discussing the performance of models:

model selection estimate the performance of di�erent models in order to choo-
se the most suitable one.

model assessment having chosen a model, estimate the prediction/generalization
error

Error
Talking about the error we distinguish the Training Error and the True Er-
ror.

The �rst is calculated using the very same training set, we used to �t the
classifer:

ERRtraining =
1
N

N∑

i=1

L
(
yi, f̂ (~ci)

)

where ~ci are features from the training set and yi the corresponding correct
outcomes. As you can imagine this error is usually not a good bet, since it is
highly dependent on the training set and even more on the level of �tting. E.g.
an over�tted model will have a training error close to zero, while the true error
will diverge to in�nty.

The true error is the error we get theoretically using the space of all possible
features C and the space of all correct outcomes Y :

ERRtrue = E
[
L

(
Y, f̂ (C)

)]

Remember the golden rule of pattern recognition: Never use the same features
for training and testing. The solution we will �nd later is straight forward: We

139

will seperarte the training set into two parts and use one for training resp.
�tting the model and the other for calculating the error. This errors is much
less optimistic than the training error introduced above. The later error is also
called Extra Sample Error.

6.1 Bias-Variance Trade-O�
Bias indicates the deviation from correct values (see also 11)7

Bias (θ) =

∣∣∣∣∣θ̂ −
1
m

m∑

i

θ̂i

∣∣∣∣∣

where θ̂ is the estimate obtained by using the complete sample set, while
θ̂i correspond to a subset (e.g. by the use of Bootstrap (6.3) or Cross
Validation (6.2).

Variance indicates how far the values di�er from each other.

Variance (θ) =
1
m

m∑

i=1

(
θ̂i − 1

m

m∑

k=1

θ̂k

)2

Example
We have a feature set {3, 5, 2, 1, 7} with a mean of µ = 3.6. Using Bootstrap
(see 6.3) we make 3 experiments to obtain 3 µi values.

experiment mean
7, 5, 2, 3, 1 3.2
5, 1, 1, 3, 7 3.4
2, 2, 7, 1, 3 3.0

That gives us the mean of the means µ̄ = 3.2. With that we can compute Bias
and Variance:

Bias (µ) = |3.6− 3.2| = 0.4

Variance (µ) =
1
3

3∑

i=1

(µi − µ̄)2 = 0.023̄

7computation of Bias and Variance require methods like Bootstrap and Cross Validation,
that are introduced later on in this chapter.

140

Abbildung 50: Bias Variance Trade O�

As you clearly can see those two indicators act contrary. An overly complex
model (red) perfectly �t to a set of observations (over�tted) will show a low
bias and a high variance, while a very simple model (e.g. a line through the
middle of the feature set) (black) will show a high bias and a low variance.
Weighting both extremes we might �nd the better (blue) model in between.

So we have to �nd the golden path through the middle. We therefore de�ne a
trade-o� between bias and variance:

E

((
θ∗ − θ̂

) (
θ∗ − θ̂

)T)
= E

((
θ∗ − θ̄) (

θ∗ − θ̄)T
)
+

(
θ∗ − θ̂

)(
θ∗ − θ̂

)T (
θ̄ − θ∗) (

θ̄ − θ∗)T

Tabelle 4: Bias-Variance Trade-O� Vraiable Look Up Table
symbol meaning
θ parameter vector
θ∗ correct value
θ̄ mean value
θ̂ estimated value(

θ̄ − θ∗) (
θ̄ − θ∗)T bias

E

((
θ∗ − θ̂

)(
θ∗ − θ̂

)T)
variance

Loss Function(ERR) a measurement for the number of mistakes a classi�er
produces

1. ERR for regression

ERR =
1
N

N∑

i=1

(
f (~ci)− ~θ

)2

141

2. ERR for classi�cation

ERR =
1
N

N∑

i=1

L (Ωk,i, δ (~ci))

where L is a standard loss function, e.g. the 0/1-loss function.

6.2 Cross Validation
Cross Validation is a simple and widely used method to estimate the prediction
error. The core idea of Cross Validation is a better use of the training data.
Thinking of situations where a big training set is hard to obtain, it can be
essential to use the existing one as good as possible.

K-Fold Cross Validation means the partition of the whole set in a training
and test set. For example 4-Fold Cross Validation partitions the complete
set in 4 parts, of which it uses 3 for training and 1 for testing. The whole
procedure will go over 4 turns, where the test part changes to every one
of those partitions.

Tabelle 5: 4-Fold Cross Validation
TRAIN TRAIN TRAIN TEST
TRAIN TRAIN TEST TRAIN
TRAIN TEST TRAIN TRAIN
TEST TRAIN TRAIN TRAIN

A good model should show similar results for any given partition.

Algorithm 22 K-Fold Cross Validation
1. partition a model into k parts

2. train model with the set S = {1, . . . , (k − 1)}
3. test the model with part p = k

4. © for p = (k − 1) . . . 1 and S = {1, . . . , k} \ {p}

Leave-One-Out Cross Validation In Leave-One-Out Cross Validation the
cardinality of the test set is set to 1.

142

Algorithm 23 Leave-One-Out Cross Validation
given a set of features c1 . . . cn, a decision rule δ (~ci) = Ωκ(i)

1. randomly select a feature ck ∈ {c1 . . . cn}
2. train classi�er with training set {c1 . . . cn} \ {ck}
3. classify ~ck and compute the loss Ll (~ck, δ (~ck))

4. l = l + 1

5. © repeat m times

6. compute average loss function L = 1
m

∑m
l=1 Ll

Consider furthermore the situation of having di�erent training sets. We will
get di�erent estimates of our parameter vector θ out of every one of them. We
conclude that our parameter θ is a random variable that underlies a certain pdf
p (θ). Looking closer on this distribution (mean and covariance), we can judge
the performance of the model.

Example
We got the complete feature set: S = {3, 4, 2, 1, 5, 2, 5}, the index i denotes the
feature that has been left out, respectively the corresponding subset. µ denotes
the mean vector of the features as usually and µ̄ the mean of the means (since
we get mean values for every subset of S. σ denotes the variance of the features,
while σµ denotes the variance of the mean vectors.

1. We start with estimating the mean vectors µi for every subset.

µi =
1
6

7∑

j = 1
j 6= i

cj

µ1 =
19
6
, µ2 =

18
6
, µ3 =

20
6
, µ4 =

21
6
, µ5 =

17
6
, µ6 =

20
6
, µ7 =

17
6

2. The variance of the features is

σ2
i =

1
6

7∑

j = 1
j 6= i

(cj − µi)2

143

3. The mean of the means

µ̄ =
1
7

7∑

i=1

µi =
22
7

4. The variance of the means

σ2
µ =

1
7

7∑

i=1

(µi − µ̄)2

If we compute and compare those values, using two representations of a line a
polar one (r = x · cos (φ) y · sin (φ)) and then a parametric one (y = m · x+ t),
we will notice huge variances in the second one, while the �rst model is more
stable. We can conclude, that the �rst model is more suitbale for classi�cation.

Properties
• Cross Validation is in principle ubiased, but can show a high variance,

since the training sets are so similar to each other

• Using 5− or 10−Cross Validation, the error will have a low variance, but
if the training set at a given size shows a big slope, Cross Validation will
overestimate the predicition error and we get a bias.

• The number of partitions K, is always hard to determine. Practical values
for K are 5 or 10.

Pro/Contra
- Cross Validation changes the prior probabilities of the classes (see next Chap-

ter: 6.3)

6.3 Bootstrap (Efron 1979)
Cross Validation has one major drawback: by choosing samples without repla-
cement ('Ziehen ohne zurücklegen'), we modify the prior probabilities for each
class.

Example
We have given the training set of labelled features: {(c1,Ω1) , (c2,Ω1) (c3,Ω1) (c4,Ω2) (c5,Ω2)}
The priors of the two classes are: p (Ω1) = 3

5 and p (Ω2) = 2
5

Now we draw without replacement a random feature, we draw: (c1,Ω1).
The priors of the classes are now: p (Ω1) = 1

2 and p (Ω2) = 1
2 .

They changed!

144

Bootstrap solves this drawback by simply putting drawn features back into the
set ('Ziehen mit zurücklegen'). That of course means, that we can draw the same
feature several times (which need not be a bad thing).

Algorithm 24 Bootstrap
1. randomly select M samples with replacement out of a set of N samples

and use them for training.

2. The samples that are not used for training are used for testing.

3. © repeat m times.

Example
We have given samples: c1, c2, c3, c4, c5 and the associated class numbers Ωk(1),Ωk(2),Ωk(3),Ωk(4),Ωk(5)
where k → {0, 1}. That means we only got two classes. We test with m = 4.
experiment training set test set loss function

No.1 c1, c1, c4, c4 c2, c3, c5 L1

No.2 c5, c5, c5, c5 c1, c2, c3, c4 L2

No.3 c1, c2, c3, c4 c5 L3

and the average loss function L = 1
3

∑3
k=1 Lk

Pro/Contra
+ Bootstrap increases the variance, observed in each subset. This is good, since

it models the real world.

+ Prior probabilities remain constant.

+ Boostrap leads to more reliable estimates for mean and covariance.

+ Boostrap is well studied.

6.4 The E�ective Number Of Parameters
Another idea is too evalute the number of parameters a model uses having the
goal to choose the best amount of parameters. We apply a generalisation for the
number of parameters:

Let ~y be the vector of all N outcomes and ŷ the predicted outcomes:

~y = Sŷ

where S is a N × N matrix depending on the input features ~ci but not on
the outcomes yi. Using linear �tting methods (regression) and smoothing me-
thods with quadratic shrinkage (rigid regression) give the e�ective number of
parameters as:

d (S) = trace (S)

145

It turns out that trace (S) is exactly to replace d, the number of parameters of
the model corresponding to S.

Note A much more general description of model complexity including the num-
ber of parameters is the Vapnik-Chernovenkis Dimension, that is not dis-
cussed in this script

6.5 Baysean Information Criterion (BIC)
The idea of BIC is to compare the a-posteriori probabilities of two models.
Suppose we have M models M (e.g. HMMs with di�erent number of states,
di�erent HMM type, left-right, ...). Let furthermore θm denote the parameter
vector corresponding to model Mm. We assume the prior probability of the
parameters is known: p (θm | Mm).
The a-posteriori probabilities can be computed:

p
(Mm |

(−→c1 ,Ωk(1)
)
, . . . ,

(−→cn,Ωk(n)

))

p
(Ml |

(−→c1 ,Ωk(1)
)
, . . . ,

(−→cn,Ωk(n)

)) =
p (Mm)
p (Ml)

·p
((−→c1 ,Ωk(1)

)
, . . . ,

(−→cn,Ωk(n)

) | Mm

)

p
((−→c1 ,Ωk(1)

)
, . . . ,

(−→cn,Ωk(n)

) | Ml

)

where p((−→c1,Ωk(1)),...,(−→cn,Ωk(n))|Mm)
p((−→c1,Ωk(1)),...,(−→cn,Ωk(n))|Ml) is called the Baysean Factor.

Approximating the class dependent density by Laplace Approximation, we get

log p
((−→c1 ,Ωk(1)

)
, . . . ,

(−→cn,Ωk(n)

) | Mm

) ' log p
((−→c1 ,Ωk(1)

)
, . . . ,

(−→cn,Ωk(n)

) | θ̂mMm

)
−dm

2
logN

where dm denotes the number of free parameters of the model, N the number
of features and θ̂m are the parameters of model Mm obtained by Maximum
Likelihood. If the odds of this ratio are greater than 1, we choose model Mm,
otherwise we choose modelMl.
Choosing the model with the lowest BIC is equivalent to choosing the model
with the largest a-posterior probability. Even more, having computed the BIC
for a set of M models, the estimates of the a-posteriors of any choosen model
Mm ∈M can be accessed very easily by:

e−
1
2 BICm

∑M
l=1 e

− 1
2 BICl

Rippley (1996) says, the more free parameters a model has, the poorer the model
is rated. This is closely connected to the phenomenon of over�tting(see 11).

Properties
• BIC gives a heavy penalty on the complexity of models. This means it

tends to choose simple ones. However having the number of samples di-
verge to in�nity N → ∞, BIC will indeed chose the best model out of a
set of models.

146

6.6 MDL (Minimum Descritption Length)
The idea of MDL is to �nd a model, that is as small as possible and contains as
much information as possible. The theory can be compared to Pre�x Coding
from Coding Theory:
Messages He-Man Optimus Prime Lobo Thor
Code 1 0 10 110 111
Code 2 10 110 111 0

No code may be pre�x of another code. The word with the highest apearance
(highest probability) gets the shortest code reducing the average length of a
message.
Information Length(Shanon)

E (length) ≥ −
∑

i

p (ci) log2 p (ci)

In average we need log p (e) bits of information.
For pattern recognition this means: To transmit a random variable c having the
probability denisty function p (c), we require about − log2 p (ci) bits of informa-
tion.

Now we want to apply this principle to Model Selection. We assume a model
M with parameter vector θ and a training set S =

{(
~c1; Ωκ(1)

)
. . .

(
~cn; Ωκ(n)

)}
.

We assume that both sender and receiver know about the features, so we just
transmit the class number. We can then give a de�ntion for the Message Lenght:

MDL = − log2 p (Ωκ | θ,M,~c1 . . .~cn)− loge p (θ | M)

Using MDL for model selection we simply pick the model that mimizes the
MDL.

Example
LetM be a gaussian. How can we compute p (θ | M)?

Use Bootstrap to estimate p (~µ | M) and p (Σ | M) and combine it to p (θ | M).

Properties
• We in fact ignored that transmitting continous random variables would

require messages of in�nite length, however introducing restrictions to the
length just adds a constant factor to the formular that can be ignored for
minimization procedures or comparissions between models

6.7 Ada Boosting
The idea of Ada Boosting is to combine several simple and weak classi�er to
obtain an overall better one. �Weak� means that the classi�er's error rate is only
slightly better than a random guessing.
A few ideas to combine classi�ers:

147

• grouping features (subsets are classi�ed by di�erent classi�ers)
• a weighted combination of classi�er results
• weighted training vectors (problematic samples get a higher weight, similar

to SVM 4.7)
The idea here is that the classi�ed class number results from a majority vo-
te of weighted (α) predicitions of all classi�ers involved. Hereby weights give
preference to more accurate classi�ers. The are computed by the Ada-Boost
Algorithm. A second aspect of this methods is the introduction of observation
weights (w). At �rst all observations are weighted equally wi = 1

N . With the
iterations proceeding misclassi�ed observations gain higher weights, exercising
a bigger in�uence on the weighting of the classi�ers.

Algorithm 25 Ada Boosting
Given: a labeled training set

{(
~c1,Ωκ(1)

)
, . . . ,

(
~cN ,Ωκ(N)

)}
where κ→ {0, 1}.

Initialization: initialize observation weights uniformly: ∀i=1...N : wi = 1
N .

1. �t a classi�er δn (·) to training data using the observation in respect to
their weightings wi, i = 1 . . . N (e.g. use a high weighted sample multiple
times)

2. compute the classi�cation error

ERR =
∑N
i=1 wiχ (δn (~ci) 6= κ (i))∑N

i=1 wi

3. weight the classi�er according to its classi�cation error

αn = log
(

(1− ERR)
ERR

)

4. update the observation weights according to whether they have been
misclassi�ed (higher weight) or not (lower weight).

∀i=1...N : wi ← wi expαnχ(δn(~ci) 6=κ(i))

5. © repeat for all classi�ers n = 2 . . .M , M being the number of classi�ers
involved.

6. The resulting classi�er is a committee of all trained classi�ers, where a
majority vote weighted by the classi�er weights α is cast

δ (~c) = sgn
M∑
n=1

αnδn (~c)

148

7 State Estimation (Kalman-Filter)
The Kalman-Filter is a technique for estimating states of dynamic systems (see
??).
The internal state of the system is hidden, because we don't know the dynamic
exterior in�uence completely. That is why we try to estimate the internal state
from observations and steadily synchronize it with experience gained from new
observations. That means we have to develop a way to correlate input (cause)
with output (e�ect).

State
Because we are dealing with dynamic systems the output can not solely be
determined by the input, but also depends on past observations (history of the
system). Therefore we need a third quantity called state, a summary over all
past happenings and present observations. The observations at a time instant
number k, xk and the input at the time interval [k, k + 1[uk must be enough
to compute the output at time k:

~yk = h (~xk, k) + ξk

Furthermore the internal state is changed, which we can describe by a equation:

~xk+1 = f (~xk, uk, k) + ηk

ηk and ξk denote noise and will be described later.
A discrete system is completely described by this two equations plus an initial
state x0.

Uncertainty
The system described above assumes that the external process is perfectly de-
scribed in the state x and that the functions f and h are capable of modelling
those relations exactly. This is very unrealistic for real world processes, therefore
we introduce a fourth term called uncertainty. This states that the above func-
tions f and h are in fact only approximations of much more complex systems,
the approximation error is modelled by additive uncertainty noise terms η and
ξ. For convenience we assume that they are normally distributed having zero
mean, this simpli�es the involved mathematics: ηk ' N

(
~0;Q

)
, ξk ' N

(
~0;R

)
.

Linearity
For this part we need some dimensions, so we say the input vector ~u ∈ Rp, the
state vector ~x ∈ Rn and the output vector ~y ∈ Rm.
If we �nd linear functions for f and h, the equations above become much more
simple:

~xk+1 = Fk~xk +Gkuk + ηk

149

~yk = Hk~xk + ξk

we call these matrices:

state propagation matrix F ∈ Rn×n

input matrix G ∈ Rn×p

output matrix H ∈ Rm×n

The covariance matrix of the system noise η is called Q ∈ Rn×n and the
covariance matrix of the output noise ξ is called R ∈ Rm×m.

Example (motion tracking)
input images

output (observation) position, velocity

internal state trajectory (e.g a parabola y)

initial state guess for the initial speed and direction

error the estimation errors for the state η and the output ξ

update functions from physics modelling motion

Let us recapitulate: The Kalman-Filter allows for the estimation of ~xk|k at time
k and the corresponding covariance matrix Pk|k given the measured observations
~y0, ~y1, . . . ~yk. While ~xk+1|k means the estimation of ~xk+1 using ~y0, ~y1, . . . ~yk.

150

7.1 Variable Overview

Tabelle 6: Kalman-Filter Variable Lookup Table
variable description

~x internal state, a summary of all past happenings and the present observations
xk variable x at timestep k

xk|j
k timestep the variable was estimated for
j number/index of measurements used for estimation (~y0, ~y1, . . . ~yj)

~y measured observation
P covariance matrix of the state, corresponding to the uncertainty (incorporates η and ξ)
η error concerning state estimation
ξ error concerning measuring observation
~n general noise term
W A transformation (matrix) for scaling noise
F,G functions/matrices used for state update
H function/matrix used for correlation with the observations
L estimator for ~x (~x = L (~y))
R covraiance matrix of the observation noise ξ
Q covariance matrix of the state noise η
K Kalman-Gain-Matrix

7.2 Least Square Estimation
Intuitively it might be clever to use Least Square Estimation to estimate the
new state. The following algorithm would look like this:

151

Algorithm 26 Kalman-Filter (Least Square)
1. Initialization

initialize ~x0 the initial state estimate and P0 the corresponding covariance
matrix.

2. Update
Our current state is ~xk|k−1. Now we receive observation ~yk and want to
udpate the state to ~xk|k. Using only our current state our current best
estimate for the output is:

~yk|k−1 = Hk · ~xk|k−1

receving ~yk we check the residue between our estimate and the observation:(
~yk − ~yk|k−1

)
. If this residue is nonzero, we need to correct the estimate

for the state ~xk|k. We do this by using least square estimation:
∥∥~yk − ~yk|k−1

∥∥→ min

our degree of freedom is ~xk|k

~xk|k = argmin~xk|k

∥∥~yk −Hk · ~xk|k
∥∥

Note: The lest square estimation of ~xk|k is not recommended:

• observation ~yk is taken for granted, noise is not considered.
• uncertainty of the state Pk|k−1 is not considered.
• no update of Pk|k−1.
• a quantity for comparing ~yk, ~yk|k−1 is missing, this quantity is the

uncertainty

3. Propagation

When ~yk is measured, we update both ~xk|k and Pk|k. With Propagation we
�rst update ~xk−1|k−1 and Pk−1|k−1 to ~xk|k−1 and Pk|k−1, then we receive
the update and update both to ~xk|k and Pk|k. After that we continue again
with propagating ~xk|k to ~xk+1|k and Pk|k to Pk+1|k.
Propagation is transfering the covariance matrices Q and R of the uncer-
tainty noise terms η and ξ into the covaraince matrix Pk|k−1. Therefore
P contains all the probabilistic aspects and the degree in which η and ξ
corrupt the quality of the state estimate ~xk|k

152

7.3 Best Linear Unbiased Estimator (BLUE)
We are still lacking a way to estimate states taking uncertainty, in the form
of the covariance matrix P , into account. An estimation method taking into
account additional probabilistic information is the BLUE.

The BLUE is an essential part of the Kalman-Filter, it alows the estimation
of ~x in ~y = h (~x), given ~y and h. We introduce a mapping L and call it estimator
of ~x:

~x = L (~y)

7.3.1 linear
If h is invertible and if the noise is zero, L is simple the inverse of h.
If L is linear (e.g. a matrix), the estimator is called linear estimator.
In both cases, we either compute the InverseH−1 (h is invertible) or the Pseudo-
Invsere Ht (L is linear, but h is not) of H using SVD:

Ht~y = V Σ−1UT~y =
(
HTH

)−1
HT~y

7.3.2 best
If we want to use a term like best, we have to de�ne some kind of measure,
which we can compare. In our case we take the euclidean norm of the residue:

~y = H~x+ ~n

that gives us the noise term n as a measure of comparing residues:

~n = ~y −H~x

We could now simply minimize the noize by using least squares ‖~n‖2 = ~nT~n,
but this won't work since we have di�erent noise terms in di�erent equations.
Therefore we try to �nd a transformation W which produces equally scaled
noise, then we minimize (W · ~n)T (W · ~n) instead.

Scaling Noise
We have di�erent noise terms in di�erent equations and therefore can not apply
a simple least square estimation. To overcome this de�cit we introduce the idea
to scale the noise terms in a way, that noise in all equations becomes the same
(in terms of variance). With noise scaling we also assure that the di�erent noise
covariances do not get lost, but result in a weight for the estimation (Weighted
Least Squares, see below). If a covariance matrix is small, we believe in the
authenticity of a measurement and consequently it should be weighted more
heavily.

let ~n denote the noise vector. We look for a transform W

W · ~n = ~n′

153

that minimizes
(W · ~n)T (W · ~n) = ~nTWTW~n→ min

this is called Weighted Least Square Estimation.

~y = H · ~x+ ~n

Apply Bootstrap to estimate ~n and then W .
We can compute W using Newton-Iteration (see 8.5):

let Σ be the covariance matrix of ~n. Now we look for the covariance matrix
of W~n:

ΣW~n = WΣWT =

1 · · · 0
...
0 · · · 1

After we got W we start scaling:

W~y = WH~x+W~n

⇔W~n = W~y −WH~x

min
~x
‖W~n‖ = min

~x
‖W~y −WH~x‖

Now we use the Pseudo-Inverse

~̂x =
(
(WH)T WH

)−1

(WH)T ·W~y

7.3.3 unbiased
An estimator is called unbiased if

E
(
~x∗ − ~̂x

)
= ~0

Remeber that the Bias was de�ned as BIAS=E
(
~x∗ − ~̂x

)
, the expectation of

the di�erence between the estimated value ~̂x and the real value ~x∗. Unbiased in
general means that if we repeat the same estimation experiment several times,
we never consistently overestimate or underestimate ~x.

154

Abbildung 51: Unbiased Estimator

As you can see the biased estimator (blue) under and overestimates the
origianl red values signi�cantly, while the unbiased estimator's (black)
over/underestomations are much less signi�cantly and more constant.

7.3.4 The BLUE
Now we have everything to �nd the best linear unbiased estimator L to a certain
problem.

~̂x = L~y

with
~y = H~x+ ~n

First we need a condition, that keeps L unbiased:

Lemma If E (~n) = ~0 (zero mean noise), then L is an unbiased estimator, if and
only if H · L = I (identity matrix).

Abbildung 52: Proof For The Zero Mean Lemma
E

(
~x− ~̂x

)
= 0

= E (~x− L~y)
= E (~x− LH~x− L~n)
= E ((I − LH) ~x− L~n)
= E ((I − LH) ~x)− L · E (~n)
⇒ (I − LH)E (~x) = ~0⇔ L ·H = I¤

155

Theorem If E (~n) = ~0 (zero mean) and E
(
~n~nT

)
= R (covariance matrix of

the noise), then

L =
(
HTR−1H

)−1
HTR−1 = PHTR−1

and
P = E

[(
~x− ~̂x

)(
~x− ~̂x

)T]
=

(
HTR−1H

)−1

By that we can update/compute both the estimator for ~x and the cova-
riance matrix P for ~x.

Abbildung 53: Proof For The Covariance Theorem
E

((
~x− ~̂x

)(
~x− ~̂x

)T)

= E
(
(~x− L~y) (~x− L~y)T

)

= E
(
(~x− L (H~x+ ~n)) (~x− L (H~x+ ~n))T

)

= E
(
((1− LH) · ~x− L~n) ((1− LH) · ~x− L~n)T

)
| �rst precondition: L is un-

biased, so 1− LH = 0
= E

(
(L~n) (L~n)T

)

= E
(
L~n~nTLT

)
= L · E (

~n~nT
) · LT | second precondition: E

(
~n~nT

)
= R

= LRLT

=
(
HTR−1H

)−1
HTR−1R

(
R−1

)T
H

((
HTR−1H

)−1
)T

| R−1R = 1

=
(
HTR−1H

)−1 (
HTR−1H

) ·
((
HTR−1H

)−1
)T

|
(
HTR−1H

)−1 (
HTR−1H

)
= 1,

(
HTR−1H

)
is symmetric so XT = X

=
(
HTR−1H

)−1 ¤

7.4 The Linear Kalman Filter
The Kalman �lter has two distinct phases: Prediction and Update. The predicti-
on phase uses the estimate from the previous timestep to produce an estimate of
the current state (Propagation). In the update phase, measurement information
from the current timestep is used to re�ne this prediction to arrive at a new,
(hopefully) more accurate estimate.
Remember the two fundamental Kalman-Equations:

(I) ~xk+1 = Fk · ~xk +Gk~uk + ~ηk

(II) ~yk = Hk~xk + ~ξk

156

with ~ηk ' N
(
~0, Qn

)
and ~ξk ' N

(
~0, Rk

)
.

With the results from the previous section we know that

~̂x = PHTR−1~y

with P being the covariance matrix of the estimation error

P =
(
HTR−1H

)−1

is the best linear unbiased estimate of the state ~x.

Prediction Phase
We want to predict the state ~xk|k−1 and the corresponding covariance matrix
Pk|k−1

We use the BLUE L, to predict new estimates for ~xk and Pk for time k given
the observations ~y0 . . . ~yk−1. These estimates di�er from the real quantities by
an error term ~ek:

(I)
~̂xk|k−1 = ~xk + ~ek

Pk|k−1 = E
(
~ek~e

T
k

)

where ~ek is an error vector.

Update Phase
Now comes the observation ~yk at timestep k, our current state is ~̂xk|k−1 with
covariance matrix Pk|k−1:

(II)
~yk = Hk ~xk + ~ξk

with error covariance
E

(
~ξk~ξ

T
k

)
= Rk

We can combine (I) and (II) writing them in matrix form:
(
~xk|k−1

~y

)
=

(
1 0
0 H̃k

)(
~xk
~xk

)
+

(
~ek
~ξk

)

where the last error term has the covariance matrix

R =
[
Pk|k−1 0

0 Rk

]

157

From BLUE we know, that:

~̂x = PHTR−1~y

so for timestep k | k we get

~xk|k = Pk|kHT
k R

−1
k ~yk|k−1

for the state and
Pk|k =

(
HT
k R

−1
k Hk

)−1

for the noise covaraince, where

Rk = E

((
~ek
~ξk

) (
~ek
~ξk

)T)

These computations are not very e�cient, because H and R contain many zeros,
therefore we rewrite them in the real update and propagation algorithm:

Update Of The Covariance Matrix Pk|k

P−1
k|k = HT

k R
−1
k Hk (BLUE)

=
[
I HT

k

] [
P−1
k|k−1 0
0 R−1

k

][
I
Hk

]

=
(
P−1
k|k−1HkR

−1
k

) (
I

H̃k

)

P−1
k|k = P−1

k|k−1 +HT
k R

−1
k Hk

Update Of The State ~xk|k
~xk|k = Pk|kHT

KR
−1
K ~y (BLUE)

= Pk|k
[
P−1
k|k−1 HT

k R
−1
k

] [
~xk|k−1

~yk

]

= Pk|k
(
P−1
k|k−1~xk|k−1 +HT

k R
−1
k ~yk

)

= ~̂xk|k−1 − Pk|kHT
k R

−1
k Hk~xk|k−1 +HT

k R
−1
k ~yk

~xk|k = ~̂xk|k−1 − Pk|kHT
k R

−1
k

(
~yk −Hk~̂xk|k−1

)

The part
(
~yk −Hk~̂xk|k−1

)
is the residue between the actual measurement ~yk

and its best estimate based on ~̂xk|k−1.
The part Pk|kHT

k R
−1
k of the last term is called the Kalman Gain Matrix

Kk. It speci�es the amount by which the residue must be multiplied to botain
the correction term that transforms the old estimate ~̂xk|k−1 into the updated
estimate ~xk|k.

158

Propagation
The state can be propagated by

~̂xk|k−1 = Fk~xk−1|x−1 +Gkuk

ful�lling the unbiasedness constraint. The covariance matrix is propagated thanks
to the linearity of L by

Pk|k−1 = FkPk−1|k−1F
T
k +Qk

Kalman Filter Equations
Now we can give the correct algorithm for the Kalman-Filter:

Algorithm 27 Kalman-Filter
1. Predict Phase
~̂xk|k−1 = Fk~xk−1|k−1 +Gkuk + ~ηk

Pk|k−1 = FkPk−1|k−1F
T
k +Qk

2. Update Phase
Kk = Pk|kHT

k R
−1
k

~xk|k = ~̂xk|k−1 +Kk

(
~yk −Hk~̂xk|k−1

)

P−1
k|k = P−1

k|k−1 +HT
k R

−1
k Hk

Invariants
• E

[
~xk − ~̂xk|k

]
= E

[
~xk − ~̂xk|k−1

]
= 0

• E
[
~̃yk

]
= 0

• Pk|k = cov
(
~xk − ~̂xk|k

)

• Pk|k−1 = cov
(
~xk − ~̂xk|k−1

)

7.5 Discussion
Properties
• recursive procedure (only the estimated state from the previous time step

and the current measurement are needed to compute the estimate for the
current state)

159

• computes the internal state of a dynamic system and the uncertainty ma-
trix based on past happenings and current measurements.

• does not solve dynamic systems all at once, but steadily re�ned an initi-
alsolution over time

• the more data is measured, the better the solution become

Pro/Contra

- di�erent equations can have di�erent noise terms with di�erent varaince.
BLUE does not respect this.

Fields Of Application
• tracking (estimating the trajectory of images (e.g. throwing of a ball))

• keeping a space ship (or a plane) on track

• PLL �lter in radios, TVs, computers and most video/audio communication
devices

160

8 Basic Methods
8.1 Maximum Likelihood (ML)
We have given a sample of n values C = {c1, c2, . . . , cn} which we assume
underlie the probability density function fθ, where θ are the parameters of the
distribution (e.g. mean µ and covariance Σ, if the pdf is gaussian distribution
N). With ML we will estimate the values of the parameter vector θ.

L (θ) = fθ (C | θ)
is called the Likelihood Function. By that we compute the probability density
associated to our sample data. In case that θ is not observable, ML uses the value
of θ that maximizes L (θ). The resulting estimated θ̂ is called the Maximum
Likelihood Estimator of θ.

θ̂ML = argmaxθ p (C | θ)

where
p (C | θ) =

n∏

i=1

p (ci | θ)

asuming that the features in ~c are statistically independent of each other.

In Summa
The Maximum Likelihood Estimator is the parameter vector θ̂ML maximizing
the probability of a sample set {c1, c2, . . . , cn}.

Properties
• The Maximum Likelihood Estimator θ̂ does not always exist and ist not

unique

• If no labeled samples are available, ML can still be used adding the unkown
class number as an additional parameter to θ.E.g. for gaussian distribution
θ would look like this: θ = {κ (~µκ,Σκ | κ = 1 . . .K)}.

• equvivalently we can use a monotonic probability function p, e.g. the log
likelihood

p (C | θ) =
n∑

i=1

log (p (ci | θ))

Pro/Contra
- the whole sample set has to be stored and evaluated each turn (except for

solid statistical densities like the normal distribution)

161

8.2 Maximum A-Posteriori Estimation (MAP)
The idea of Maximum A-Posteriori Estimation (or Bayse Estimation)
is that the parameter vector θ we want to estimate, also unerlies a distribution.
It maximizes the a-posteriori probability of θ.

Example
If we choose a gaussian model, one of the parameters will be the mean value. Now
imagine school exams. Every exam has a mean value of the marks. Yet after 25
exams even this mean value underlies the distribution of the 24 previous mean
values. A mean value of the mean values can be given.

The Maximum A-Posteriori Estimation is de�ned:

θ̂MAP = argmaxθ p (θ | ~c) = argmaxθ p (θ) · p (~c | θ)
The di�erence to ML-Estimation is that prior knwoledge is respected and used.
Since prior knowledge becomes vain when having a uniform distribution, this is
exactly the scenario when MAP equals ML.

Properties
• corresponds to a ML estimation also using prior knowledge

• is euqal to ML, if we have a uniform distribution (prior knowledge becomes
useless)

• If no labeled samples are available, MAP can still be used adding the
unkown class number as an additional parameter to θ. E.g. for gaussian
distribution θ would look like this: θ = {κ (~µκ,Σκ | κ = 1 . . .K)}.

Pro/Contra
- the whole sample set has to be stored and evaluated each turn (expect for

solid statistical densities like the normal distribution)

8.3 Expectation Maximization (EM)
We have objects built given a certain amount of parametres. Some of them can
be measured (observable information) others can't (hidden information). The
objects are entities of an unknown random variable, which underlies a certain
density. The goal of the EM Algorithm is to determine the parameters of this
density. Furthermore the EM Algorithm is based on the Hidden Information
Principle:

observable information = complete information - hidden information

X observable information

162

Y hidden information

B parameter vector of the density

Usually p (X,Y ;B) is assumed to be a mixture density (i.e. a weighted sum
of standard densities). If we assume gaussian distribution, the parameters to
estimate would be mean µ and covariance Σ. If we assume mixtures, we further-
more estimate the weights of the single densities as parameters. Usually you
would apply ML in such a case, the porblem is that our parameters depend
on hidden information, which cannot be modelled by ML. EM solves this by
simultaneously estimating observable and hidden parameters.

Theory
p (X,Y ;B) = p (Y,X;B) · p (X;B) = p (X | Y,B) · p (Y ;B)

apply logarithm for easier calculations

log p (X,Y ;B) = log p (X | Y,B) + log p (Y ;B)

solving for log p (X | Y,B) we get the key equation of the EM:

log p (X | Y,B) = log (X,Y ;B)− log p (Y ;B)

⇒ log p (X;B) = log p (X,Y ;B)− log p (Y | X;B)

this corresponds to the log likelihood of the observed random variables.
Now we consider the (i+ 1) iteration and seperate the equation into two

terms:
log

(
X; B̂(i+1)

)
= Q

(
B̂(i+1) | B̂(i)

)
−H

(
B̂(i+1) | B̂(i)

)

Q Q
(
B̂(i+1) | B̂(i)

)
=

∫
p

(
Y | X; B̂(i)

)
log p

(
X,Y ; B̂(i+1)

)
dY (Kullbach-Leibler

Statistics)

H H
(
B̂(i+1) | B̂(i)

)
=

∫
p

(
Y | X; B̂(i)

)
log p

(
Y | X; B̂(i+1)

)
dY (Entropy)

Discussion of the H-Term The H-Term is not important for the maxi-
mization, maximizing the Q-Term is su�cient:

H
(
B̂(i+1) | B̂(i)

)
−H

(
B̂(i) | B̂(i)

)
=

∫
p

(
Y | X; B̂(i)

)
log

(
Y | X; B̂(i+1)

)
dY−

∫
p

(
Y | X; B̂(i)

)
log p

(
Y | X; B̂(i)

)
dY =

=
∫
p

(
Y | X; B̂(i)

)
log

p
(
Y | X; B̂(i+1)

)

p
(
Y | X; B̂(i)

) dY

163

replace log x by ≤ x− 1 (x− 1 ≥ log x):

≤
∫
p

(
Y | X; B̂(i)

)
·

p

(
Y | X; B̂(i+1)

)

p
(
Y | X; B̂(i)

) − 1

 dy =

=
∫
p

(
Y | X; B̂(i+1)

)
− p

(
Y | X; B̂(i)

)
dy =

1− 1 = 0

Discussion of the Q-Term An iterative maximization of the Q-Term
corresponds to a maximum likelihood estimation. The Q-Term corresponds to
the gradient of the estimation. It can easily be decomposed:

Q
(
B̂(i+1) | B̂(i)

)
=

∫ p
(
Y | X; B̂(i)

)

∫
p

(
Y | X; B̂(i)

)
dy
· log p

(
X,Y ; B̂(i+1)

)
dY

since
∫
p

(
Y | X; B̂(i)

)
dy marginalizes up to 1.

• the parameter vector B̂(i)is the current best estimate so far

• B̂(i+1) is a candidate for an improved estimate

• Q calculates the likelihood of the data in respect to B̂(i+1)

• the Q-term includes hidden information Y (the index l, of the candidates)

• the EM-Algorithm �nds out the best B̂(i+1) that maximizes Q

164

Algorithm

Algorithm 28 Expectation Maximization

1. Initialization: choose a good initialization for B̂(0). Use task speci�c know-
ledge.

2. Estimation Step:
Estimate Y from the observable parameters X and B̂(i) by computing

Q
(
B̂(i+1) | B̂(i)

)

3. Maximization Step:
Determine the best estimate for B̂(i+1) using ML. Since we have estima-
tedthe hidden parameters Y , we can now make use of ML.

B̂(i+1) = argmaxB̂(i+1) Q
(
B̂(i+1) | B̂(i)

)

4. Return B̂(i+1) if B̂(i+1) − B̂(i) < ε.

Properties
• iterative procedure

• highly dependent on initialization

• only local optima can be found

• always converges

• leads to a decomposition of the search space

• snail method (tremendously slow)

• easy to implement (at least for pattern recognition tasks), because of the
closed iteration scheme for parameter update

• numerical robustness

• approximates ML

• read in the book The Elements Of Statistical Learning(13) for an interes-
ting way to realize EM with LDA, FDA, PDA and MDA (3.1.15 �)

165

8.4 Histogram Estimation
If we assume that all features are statistically independent of each other:

p (~c | Ωκ) =
n∏
ν=1

p (cν | Ωκ)

Then it is su�cient to estimate n one dimensional densities of the features. This
can still be done by ML and MAP, yet a much easier way is to use histogramms
and count relative frequencies. In this case the density can be more e�ciently
stored in histogramms.

Pro/Contra
+ only the histogramms must be stored

- does only work for statistical independent features

8.5 Newton Iteration
The Newton Iteration is iterative method to �nd local maxima/minima not
unlike gradient descent. Thus we move along the gradient to the point of the
highest ascent f∗ (a local maximum) and steadily replace the function by its
tangent. Then we compute the zero of this tangent rather than the zero of the
function (it is typically a better approximation). That also means this method
is a local method and requires a good initial guess x0. The iterative scheme is
very simple:

xn+1 = xn − γ f (xn)
f ′ (xn)

γ denotes the step width of the method. In many cases it is simply set to zero
γ = 1.

Pro/Contra
+ faster than gradient descent

8.6 Gradient Descent
Gradient Descent is an iterative optimization algorithm that approaches a local
minimum of a function by taking steps proportional to the negative of the
gradient of the function at the current point. Which extreme point will be found
depends on our initial guess x0.

xn+1 = xn − γn∇f (xn)

where γ denotes the step width of the method. It can be determined using
Cauchy methods.

166

- it often results in a zig-zag approachal of the maximum and is therefore rather
slow

8.7 Coordinate Descent
Coordinate Descent is a fairly simple intuitive way of local optimization. The
principle is to hold all expect one dimension/coordinate �xed, and only change
the one left, till an optimum is reached. Then continue with another free coor-
dinate.

Example
f (x1, x2, x3, x4)

1. x2, x3, x4 are �xed. Change x1 until f has reached an optimum in x∗1
2. x∗1, x3, x4 are �xed. Change x2 until f has reached an optimum in x∗2
3. x∗1, x∗2, x4 are �xed. Change x3 until f has reached an optimum in x∗3
4. x∗1, x∗2, x∗3 are �xed. Change x4 until f has reached an optimum in x∗4

Our local optimum is located in
(
x∗1,x

∗
2, x

∗
3, x

∗
4

)
.

8.8 Least-Squares
Least squares is a mathematical optimization technique which, when given a se-
ries of measurements yi, attempts to �nd a function which closely approximates
the data.

S =
n∑

i=1

(yi − f (xi))
2

f can be any parametric function, e.g. a polygon. The goal is to to choose
these parameters, such that S is minimized ('least squares'). For example we
can use derivation, gradient descent, ML or similart techniques to determine the
parameters.
The measurement error is assumed to:

• be stochastical independent

• be gaussian distributed

• to have a variance σ, that remains constant

167

8.9 Hough-Transformation
Hough-Transformation is a method to detect lines, circles and other geometrical
�gures.

Precondition Edge-detection on a binarized picture has been performed.

Idea Build a Dualspace in which every point corresponds to a geometrical ob-
ject.

Pro/Contra
- brute-force algorithm

- computational intensive

Example: Line
We could use the gradient and the y-value of a line as parameters, but they have
prooven to be a very bad parametrization (see 6.2). So we choose the parametric
representation with angle and x-value for a line d:

d = x · cos (α) + y · sin (α)

and build the Dualspace upon (x, α), then every point in the dualspace corre-
sponds to a line.

8.10 Lagrange Multiplier Method
8.10.1 Motivation
In standard maximization (minimization) methods, an optimal situation, where
we can optimize without caring for any side conditions, is asumed. Since op-
timization in Pattern Recognition applications is usually always bound to side
conditions, like optimizing the inter class distance, while keeping the intra class
distance constant, we take a deeper look into the Lagrange Multiplier Me-
thod, a method allowing for the optimizing of a function under several side
constraints.

8.10.2 General Procedure
Let f (x1, x2, . . . , xn) be a multidimensional function. This will be our base
function to optimize. Beneath this function, we are given several constraints to
respect during the optimization:

g1 (x1, x2, . . . , xn) = 0

g2 (x1, x2, . . . , xn) = 0

168

...

gm (x1, x2, . . . , xn) = 0

For each constraint we de�ne a Lagrange Multiplier λj with j ∈ Z1,m.
Now we can write down an extended objective function fL containing the

base function and all constraints:

fL (x1, x2, . . . , xn) = f (x1, x2, . . . , xn)+λ1·g1 (x1, x2, . . . , xn)+. . .+λm·gm (x1, x2, . . . , xn)

respectively:

fL (x1, x2, . . . , xn) = f (x1, x2, . . . , xn) +
m∑

j=1

λj · gj (x1, x2, . . . , xn)

8.10.3 Criterions For Maxima/Minima
First we have to check the necessary criterion J (

fL
)

= (0), whether the
Jacobian-Matrix of or extended objective function equals the zero matrix.

Checking this criterion, we have to partially derive fL to all n variables and
m multipliers, resulting in n+m partial derivations. In the next step we use a
system of linear equations or respectively Gauss Elimination to determine points
satisfying: J (

fL
)

= (0). Points in which all partial derivatives draw 0. These
points are referred to as stationary points.

Finding a satisfying criterion for Minima/Maxima is more complicated.
As in derivation theory, we have to take a closer look at the environment of our
candidate:

Local Minimum A stationary point (a1, . . . , an) ∈ Kn is local minimum of
our objective function, if there exists ε > 0 with Uε (a1, . . . , an) ⊆ Df

with Uε referring to the environment given by ε and

f (a1, . . . , an) ≤ f (x1, . . . , xn) for each (x1, . . . , xn) ∈ Kn∩Uε (a1, . . . , an)

Local Maximum A stationary point (a1, . . . , an) ∈ Kn is local maximum of
our objective function, if there exits ε > 0 with Uε (a1, . . . , an) ⊆ Df and

f (a1, . . . , an) ≥ f (x1, . . . , xn) for each (x1, . . . , xn) ∈ Kn∩Uε (a1, . . . , an)

Example
Let f : R2 → R

f (x, y) = −x2 − 1
2
y2 + 4

Furthermore let g (x, y) = 2− 2x− y = 0 be a side constraint for f .

169

Our extended objective function fL is then

fL (x, y, λ) = −x2 − 1
2
y2 + 4 + λ (2− 2x− y)

Partially deriving into the directions of all variables draws:
fL

′
x (x, y, λ) = −2x− 2λ
fL

′
y (x, y, λ) = −y − λ
fL

′
λ (x, y, λ) = 2− 2x− y
Solving for fL′ = 0 gives us the stationary point S := (x, y) =

(
2
3 ,

2
3

)
and

the Lagrange Multiplier λ = − 3
2 .

8.11 Karush-Kuhn-Tucker Conditions
given f (x), the function to optimize. gi (x)non equality constraints(i = 1 . . . l).

hj (x) equality constraints (j = 1 . . . l).

local minimum (necessary)
f , gi and hj are continuously di�erentiable at a regular point x∗8 .

If x∗ is a local Minimum, there exist multipliers µi > 0 and νj such that

∇f (x∗) +
m∑

i=1

µi∇gi (x∗) +
l∑

j=1

νi∇hi (x∗) = 0

with µigi (x∗) = 0 for all i = 1 . . .m.

local maximum (su�cient)
f , gi and hj are convex functions. And let there be a feasible point x∗.

x∗ is a global Minimum, there exist multipliers µi > 0 and νj such that

∇f (x∗) +
m∑

i=1

µi∇gi (x∗) +
l∑

j=1

νi∇hi (x∗) = 0

with µigi (x∗) = 0 for all i = 1 . . .m.

8.12 Singular Value Decomposition (SVD)
Singular Value Decomposition is an e�cient way to factorize matrices and com-
pute the eigenvalues and singular values of a matrix.

8a point is regular if the gradients of the active inequality constraints and the gradients of
the equality constraints are linearly independent at that point

170

Singular Values
The matrix we want to decompose is A ∈ Rm×n.

We factorize A to
A = UΣV T

where U ∈ Rm×n, V ∈ Rn×n and Σn×n.
Furthermore

U · UT = I

having orthonormal column vectors, and

V · V T = V T · V = I

having orthonormal cloumn and row vectors.
Last but not least Σ is a diagonal matrix:

Σ =

σ1 · · · 0
...
0 · · · σn

where σ1 ≥ · · · ≥ σn are called the singular values.

Condition
The Condition describes how dependent the solution is on disturbances (varian-
ces) of the input (numerical robustness). This is expressed by the condition
number

κ =
σ1

σn

The lower κ, the numerically robust is the solution. A condition number close
to 1 (κ ' 1) indicates that a problem is good conditioned. κ can be improved
by setting singular values close to zero to zero (σi ' 0→ σ∗i = 0).

Orthogonalization
SVD is an excellent choice for keeping orthogonal matrices orthogonal. Because
of the nummerical instability with computer matrices, orthogonal matriced loose
their orthogonal property after operations on them. Using SVD this derivation
manifests in singular values that are very close to, but not equal to 1. The
solution is to set these σi = 1 and voila, the matrix is orthogonal again.

Orthonormalization
If the task is not to keep a orthogonal/orthonormal matrix orthogonal/orthonormal,
but to initially �nd one, SVD can also be of help: Just take the column vectors
of U and you've got yourself an orthonormal basis of the space A is creating.

171

Pseudoinverse
Another possible application is to compute the Pseudoinverse of a matrix:

1. First choose for every singular value σ∗i = 1
σi

instead of σi, except for
singular values equal to 0

2. That gives us Σ∗ with σ∗ on the diagonal

3. Now the Pseudoinverse is simply At = V Σ∗UT

8.13 Computation Of Implicit Eigenvalues
A problem in many applications is the calculation of eigenvalues of the kernel
matrix Q (see 10.1) or respectively the covariance matrix Σ (see 10.1). A genious
trick is to compute Implicit Eigenvalues factorizing Q resp. Σ:

Q = F · FT

and we choose F ∈ RN×p with p ≪ N .
The eigenvalues can be gotten by:

Q~ϕc = λc~ϕc

so:
FFT ~ϕc = λc~ϕc

FTF
(
FT · ~ϕc

)
= λc ·

(
FT · ~ϕc

)

but FTF is mereley a p× p matrix and thus much much smaller than Q.

Factorisation Of Q
To achieve this we have to factorize Q according to: Q → F · FT . We will use
the kernel matrix, gained by solving the objective S1(see 3.1.12) to examplify
this decomposition:

Q =
1
N2
·
N∑

i=1

N∑

j=1

(
~fi − ~fj

)(
~fi − ~fj

)T

Q =
1
N2
· F · FT

⇒ F =

(
~fi1 − ~fj1

)
(
~fi2 − ~fj2

)T

...

T

172

Example
N∑

i

aibi = ~aT~b

8.14 Parameter Tying
Parameter Tying in general means to combine two parameters into one. E.g.
having parameters a and b we could combine them into a new parameter using
their sum c = a+b, or any other mathematical operator. In Pattern Recognition
we often have too many parameters, i.e. features, and want to reduce their num-
ber, also reducing the compputational complexity of the classi�cation process.
In this respect Parameter Tying can be of use. Naturally it works best, if the
two parameters combined, indeed share some real life connections.

Equal Covariance Matrices
Many pattern recognition methods assume or require equal covariance matrices.
E.g. LDA (see 3.1.15) or the Mahalanobis Distance (see 3.2.8), yet in general
they never are. But we can use a special form of parametery tying assuming
them to be equal. As in the c = a+ b example above, this can of course be done
in various ways. Here are given two that theoretically make sense:

Σ =
Nκ
N

Σκ +
Nλ
N

Σλ

and

Σ =
1
N

N∑

j=1

~cj~c
T
j − ~µ~µT

and the mean

~µ =
1
N

N∑

j=1

~cj

where N denotes the number of features and Nκ the number of features corre-
sponding to class Ωκ.

173

8.15 Disturb Signal

goal �nd interfering signal g

1. Send a dirac impuls (see 9.3) as signal f and measure the impuls response
h

2. Do a transform into the frequency space (Fourier Space): G = H
F

(remember: f ⊕ g = h⇔ F ·G = H, see 9.1)

3. Transform G back, and you got the disturb signal isloated.

174

8.16 Histogram

Abbildung 54: Histogram

A histogram is a graphical way to display relative frequencies of measurements.
In pattern recognition a bar usually sums up the features belonging to one
class. In image processing histrogramms usually display the grey or color value
distribution of a picture.

8.17 Knowledge Representation
Independent of which type of signal we want to classify or which type of features
and classi�er we choose, we have to choose a representation for our knowledge.
Possible representations are:

• probability density functions, parametric families (for statistics)

• a polynom or any other parametric function

• logic (we know what we can derive/proof)

175

• grammars (information theory, we know what we can derive)

• neural networks (Hop�eld, Perceptrons, Neurons)

8.18 Curse Of Dimensionality
Bellman's Curse Of Dimensionality means the problem of volume increase in
high dimensional spaces. Because of the high range of values single features are
like beacons in a storm.

1. Distances converge to zero. The main problem arising from the high di-
mension is the unintuitive phenomena that every feature is close to every
other feature. That is because most of the dimension-values of a feature
are 0. Thus the norm of the features are all very similar. Training data
would have to be atsronomically huge to cover the whole search space.

176

Abbildung 55: Curse Of Dimensionality

In the �rst illustration we see a two dimensional feature space with 10 features.
They seem to give an satisfying representation of some class seperation. Now if
we take a third feature component, we lift the features space to 3D. Taking the
same 10 features (adding the new component) we get the second illustration.
Now while we have increased the search space drastically, we have gained no
more precision, that we had with the two dimensional featrures, yet the plane
seperating the classes in the second illustration is highly underrepresented.

2. Huge search space. Working on and with such a huge search space is really
di�erent. Consider for examples search algorithm or local optimization
algorithms. Additionally as mentioned above, this search space can never
really be covered su�ciently to provide secure data.

Consequences are either to reduce the dimension of the feature space by deleting
feature components by e.g. selecting only the n best evaluated features (see

177

3.2) or by combining them with by Parameter Tying (e.g. PCA 3.1.14 and
LDA 3.1.15). Another possibility is to decompose the search space and look at
subspaces of it with way lower dimensions and combine the results after the
Optimality Principle (see 8.19).

8.19 Principle Of Optimality
Bellman's Principle Of Optimality postulates that in a di�erentiable optimi-
zation procedure, the optimal overall-solution has to be built out of optimal
part-solutions. The algortihm of dynamic programming are based on this prin-
ciple. Applying this principle to solve problems more e�ciently, results in the
follwoing basic algorithm sceleton:

Algorithm 29 Dynamic Programming (Optimality Principle)
1. Break the problem into smaller subproblems.

2. Solve these problems optimally using this three-step process recursively.

3. Use these optimal solutions to construct an optimal solution for the origi-
nal problem.

Requirements
1. monotonic cost/distance function

If s0 is the start node, si the current node and d (s0, si) the distance or
costs for the path between them, then d (s0, si+1) ≥ d (s0, si) must always
be true.

2. seperable problem
The distance/costs must be seperable (this corresponds to seperating the
optimal path into optimal subpaths): d (s0, sj) = d (s0, si)+d (si, sj) with
j ≥ i.

8.20 Dynamic Programming
Dynamic Programming is based on the Principle Of Optimality (see above).
The idea is to seperate a problem into small and easy to solve subproblems,
solve these recursively and construct the solution for the big problem out of
them. If the principle of optimality holds, this construction is optimal, if the
solutions for the subproblems were optimal. Practically this often means the
for solving a problem, we can use the results of the solutions of predecessing
subproblems usually stored in a database. This process of memorizing results is
called memoization. The more the subproblems overlap, the more often they
can be used, the more e�cient is DP.

178

Abbildung 56: Dynamic Programming

1. There are n paths to every node. For each node, store the best one of them
leading to it (in a lookup table).

2. There are n paths to every node. For each node, store the best one of them
leading to it (in a lookup table).

The optimal path from S to D leads over the nodes A,B,C. Having computed
the optimal path from S to B, all other non-optimal paths leading to B can
be discarded, because according to the principle of optimality, they can not be
part of the global optimal path.

Types
There are two common ways to realize this principle:

• Top-down approach: The problem is broken into subproblems, and these
subproblems are solved and the solutions remembered, in case they need
to be solved again. This is recursion and memoization combined together.

• Bottom-up approach: All subproblems that might be needed are solved
in advance and then used to build up solutions to larger problems. This
approach is slightly better in stack space and number of function calls,
but it is sometimes not intuitive to �gure out all the subproblems needed
for solving a given problem.

179

Requirements
The requirement is the principle of optimality. This is given if we have got a
monotonic cost function and if our space is seperable by this function (see 8.19).

Algorithm

Algorithm 30 Dynamic Programming
1. Break the problem into smaller subproblems.

2. Solve these problems optimally using this three-step process recursively.

3. Use these optimal solutions to construct an optimal solution for the origi-
nal problem.

Example
One of the most popular examples for DP is the computation of the Fibonacci
numbers. The Fibonacci numbers are de�ned:

fib (0) = 0

fib (1) = 1

fib (n) = fib (n− 1) + fib (n− 2)

If we calculate for example fib (5), we have to compute
fib (4)+fib (3) = fib (3)+fib (2)+fib (2)+fib (1) = fib (2)+fib (1)+fib (1)+fib (0)+fib (1)+fib (0)+fib (1)

= fib (1) + fib (0) + fib (1) + fib (1) + fib (0) + fib (1) + fib (0) + fib (1)

Yet if we use DP to compute it, we still have the solutions of the subproblems:
fib (3) and fib (4) and can simply add them. Try to implement both variants in
any language you like and watch the di�erences is time, they are enourmous.
Here's some Pseudo-Code:

fib(n)
int previousFib = 0, currentFib = 1;
repeat n - 1 times
int newFib = previousFib + currentFib
previousFib = currentFib
currentFib = newFib

return currentFib

8.21 Viterbi Algorithm
The Viterbi Algorithm is a Dynamic Programming algorithm for �nding se-
quences of states.

It makes several assumptions:

180

Assumptions
• the principle of optimality holds (monotonic cost function, seperable space)

• observed and hidden events are sequences (e.g. over time)

• one observed event must correspond to exactly one hidden event

• an event at time t must only depend on the observable event at that time
and the hidden events at times t− 1 to t− n.

According to the principle of optimality several paths can lead to a state t, but
only one of them is optimal (if there are more, decide for one at random). This
way the algorithm only has to keep track of one path per state. Having a cost
function, we keep one number per state: the cummulative cost of the path to this
state. Proceeding to a new state t + 1 there are transition probabilities given,
upon which also in respect of the previous path, the best path to the state t+1
can be computed. According to DP, proceeding to a new state, optimal paths to
predecessing states are saved in some kind of look-up table, because they might
be required again for paths to succeeding states.

181

Algorithm 31 Viterbi Algorithm (from Wikipedia)
def forward_viterbi(y, X, sp, tp, ep):

T = {}
for state in X:
prob. V. path V. prob.
T[state] = (sp[state], [state], sp[state])

for output in y:
U = {}
for next_state in X:

total = 0
argmax = None
valmax = 0
for state in X:
(prob, v_path, v_prob) = T[state]
p = ep[state][output] * tp[state][next_state]
prob *= p
v_prob *= p
total += prob
if v_prob > valmax:

argmax = v_path + [next_state]
valmax = v_prob

U[next_state] = (total, argmax, valmax)
T = U

apply sum/max to the final states:
total = 0
argmax = None
valmax = 0
for state in X:

(prob, v_path, v_prob) = T[state]
total += prob
if v_prob > valmax:
argmax = v_path
valmax = v_prob

return (total, argmax, valmax)

The function forward_viterbi takes the following arguments:

• y is the sequence of observations

• X is the set of hidden states

• sp is the start probability

• tp are the transition probabilities

• ep are the emission probabilities

The algorithm works on the mappings T and U. Each is a mapping from a state
to a triple (prob, v_path, v_prob), where
prob is the total probability of all paths from the start to the current state,
v_path is the Viterbi path up to the current state, and
v_prob is the probability of the Viterbi path up to the current state.
The mapping T holds this information for a given point t in time, and the main
loop constructs U, which holds similar information for time t+1. Because of the
Markov property9, information about any point in time prior to t is not needed.

182

8.22 Hidden Information Principle
observable information = complete information− hidden information

8.23 White Eage On White Background
The white eagle on white background phenomena refers to the fact that the
pixels of a picture after applying an operation like �ltering often result in color
values in a very short range. Imagine a picture of an eagle. After �ltering only
pixels between [0; 1] remain, yet the picture uses an RGB scale, where 0 is white
and 255 is black. That means although the pixels belonging to the eagle will
have values close to 1 and the background values close to 0, you will not be able
to see anything on the picture.

A common solution is a normalization of the result. For our example a mul-
tiplication with 128 would do the trick.

8.24 Adidas Problem

Abbildung 57: The Adidas Problem

Applying PCA features from all three classes will be projected unto the new
axis φ1 and thus become indistinguishable. This is because φ1 corresponds to
the eigenvector having the biggest eigenvalue.

The Adidas Problem occurs with analytical feature optimization methods li-
ke PCA (see 3.1.14). The middle stripe corresponds to the eigenvector with the
biggest (absolute values) eigenvalue. That means intending an optimal di�eren-
tiation of all features, the vectors of other tow stripes will be projected unto the
middle stripe and distiguishing them is not possible any longer. Because of the
three stripes this problem was given the name Adidas Problem.

183

A solution to the Adidas Problem is not to restrict the optimization solely
on the spread, like for example the realted LDA does (see 3.1.15).

8.25 Maxims Of Pattern Recognition
1. Maximize the inter class distance.

2. Minimize the intra class distance.

1. means the distance between all features belonging to class Ωλ to all features
belonging to any other class Ωκ. More illustrative and explanatory is this expla-
nation: Features of di�erent classes should show distinct di�erences and share
as few as possible similarities.
2. means that features within one class should lie as close to each other as
possible. More illustrative and explanatory is this explanation: Features of the
same class should be as similar to each other as possible and share as many as
possible similarities.

184

9 Mathematics Formulary
9.1 Convolution
The convolution theorem says that:

f ⊕ g = h⇔ FT (f) · FT (g) = FT (h)

where FT is the Fourier Transform of a signal. That means a convolution in the
spatial domain corresponds to a simple multiplication in the frequency domain.
f ⊕ g is de�ned as ∫

f (u) g (x− u) du = h (x)

Algorithm 32 convolution
1. re�ect function g

2. move g across f

3. multiply the peaks of both

Properties Of Convolution Functions
kausal the system response does not occur before the input.

stable |gjk| <∞ There is a threshold.

seperable We can partition a 2D array into 2 1D arrays, if we can seperate
them to single factors. The means instead of one 2D Fourier Transfor, we
can apply two 1D Fourier Transforms, which is much faster.

9.2 Cross-Ratio
The cross-ratio of a set of four distinct points on the complex plane is given by:

(z1, z2, z3, z4) =
(z1 − z3) (z2 − z4)
(z1 − z4) (z2 − z3)

Historically it was noticed that if four lines in the plane pass through a point
P , and a �fth line L not through P crosses them in four points, then the cross-
ratio of the directed lengths on L formed by the four points taken in order was
independent of L. That is, it is an invariant of the system of four lines.

Properties
• Cross-ratios are invariants of projective geometry in the sense that they

are preserved by projective transformations.

185

• The cross-ratio of four complex numbers is real if and only if the four
numbers are either collinear or concyclic.

9.3 Dirac-Impuls

Abbildung 58: Dirac Impuls

δij =

{
1 if i = j

0 otherwise

9.4 Fourier Series
Fourier series can approximate any periodic trigonometric function.

f (x) =
a0

2
+

∑

k≥1

ak cos (k · x) + bk sin (k · x)

ak and bk are called the Fourier Coe�cients.
An important aspect is that periodic functions that are even can be approxi-

mated using only the cosine term ak cos (k · x) and odd functions by using only
the sine term bk sin (k · x). This is because cos is even and sin symmetrical to
the origin. The coe�cients can be computed by closed formulas:

a0 =
1
π

∫ π

−π
f (x) dx

ak =
1
π

∫ π

−π
f (x) cos (k · x) dx

bk =
1
π

∫ π

−π
f (x) sin (k · x) dx

9.5 Fourier Transform
For practical purposes the trigonometric parts of the Fourier Series are rewritten
for the Fourier Transform with complex numbers in respect to the Euler
Formula:

eiϕ = cosϕ− i · sinϕ

186

Replacing cos and sin by this identity, we can write the Fourier Series as

f (x) =
1
2π

∞∑

k=−∞
cke

(ikx)

as for the non-complex case we can �nd a closed formula for the coe�cients ck:

ck =
∫ π

−π
f (x) e(−ikx)dx

If we see ck as a function c (k)(usually written F (ξ)), we call this function the
Fourier Transform:

F (ξ) =
∫ π

−π
f (x) e(−iξx)dx = FT {f}

Properties
• requirement: the Fourier Transfor exists if and only if

∫∞
−∞ |f (x)| dx <

∞. This makes sense, because the Fourier Series can only model limited
functions (see 1.1).

• convolution theorem: h (t) = f (t) ⊕ g (t) =
∫ +∞
−∞ f (x) g (t− x) dx cor-

responds to a simple multiplication in the frequency domain: H (ξ) =
F (ξ)G (ξ)

• scaling: f (α · x) = 1
|α|F

(
ξ
α

)

• translation: f (x− x0) = e(−iξx0)F (ξ)

• symmetry: − 1
2π · F (x) = f (−ξ)

• di�erentiation: dn · f(x)d·tn = (iξ)n F (ξ)

9.5.1 1D Fourier Transform

FT {f (x)} =
∫ ∞

−∞
f (x) · e−iξxdx = F (ξ)

FT−1 {F (ξ)} =
1
2π

∫ ∞

−∞
F (ξ) · eiξxdξ = f (x)

187

9.5.2 2D Fourier Transform
The Fourier Transform can be easily extended to arbitrary dimensions. Using the
Fast Fourier Principle below (see 9.5.4) this computation is usually decomposed
into two 1D-Fourier Transforms, since they can be computed much faster.

FT {f (x, y)} =
∫ ∫ ∞

−∞
f (x, y) · e−i(ξx+ηy)dxdy = F (ξ, η)

FT−1 {F (ξ, η)} =
1

4π2

∫ ∫ ∞

−∞
F (ξ, η) · ei(ξx+ηy)dξdη = f (x, y)

Abbildung 59: Inverse Fourier Transform Proof

FT−1 ⊕ FT {f (x)} = f (x)

where
FT {f (x)} = F (ξ)

9.5.3 Discrete Fourier Transform
Since all signals we can deal with are discrete, we need to use a discretized
form of the continous Fourier Transform. We de�ne our signal as a sequence of
samples: f0, f1, . . . , fM−1.

1D

DFT {f (x)} =
M−1∑

j=0

f (j) ·
(
e−i

2πξ
M

)j
= F (ξ)

DFT−1 {F (ξ)} =
1
M

M−1∑

ξ=0

F (ξ)
e2πiξx

M
= f (x)

2D

DFT {f (x, y)} =
Mx−1∑

j=0

My−1∑

k=0

f (j, k) · e−i2π
“

ξj
Mx

+ ηk
My

”
= F (ξ, η)

where M is the number of sample values. This transform can be computed by
using standard matrix arithmetrics.

The inverse of the DFT is simple, since it is a linear function. Just build the
matrix corresponding to the transform and invert it (Pseudoinverse). Both the
foward and the inverse are in O

(
M2

)
.

188

9.5.4 Fast Fourier Transform
We make use of two fundamental principles to reduce the complexity of the
Discrete Fourier Transform:

1. homomorphisms (convolution theorem, logartihm)

2. the Divide & Conquer principle: decompose the problem into smaller less
complex problems, solve them and reconstruct the solution for the big
problem from them (nth root of unity)

The Divide & Conquer principle manifests in the decomposition into even and
odd terms and their parallel computation. To achieve this decomposition the
Fourier Transform is rewritten using the nthroot of unity. By this ongoing de-
compositions the whole transform resolves into M = 2 · n simple addition and
subtractions of terms (see illustration below). These n terms resulting on the
di�erent levels (see illustration below) are then multiplied with each other to
construct the complete solution given by a �nal apllication of Fourier Transforms
of order n.

Abbildung 60: Fast Fourier Transform

With this decomposition Fast Fourier Transform is located in O (M · logM).

Example
Having M = 210 samples results in 220 complex multiplications, applying the
Discrete Fourier Transform. Applying FFT we reduce this number to 210

2·10 mul-
tiplications.

9.5.5 Short Term Fourier Transform

SFT {f (t)} =
∫ ∞

−∞
f (t) · ω ⊕ (t− τ) e−2πiωtdt = SFT (τ, ω)

189

where ω is a window function and (t− τ) a translation on the time axis.

9.5.6 Wavelet Transform

WT {f (t)} =
1√
α

∫ ∞

−∞
f (t) · ψ ⊕

(
t− τ
α

)
dt = WT (τ, α)

where ψ is the mother wavelet, α a scaling for the wavelet and (t− τ) a trans-
lation on the time axis.

Both ψ and ω act a a �lter convoluted with f .

9.6 The sinc Function
The sinc function is de�ned as

sinc (x) =
sinx
x

The normalized form is
sinc (x) =

sinπx
πx

Properties (normalized version)
• sinc (0) = 1

• sinc (k) = 0 for all k ∈ Z, k 6= 0

• xk (t) = sinc (t− k) build an othonormal basis for bandlimited functions
in L2 (R)

• ∫∞
−∞ sinc (t) exp−2πift dt = rect (f)

• ∫∞
−∞ sinc (x) = 1

• ∫∞
−∞ |sinc (x)| =∞

9.7 Special Matrices
adjoint matrix
A]i,j ∈ R(n−1)×(n−1) is the adjoint matrix of A ∈ Rn×n. A]i,j corresponds to A
where the ith row and the jth column have been left out.

complementary matrix
A{ ∈ Rn×n is the complementary matrix of A ∈ Rn×n. The entries of the com-
plementary matrix a{

i,j correspond to the determinant of the A corresponding
adjoint matrix A]i,j , where the ith row and the jth column have been left out:

a{
i,j = det

(
A]i,j

)

190

pseudo inverse
The Inverse of a matrix A does only exist, if A is regular. If it isn't and we need
to get an Inverse of it anyway, we can compute the Pseudo-Inverse At:

At =
(
AT ·A)−1

AT

having the property
A ·At ·A = A

respectively
At ·A ·At = At

9.8 Matrix Properties 1
• (

A−1
)T =

(
AT

)−1 for symmetric matrices

• (AB)T = ATBT

• the previous two combined:
(
Σ−1

)T =
(
ΣT

)−1 = Σ−1 since Σ is always
symmetric.

9.9 Matrix Properties 2
• ~xTA · ~x = trace

(
A · ~x · ~xT)

• trace (A) = trace
(
AT

)

where the trace of a matrix is simply the sum over all its diagonal entries.

9.10 Banach's Fixed Point Theorem
|F (x1)− F (x2)| ≤ L (x1 − x2)

where L ∈]0; 1[is called Lipschitz constant. If such a constant exists any arbi-
trary iterative series starting with x0 will eventually converge to a �xed point
x∗.

Example
given: h (x) = arctan (x+ 1) and accordingly the �rst derivation h′ (x) = 1

1+(x+1)2
.

Looking at the limes we �nd that L = 1
2 will be a suitable limit (since 1

1+(x+1)2
≤

1
2).

Now we calculate
|xn − x̄| ≤ Ln

1− L |x1 − x0|
choosing x0 = 1 for a simple start value.

|xn − x̄| ≤ 0.5n

1− 0.5
|1.1071− 1|

191

we accept an error estimation of 0.01 and estimate

< 0.5n · 0.3

applying ln

n >
ln

(
0.01
0.3

)

ln
(

1
2

) = 4.91

We have got our result. We reach a �xed point after n = 5 steps.

9.11 Gram-Schmidt Orthogonalization
With the Gram-Schmidt Orthogonalization we are able to �nd, given a linear
independent set of vectors, a orthogonal system spanning the same subspace.

Algorithm 33 Gram-Schmidt Orthogonalization Process
given a set of linear independet vectors v1 . . . vn.

u1 . . . un will be vectors of an orthogonal system.

• u1 = v1

• u2 = v2 − 〈v2,u1〉
〈u1,u1〉 · u1

• u3 = v3 − 〈v3,u1〉
〈u1,u1〉 · u1 − 〈v3,u2〉

〈u2,u2〉 · u2

• . . .
• un = vn −

∑n−1
i=1

〈vn,ui〉
〈ui,ui〉 · ui

Example
We are in the R3 and use the standard scalar product 〈·, ·〉.

We have given the linear idependent vectors v1 =

3
1
2

 and v2 =

2
2
2

.

u1 = v1 =

3
1
2

u2 = v2 − 〈v2, u1〉
〈u1, u1〉 · u1 =

2
2
2

− 12

14
·

3
1
2

 =

2
7

−2
4
1

192

Theory
Having determined u1 . . . uk−1, we try to subtract a suitbale linear combination
of vk, such that uk = vk −

∑k−1
i=1 λiui is orthogonal to each vector u1 . . . uk−1.

I.e.

∀j 〈uk, uj〉 = 〈vk, uj〉 −
k−1∑

i=1

λi 〈ui, uj〉 = 0

This is done by choosing λ as λ = 〈vk,ui〉
〈ui,uj〉 , inserting that draws:

〈vk, uj〉 − 〈vk, uj〉 = 0

9.12 Gram-Schmidt Orthonormalization
Using Gram-Schmidt's Orthonormalization we can �nd a set of orthonormal
vectors that create the same subsapce as a set of linear independent vectors.

Algorithm 34 Gram-Schmidt Orthonormalization Process
given a set of linear independet vectors v1 . . . vn.

u1 . . . un will be vectors of an orthogonal system.

• u1 = v1
‖v1‖

• u′2 = v2 − 〈v2, u1〉 · u1 (orthogonize)
u2 = u′2

‖u′2‖ (normalize)

• u3 = v3 − 〈v3, u1〉 · u1 − 〈v3, u2〉 · u2 (orthogonize)
u3 = u′3

‖u′3‖ (normalize)

• . . .
• u′n = vn −

∑n−1
i=1 〈vn, ui〉 · ui

un = u′n
‖u′n‖

Example

given v1 =
(

3
1

)
and v2 =

(
2
2

)
.

u1 =
v1
‖v1‖ =

1√
10
·
(

3
1

)

u′2 = v2−〈v2, u1〉·u1 =
(

2
2

)
− 1√

10
·
〈(

3
1

)
,

(
2
2

)〉
· 1√

10
·
(

3
1

)
=

1
5

(−2
6

)

193

u2 =
u′2
‖u′2‖

=
1√
40
25

· 1
5

(−2
6

)
=

1√
10
·
(−1

3

)

9.13 Sigmoid Θ

Abbildung 61: Sigmoid Function

The Sigmoid function for three di�erent values of α

with y as an input and α as weights, the Sigmoid is de�ned as

Θ(y) =
1

1 + exp−αy

9.14 Hyperplane
A hyperplane in general is a subspace of space, having one dimension less than
this space. A hyperplane p can be de�ned as:

h (~x) = ~xT ~α+ α0

All vectors ~x for which h (~x) = 0 lie on this hyperplane. In fact we have the
following properties:

normal vector n = −~α√
~αT ~α

= −~α
|~α|

distance from origin s0 = −α0
|~α|

distance from point ~x s~x =
−(~αT ~x+α0)

|~α|

194

10 Statistics
10.1 Statistical Terms
expectation E {g (x)}

E {g (x)} =
∫
g (x) p (x) dx ' 1

N

N∑

i=1

g (xi)

a-priori p (Ωi)

Prior probability that class Ωi occurs. Usually derived from backgorund know-
ledge or simple counting.

If nothing is known assume p (Ωi) = 1
N , where N is the number of classes.

If there exists a training set, assume p (Ωi) =
number of (−→c j ,Ωi)

number of −→cj
: The number

of training features associated to class Ωi divided by the number of training
features.

a-priori error: |xn − x̄| ≤ Ln

1−L |x1 − x0| where L is the Lipschitz constant
from Banach's �xed point theorem (see 9.10).

a-posteriori p (Ωλ | −→c)

Posterior probability for class Ωλ with the feature −→c . A-Posteriori means the
probability after n-steps.

This probability is hard to get or calculate directly. Therefore we apply
Bayes' Rule:

p (Ωκ | −→c) =
p (Ωκ) · p (−→c | Ωλ)

p (−→c)
=

p (Ωκ) · p (−→c | Ωλ)∑κ
λ p (Ωλ) · p (−→c | Ωλ)

a-posteriori error: |xn − x̄| ≤ L
1−L |xn − xn−1| where L is the Lipschitz con-

stant from Banach's �xed point theorem (see 9.10).

probability density function (pdf) p (~c | Ωλ)
The probability denisty function describes the distribution of the features in
a class. If we assume they are normally distributed, we can take the gaussian
distribution:

p (~c | Ωλ) = N (~c, ~µλ,Σλ)

mean ~µκ

the mean value of the features of class Ωκ.

~µκ =
1
N

N∑

i=1

~ci

195

where N denotes the number of features in class N .
The continous form is

µ =
∫ ∞

−∞
x · p (x) dx

covariance matrix Σκ

the covariance matrix describes the variance of the features within class Ωκ. It
has the following properties:

• quadratic

• symmetric

• positive de�nit

Σκ =
1
N

N∑

i=1

(−→ci −−→µi) (−→ci −−→µi)T

In case of one dimensional features, the covariance is also a one dimensional
parameter σκ.

σκ =
∑N
i=1 (ci − µi)2

N

variance σκ
the variance is the one dimensional form of the covariance matrix. It describes
the degree of deviation from the mean value.

σ2 =
∫ ∞

−∞
(x− µ)2 · p (x) dx

Talking in terms of variance, a multi dimensional covariance matrix would
look like this:

Σ =

σ1 · · · . . .
... σ2

...
. . . · · · σ3

if all σi are independent of each other (for i = 1, 2, 3), then the covariance looks
like this

Σ =

σ1 0 0
0 σ2 0
0 0 σ3

196

kernel matrix
The kernel matrix Q is gained by reducing objectives Si corresponding to the
maxims of pattern recognition (see 8.25) to an eigenvector, eigenvalue problem
of a matrix Q. For S1 this so called kernel matrix looks like this:

Q =
1
N2
·
N∑

i=1

N∑

j=1

(
~fi − ~fj

)T (
~fi − ~fj

)

where N is the dimension of the features/signals f . The part after the sums is
called Measurement Matrix.

measurement matrix

MEij =
(
~fi · ~fj

)T (
~fi · ~fj

)

10.2 Distributions
normal distribution N (~c, ~µκ,Σκ)

Normal distribution is the �rst distribution to assume, if there is no information
about the actual distribution of features.

Multidimensional

N (~c, ~µκ,Σκ) =
1√

det (2πΣ)
exp−

1
2 (~c−~µκ)T Σ−1

κ (~c−~µκ)

Onedimensional
N (~c, ~µκ, σ) =

1√
2 · πσ e

− 1
2 (~c−~µ

σ)2

10.3 Properties
statistical independence
The general de�ntion of statistical independence is:

P (A ∩B) = P (A) · P (B)

translated into common pattern recognition that means

p (~c | Ωκ) =
n∏
ν=1

p (cν | Ωκ)

In some cases partial statistical independence is useful. In this case some para-
meters are statistical independent, as above, and others ain't.

197

statistical properties
• p (A,B) = p (A ∩B) = p (A) · p (B | A)

• p (w1 . . . wn) = p (w1)·p (w2 . . . wn | w1) = p (w1)·p (w2) (w3 . . . wn | w1w2) =
· · · = ∏n−1

i=1 p (wi) p (w1 . . . wn−1)

Bayes' Theorem

p (A | B) =
p (B | A) · p (A)

p (B)

convex combination
a sum of probabilities, that sum up to 1:

p (~c | Ωk) =
M∑

l

plN (~ci; ~µl,Σl)

or with any other pdf.

stochastic criterion
probailities have to sum up to 1.

10.4 Proof Of A Distribution
Often you will get away just using gaussian distribution, sometimes however
is is simply not appropriate. If you have some background knwoledge about
your application, you can do the following, to 'proove' that the distribution you
assumed holds:

• good classi�cation rates

• statistical testing

• by construction (e.g. see 5)

10.5 Estimating A Distribution
If there is nothing known of the distribution we have to estimate it. Some options
are:

• assume gaussian distribution p (~c | Ωκ) = N (~c, ~µκ,Σκ) and try if get rea-
sonable results with it

• assume statistical independency (leads to diagonal covariance matrices)

• assume some other parametric family p (~c | θ) and estimate θ using ML or
MAP (see 8.1, 8.2)

198

• try to approximate the distribution by a convex combination of gaussians
(see 4.2.3)
• try a non-parametric estimation of the density by e.g. relative freuqencies

10.6 Moments
Moment is a mathematical term evolved from physics. Moments of functions
exist in several levels, each with unique properties. The de�nition of a moment
of a real values function f (x, y) is

mpq =
∫ ∞

−∞

∫ ∞

−∞
xpyqf (x, y) dxdy

The one dimensional form is accordingly

mp =
∫ ∞

−∞

∫ ∞

−∞
xpf (x) dx

The �rst moment about zero is the expectation
m1 = E (x)

and the second
m2 = E

(
x2

)
= Var (x) + (E (x))2

Absolut Moment
absolut moments are focusing on a point r:

Mk (r) = E
(
|x− r|k

)

this point is simply 0 for the standard moments (�about zero�) above.

Central Moments
central moments are absolute moments, where r is the expectation E (x). central
moments of degree k are de�ned as:

µk = E
(
(x−m1)

k
)

�rst central moment
µ1 = 0

second central moment the second central moment corresponds to the va-
riance:

µ2 = E
(
(x−m1)

2
)

third central moment the third central moment corresponds to the skewness
(german: �Schiefe�) γ · σ3

foruth central moment the fourth central moment corresponds to the kur-
tosis (german: �Wölbung�)

199

11 List Of Terms
dynamic system a system S where the same input u at two di�erent time

spots t1, t2 leads to di�erent outputs y1 6= y2 (contrary to static system
11). So to speak a system that evolves over time.

entropy
P

log p(x)
s where s is a scaling. The entropy measures how much infor-

mation there is in an event. In statistics this corresponds to the degree
of uncertainty. If all random events are equally probable, the entropy is
maximal.

H (x) =
n∑

i=1

p (i) log2

(
1
p (i)

)
= −

n∑

i=1

p (i) log2 p (i)

where x is a random event and i sums over all possible outcomes of it.

information log p (x) where p (x) is the probability for x to occur

invariant feature features that do not change, if the object they describe is
transformed (e.g. rotation or translation). They are then invariant to these
speci�c transformations.

mutual information see transinformation: 11.

over�tting a term used for models that are too strongly �tted to a training
set. That means one additional point in the training set leads to a to-
tally di�erent model. Example: Imagine a polygon of degree 10 and 10
training features. The resulting decission boundary would clearly be over-
�tted if the polygon would cross every one of those training features (high
frequency).

static system a system S where the same input u at two di�erent times t1, t2
leads to the same output y1 = y2 (contrary to dynamic system 11).

transinformation the transinformation, or mutual information, of two random
variables is a quantity that measures the mutual dependence of the two
variables:

200

Abbildung 62: Equivocation

As you can see the term re�ered to as Equivocation enters the signal, while the
Dissidation gets lost. The Transinfromation denoted by I (X;Y) is the amount
of original information that is contained in the �nal signal.

It is closely related to the concept of entropy (see 11).

variant feature features that change, if the object they describe is transfor-
med (e.g. rotation or translation). They are then variant to these speci�c
transformations.

12 Miscellaneous / FAQ
Is there a gaussian distribution resp. arbitrary probability density
function with a probability value greater than 1?
Yes of course. Only the area has to sum up to 1. Imagine a really tight gaussian
bell that goes far beyond 1 on the y-scale, but still returns 1 integrating over
the area.

201

Abbildung 63: Gaussian Greater Than 1

This �gure illustrates the gaussian �tmethod with least square approximation:

f = γ · e
„
− (x−µ)2

2σ2

«

where γ is the amplitude, µ the mean and σ the variance. The idea of gaussian
�t is, to �nd γ, µ, σ which �t the observation X best.

Is there a logical connection between distances and densities?
Yes. A gaussian distribution where all covrainces equal idenitiy matrices, the
pdf is gaussian and the prior probabilities can be neglected corresponds to an
euclidean distance. If the mean vectors of the gaussian distribution furthermore
correspond to the sample vectors of the NN classi�er, the gaussian density equals
the NN classi�er.

We assume gaussian distribution:

p (Ωκ | c) = p (Ωκ)N (~c, ~µκ,Σκ)

Additionaly we assume an uniform distribution of the classes, that kicks the
prior probabilities and we get:

p (Ωκ | c) = N (~c, ~µκ,Σκ)

Now we maximize the log likelihood, like the Baysean classi�er:

argmaxκN (~c, ~µκ,Σκ) = log argmaxκN (~c, ~µκ,Σκ)

maximizing this term corresponds to a minimizing of the exponent:

argmaxκ
1√

2πΣκ
· exp−

1
2 ((~c− ~µκ)T Σ−1

κ (~c− ~µκ)) = argminκ (~c− ~µκ)
T Σ−1

κ (~c− ~µκ)

Now if:

202

• the pdf is gaussian p (c | Ωκ) = N (~c, ~µκ,Σκ)

• the classes are uniformly distributed ∀κ : p (Ωκ) = p (Ωλ) (in this case
they contribute nothing and can be neglected)

• the covariances equal the identity matrix Σκ = 1

the optimization above is reduced to the minimization of argminκ (~c− ~µκ)T (~c− ~µκ)
which is in fact the euclidean distance.

When is the Baysean Classifer equal to the NN classi�er?
see 12.

When is LDA equal with the Baysean Classi�er?
• observations are multivariate gaussians in each class

• all covariance matrices are equal

What is the disadvantage of the euclidean distance?
the euclidean distance stretches or contracts values:

• small distances (< 1) become even smaller

• big distances (> 1) become even bigger

Many maximization resp. minimization procedures are local, how to
�nd the global maximum/minimum anyway?
An intutive easy method is to sample the whole signal on equidistant points as a
�rst step. And resample areas that show a great change in value with a smaller
sample step. The local optimizer's initial value is then choosen from the vicinity
of the area showing the greatest change in value.

What is the di�erence between Bayes Estimation and Estimators like
ML, MAP or EM
In Bayes a discrete class number is estimated, while in ML, MAP and EM
continous parameter values are the goal.

When are ML-Estimation and MAP-Estimation equal?
The di�erence between both is, that MAP-Estimation uses prior knowledge.
If we have a uniform distribution, each value is equally probable and prior
knowledge becomes useless. This is exactly the scenario when MAP becomes
equal to ML.

203

When is the Polynomial Classifer equal to Bayes?
If there are no restrictions for the used distance metric function, like number
of parameters or a parameter range, then the Polyinomial Classi�er equals the
Baysean one (for a proof see 4.3.1).

What samples do I choose for training & testing?
The best way is either to pick them at random or, if background knowledge
allows for such a distinction, pick the most di�cult ones. Watch out for the
possibility of over�tting in the last case (see 11).
Apart from that there is one golden rule about picking samples:
Never take the same samples for training and testing. Always keep

those two sets distinct.

Problems With Goats / The Quiz Show
Dear candidate you have given 3 doors. Behind one of them a good mark in
the pattern recognition exam is waiting for you. Behind the other two are free
meals at the local mensa.

The prior probability is clear. The prior probability that the mark hides
behind door 1 is 1

3 , the same counts for door 2 and 3:

∀i : p (doori) =
1
3

You tell the Quizmaster you want door 1. The Quizmaster opens door 2, and
a slimy something appears. You guess this is one of the mensa meals. He gives
you another chance, do you want to keep door 1 or rather take door 3

Applying statistics, which door gives you the highest probability to a good
mark in the exam?

We use the following notation:
M1 denotes the event: Good mark behind door 1
Q1 denotes the event: Quizmaster opens door 1

Our goal is to �nd our the probability p (M3 | Q2) and/or p (M1 | Q2)

p (M3 | Q2) =
p (Q2 |M3) · p (M3)

p (Q2)

=
1 · 1

3

p (Q2 |M1) · p (M1) + p (Q2 |M2) · p (M2) + p (Q2 |M3) · p (M3)

=
1
3

1
2 · 1

3 + 0 · 1
3 + 1 · 1

3

=
2
3

So your chances are much higher taking door 3. ;-)

204

German Terms That Are Yet To Translate
• Vektorwertig

• Prüfgröÿe

• Verwechslungswahrscheinlichkeit (confusion probability?)

• Trennfunktion

13 Bibliography
The Elements Of Statistical Learning (Trevor Hastie, Robert Tibshi-
rani, Jerome Friedman)

205

14 Appendix

List of Algorithms
1 Iterative Clustering . 14
2 homomorph transformation . 17
3 Edge Detection With Erosion And Dilatation 18
4 Scaling . 25
5 Fast Walsh-Hadamard Transform 34
6 Haar Forward Transformation . 36
7 Linear Predictive Coding / Model Spectrum 37
8 MEL-Cepstrum . 46
9 PCA . 53
10 LDA . 56
11 Selecting Features In Respect To Other Features 70
12 (l,r)-Search . 71
13 Floating Search . 72
14 Branch & Bound Search . 73
15 Applying A Statistical Classi�er 79
16 Finding An Optimal Classi�er . 80
17 Multilayer Perceptron . 108
18 Feature Map . 110
19 Stochastic Gradient Descent . 114
20 Forward-Backward-Algorithm . 128
21 Adaptive Random Search . 136
22 K-Fold Cross Validation . 142
23 Leave-One-Out Cross Validation 143
24 Bootstrap . 145
25 Ada Boosting . 148
26 Kalman-Filter (Least Square) . 152
27 Kalman-Filter . 159
28 Expectation Maximization . 165
29 Dynamic Programming (Optimality Principle) 178
30 Dynamic Programming . 180
31 Viterbi Algorithm (from Wikipedia) 182
32 convolution . 185
33 Gram-Schmidt Orthogonalization Process 192
34 Gram-Schmidt Orthonormalization Process 193

Abbildungsverzeichnis
1 Proof Of The Nyquist Theorem 8
2 Time/Space Frequency Trade-O� 9
3 Proof For The Signal-To-Noise-Ratio Improvement 10
4 Characteristic Curve . 11

206

5 Proof For An Optimal Quantization Curve 12
6 Chain Coding . 13
7 Intersection of two gaussian distributions (binarization) 15
8 Bluring . 16
9 Erosion and Dilatation . 18
10 Rectangle Window Function . 20
11 Hamming Window Function . 20
12 Hanning Window Function . 21
13 Gauss Window Function . 21
14 a) Ideal Low-Pass Filter . 22
15 b) Ideal High-Pass Filter . 22
16 c) Ideal Band-Pass Filter . 23
17 Resolution Hierachy (Principle) 24
18 Resolution Hierachy (Wavelet Partition) 24
19 Scaling Of The Letter A . 25
20 Rotation without resampling . 26
21 Translation Invariance Of A Periodic Function 31
22 Walsh Transformation . 32
23 Haar Basis Functions . 36
24 Resolution Hierachy . 43
25 GIBBS . 43
26 ∆-Filter . 47
27 Speech Production . 47
28 Principle Component Analysis . 52
29 Principle Component Analysis Theory 52
30 Flexible Discriminant Analysis 58
31 Penalized Discitriminant Analysis 59
32 Mixture Discriminant Analysis 60
33 Minimum Distance Classifer . 62
34 Equivocation . 66
35 Branch&Bound . 75
36 Rejection Class . 76
37 Proof that polynomial classi�er can be equal to the Baysean clas-

si�er . 92
38 Linear Normalization . 102
39 Neural Network (Multilayer Perceptron) 105
40 Neural Network with a Feature Map 109
41 Neuro Network with Radial Basis Functions 111
42 Support Vector Machine with seperable classe 112
43 Support Vector Machine with non-seperable classes 116
44 HMM . 120
45 Linear Smoothing Of HMMs . 122
46 HMM in Speech Recognition . 126
47 Orthographic projection unto the x-axis 135
48 Adaptive Random Search . 136
49 Apearance Based Object Modeling: Manifold 138

207

50 Bias Variance Trade O� . 141
51 Unbiased Estimator . 155
52 Proof For The Zero Mean Lemma 155
53 Proof For The Covariance Theorem 156
54 Histogram . 175
55 Curse Of Dimensionality . 177
56 Dynamic Programming . 179
57 The Adidas Problem . 183
58 Dirac Impuls . 186
59 Inverse Fourier Transform Proof 188
60 Fast Fourier Transform . 189
61 Sigmoid Function . 194
62 Equivocation . 201
63 Gaussian Greater Than 1 . 202

Tabellenverzeichnis
1 Classi�er Variable Lookup Table 78
2 Direct Estimation Variable Lookup Table 96
3 Parzen Windowing Variable Lookup Table 97
4 Bias-Variance Trade-O� Vraiable Look Up Table 141
5 4-Fold Cross Validation . 142
6 Kalman-Filter Variable Lookup Table 151

208

Index
(l, r)-Search, 71
0/1 Cost Function, 77
1D Fourier Transform, 187
2D Fourier Transform, 188

a-posteriori, 195
a-priori, 195
Absolut Moment, 199
Ada Boosting, 147
Adaptive Random Search, 136
Adidas Problem, 183
Adjont Matrix, 190
ANN, 105
Arti�cial Neural Networks, 105

Background Features, 134
Banach's Fixed Point Theorem, 191
Band-Pass Filter, 21
Bayes, 79
Bayes Distance, 65
Bayes Estimation, 162
Bayes' Rule, 195
Bayes' Theorem, 198
Baysean Factor, 146
Baysean Information Criterion, 146
Best Estimator, 153
Best Features Relatively To Other Fea-

tures, 70
Best Linear Unbiased Estimator, 153
Bhattacharyya Distance, 67
Bias, 140
Bias-Variance Trade-O�, 140
BIC, 146
Binarization, 14
BLUE, 153
Bluring, 16
Bootstrap, 144
Box Filter, 16
Branch And Bound Search, 72

Center Of Gravity (Moments), 27
Central Moments, 199
Central Moments (features)), 38

Cepstrum, 46
Chain Coding, 12
Characteristic Curve, 11
Childrenwavelets, 41
Classi�cation Levels, 99
Classi�er, 76
Compactness Criterions, 49
Complementary Matrix, 190
Condition, 171
Condition Number, 171
Conditional Entropy, 66
Confusion Probability, 77
Context, 103
Continous HMM, 123
Convex Combination, 198
Convolution, 185
Coordinate Descent, 167
Cost Function, 76
Covariance, 196
Cross Validation, 142
Cross-Ratio, 185
Curse Of Dimensionality, 176

Decision Trees, 101
Deleted Interpolation, 129
DFT, 31
Dilatation, 18
Diraq-Impuls, 186
Direct Estimation, 96
Discrere Fourier Transform, 31
Discrete Fourier Transform, 188
Discrete HMM, 123
Disturb Signal, 174
Divergence, 68
DTW, 102
Dynamic Programming, 75, 178
Dynamic System, 200
Dynamic Time Wraping, 102

Edge Detection, 18
EM, 162
Energy (Normalization), 26
Entropy, 163, 200

209

Epsilon-Intensive Error Measure, 119
Equivocation, 66
Ergodic HMM, 124
Erosion, 17
ERR, 141
Error (Extra Sample), 140
Error (Training), 139
Error (True), 139
Error Rate, 64
Expectation, 195
Expectation Maximization, 162

Fast Fourier Transform, 189
Fast Walsh-Hadamard Transform, 33
FDA, 57
Feature Filters, 39
Feature Map, 109
Features For Di�cult Patterns Search,

70
Fisher Transform, 60
Flexible Discriminant Analysis, 57
Floating Serach, 71
Forward-Backward Algorithm, 127
Fourier Coe�cients, 186
Fourier Series, 186
Fourier Transform, 186

Gausian Filter, 17
Gaussian Classi�er, 83
Gaussian Fit, 202
Genetic Algorithms, 75
GIBBS, 43
Gradient Descent, 166
Gram-Schmidt Orthogonalization, 192
Gram-Schmidt-Orthonormalization, 193

H-Term, 163
Haar Transformation, 35
Haar-Transformation Matrix, 36
Hidden Information Principle, 183
hidden layers, 105
Hidden Markov Models, 120
Hierachical Classi�ers, 100
High-Pass Filter, 21
Histogram, 175
Histogram Estimation, 166

History, 120
HMM, 120
Homomorph Filter, 17
Hough-Transformation, 168
Hyperplane, 194

Ideal Filter, 21
Implicit Eigenvaluesddd, 172
Information, 200
information length, 147
Input Matrix, 150
Intersection Of Two Gaussian Distri-

butions, 15
Invariant Feature, 200
Iterative Clustering, 14

K-Fold Cross Validation, 142
K-Nearest Neighbour, 99
K-NN (Nearest Neighbour), 99
Kalman-Filter, 149
Karush-Kuhn-Tucker Conditions, 170
Kausal Filter, 17
Kernel Matrix, 51, 197
Klaman Gain Matrix, 158
Knowledge Representation, 175
Kuhlbach-Leibler-Divergence, 66
Kullbach-Leibler Statistics, 163

La Place Filter, 20
Lagrange, 168
Lagrange Multiplier Method, 168
LDA, 54
Least Square Estimation, 92
Least-Squares, 167
Leave-One-Out Cross Validation, 142
Left-Right HMM, 124
Legendre Moments (features)), 38
Levenstein Distance, 101
Likelihood Function, 161
Linear Discriminant Analysis, 54
Linear Estimator, 153
Linear Normalization, 101
Linear Predictive Coding, 36
Linear Regression, 93
Lipschitz constant, 191
Logistic Regression, 94

210

Loss Function, 141
Low-Pass Filter, 21
LPC, 36

Mahalonobis Distance, 69
Manifold, 138
MAP, 162
Maxims Of Pattern Recognition, 184
Maximum A-Posteriori Estimation, 162
Maximum Likelihood, 161
Maximum Likelihood Estimator, 161
MDA, 59
MDL, 147
Mean, 195
mean squared error, 89
Measurement Matrix, 51, 197
Median, 19
MEL-Cepstrum, 46
MEL-Frequency-Components, 46
Memoization, 178
Minimum Description Length, 147
Minimum Distance Classi�er, 61
Mittelwert�lter, 16
Mixture Densities, 84
Mixture Discriminant Analysis, 59
ML, 161
Model Assessment, 139
Model Selection, 139
Moments, 199
Moments (Features), 38
Moments (Normalization), 27
Motherwavelet, 41
Multilayer Perceptron, 107
Mutual Information, 200

N-Gram, 103
Natural Neural Network, 105
Nearest Neighbour, 98
Nerve, 106
Neural Networks, 105
Neuron, 106
Newton Iteration, 166
NN (Nearest Neighbour), 98
NN (Neural Network), 105
NNN (Natural Neural Network), 105
Normal Distribution, 197

Normalization, 24
Nyquist Rate, 8
Nyquist Theorem, 8

Optimal Classi�er, 79
Optimal Decission Rule, 80
optimal parameter matrix, 90
Optimal Separating Hyperplanes, 114
Orthogonal Bases, 30
Orthogonalization, 171
Orthonormalization, 171
Output Matrix, 150
Output Noise, 150
Over�tting, 200

Parameter Tying, 55, 75, 173
Part Of Speech Tagging, 125
PCA, 52
PDA, 58
PDF, 195
Penalized Discriminant Analysis, 58
Perceptron, 106
Polynomial Classi�er, 90
Prüfgröÿe, 77
Pre�x Coding, 147
Principle Component Analysis, 52
Principle Of Optimality, 178
Probability Density Function, 195
Problem Dependent Series Development,

50
Pseudo Inverse, 191
Pseudoinverse, 172

Q-Term, 164
QDA, 57
Quadratic Discriminant Analysis, 57
Quadratic SVM, 117
Quantization, 9
Quantization Error, 10

Radial Basis Functions, 111
Rayleigh-Quotient, 60
RDA, 57
Re�ection (Moments), 28
Regularized Discriminant Analysis, 57
Rejection Class, 76

211

Resolution Hierachy (Filter)), 23
Resolution Hierachy (Wavelets)), 42
Risk, 77
Rosenblatt's Perceptron, 113
Rotation (Moments), 27
Rotation (Normalization), 26
Run-Length Encoding, 12

Sammon Criterion, 63
Sammon-Transformation, 63
Sampling-Theorem, 8
Scaling (Moments), 27
Scaling (Normalization), 25
Separating Hyperplanes, 112
Sequential Classi�ers, 100
Short Term Fourier Transform, 189
Short Term Fourier Transformation, 41
Sigmoid, 194
Signal-To-Noise-Ratio, 10
Sinc, 190
Sinc Function, 9
Single Best Evaluated Features, 69
Singular Values, 171
Singulat Value Decomposition, 170
slack variables, 115
SNR, 10
Sobel Filter, 19
State Propagation Matrix, 150
Static System, 200
Statistical Dependency, 67
Statistical Independency, 197
Stochastic Criterion, 198
support vector, 112
Support Vector Machines, 112
SVD, 170
SVM, 112
SVM-Regression, 118
System Noise, 150

trace, 191
Training Set, 76
Transinformation, 68, 200
transinformation, 66
Translation (Moments), 27
Translation (Normalization), 26
Triangle-Filter, 47

Trigram, 121

Unbiased Estimator, 154
Uncertainty Principle, 41

Variance, 140, 196
Variant Feature, 201
Vector Quantization, 12
Viterbi Algorithm, 180
Viterbi-Algorithm, 128

Walsh Transformation, 32
Walsh-Hadamard Transform, 32
Wavelet Series, 42
Wavelet Transform, 190
Wavelet Transformation, 41
Wavelets, 41
Weighted Least Square Estimation, 154
White Eagle On White Background,

183
Window Functions, 20

Zernike Moments (features)), 39
Zero Mean Noise, 155

212

