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1 Pattern Recognition Introduction

1.1 Good too remember

1.1.1 Definitions

~x ∈ Rd : d-dimensional feature vector
the single components of ~x are continuous random variables

y : Class Number (for example: y ∈ {0, 1} or y ∈ {−1,+1}
In the Classification case y is a discrete random variable
In the Regression case y is a continuous random variable

p(y): prior probability of pattern class y | Priors depend not on a
current Observation

p(~x): evidence. The probability that we observe a certain
feature vector ~x independent on his class assignment

p(~x, y): joint probability density function (pdf). More mathematical is p(~x ∩ y)
the joint probability of having a feature Vector ~x and the feature vector
belongs to class y

p(~x|y): class conditional density
the probability that we observe ~x given a certain class y
if you observe feature of a selected class y what is the pdf
of the features belonging to this class

p(y|~x): posterior probability.
the probability of class y given a certain feature vector ~x

1
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1 Pattern Recognition Introduction

1.1.2 Bayes Rule

p(~x, y) = p(y) · p(~x|y) = p(~x) · p(y|~x) (1.1)

an importan formulation is:

p(y|~x) = p(y) · p(~x|y)
p(~x) (1.2)

and also very important is:

p(y|~x) = p(y) · p(~x|y)∑
y′
p(y′) · p(~x|y′) (1.3)

this is done with the concept of marginalisation:

p(~x) =
∑
y

p(y) · p(~x|y) (1.4)

1.1.3 Density Function

Gaussian Probability Density Function:

N (~x; ~µ,Σ) = 1√
det(2πΣy)

· e−
1
2 (~x−~µ)TΣ−1(~x−~µ) (1.5)

• you can compute the probability of an Interval [a, b] with the Integral
b∫
a

• the probability of a singe value is zero: p(a) = 0

• the Integral
∞∫
−∞

over the density Function is = 1

2
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1.1.4 ML-Estimations for Covariance matrices

in general:

Σ̂ = 1
N

N∑
i=1

(~xi − ~µ)(~xi − ~µ)T (1.6)

for a specific class:

Σ̂1 = 1
#{yi = 1}

N∑
i = 1
yi = 1

(~xi − ~µ1)(~xi − ~µ1)T (1.7)

the joint covariance matrix:

Σ̂ = 1
N

N∑
i=1

(~xi − ~µyi)(~xi − ~µyi)T (1.8)

1.1.5 Other interesting stuff

• the Hessian matrix is symmetric !

3
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2 Bayesian Classifier

The Bayesian classifier decide for the class y that maximizes the posterior probability
The discriminative model is:

y∗ = δ(~x) = arg max
y

p(y|~x) (2.1)

using the Bayesian Rule you come up with the generative Model:

y∗ = arg max
y

p(y) · p(~x|y)
p(~x) (2.2)

the Probability of p(~x) is independent of y.
To find the position of the maximum its enough to maximize the nominator !

y∗ = arg max
y

p(y) · p(~x|y) (2.3)

Why is p(~x|y) easier to compute / model than p(y|~x)?
because y is a discrete variable. For each class you have to setup a density function.
In a 2-Class problem that are only 2 pdf’s.
~x is a continuous Variable, in this case you have to setup an unlimited Number of
density functions !

2.1 Optimality of the Bayesian Classifier

The Bayesian Classifier is optimal with respect to the 0/1-Loss function.
This means if you assign a feature Vector ~x to the correct Class y then you pay 0.
If you assign the feature Vector ~x to the wrong Class y you pay 1.

4
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3 Logistic Regression

3.1 logistic Function | Sigmoid Function

g(x) = 1
1 + e−x

, x ∈ R (3.1)

a nice Property of the logistic Function is:

g′(x) = g(x) · (1− g(x)) (3.2)

3.2 logistic regression

• discriminative model

logistic regression means you can compute the posterior probability directly:

p(y = 0|~x) = 1
1 + e−F (x) p(y = 1|~x) = 1

1 + eF (x) (3.3)

F (~x) = 0 is the decision boundary. A point on the decision boundary full fill following
equation:

log p(y = 0|~x)
p(y = 1|~x) = 0 (3.4)

If the covariance matrices are not identical, the optimal decision boundary will be
a quadratic one:

F (~x) = ~xTA~x+ ~αT~x+ α0 (3.5)

3.2.1 Example with normally distributed classes

assume:
p(~x|y) = N (~x; ~µ,Σ) (3.6)

and y ∈ {0, 1} then we will get as the decision Boundary the following:

A = 1
2 · (Σ

−1
1 − Σ−1

0 ) (3.7)

5



Pattern Recognition Summary

3 Logistic Regression

~α = ~µT0 Σ−1
0 − ~µ

T
1 Σ−1

1 (3.8)

α0 = log
p(y = 0)
p(y = 1) + 1

2(log det(2πΣ1)
det(2πΣ0) + ~µT1 Σ−1

1 ~µ1 − ~µT0 Σ−1
0 ~µ0) (3.9)

α0 is a constant offset of the decision boundary.
If a Class get a higher prior probability the decision boundary will move away from
that class.
For example, if p(y0) = 0.8 then the decision boundary will shift closer to the class y1

if both classes share the same covariances Σ = Σ0 = Σ1, the optimal desicion
boundary will be a linear one:

A = 0 (3.10)

~α = (~µ0 − ~µ1)TΣ−1 (3.11)

α0 = log
p(y = 0)
p(y = 1) + 1

2((~µ1 + ~µ0)TΣ−1(~µ1 − ~µ0)) (3.12)

3.2.2 Dimension Lifting to achieve linear DB

Assume a quadratic decision boundary:

F (~x) = ~xTA~x+ ~αT~x+ α0 (3.13)

with

~x = (x1, x2)T ∈ R2, A =
(
a11 a12

a21 a22

)
, ~α = (α1, α2), α0 (3.14)

so F (~x) looks like:

F (~x) = a11x
2
1 + (a12 + a21)x1x2 + a22x

2
2 + α1x1 + α2x2 + α0 (3.15)

rewrite F (~x) = ~θT~x′ with:

~θ = (a11, a12 + a21, a22, α1, α2, α0)T , ~x′ = (x2
1, x1x2, x

2
2, x1, x2, 1)T (3.16)

3.2.3 Parameterization of the sigmoid function

every sigmoid function can be reformulate as a inner product of a parameter vector
~θ (which can be created with the technique above) an the feature vector ~x:

g( ~θT~x) = 1
1 + e±~θT ~x

(3.17)

6
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3 Logistic Regression

This is used for the training step with ML-Estimation!

3.2.4 Perceptron and logistic Regression

Compute the decision boundary by a linear combination of the component of the
feature Vector ~x.
The prefactors α can be computed with logistic regression.

F (~x) =
d∑
i=0

αi~xi = ~αT~x (3.18)

so the sigmoid function can be reformulate with the inner product α~x and α can be
computed with the ML-Estimation.

7
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4 Gaussian Classifier

if you use a generative modelling of the posterior probability and the class conditional
pdf is a gaussian, then this is a Gaussian classifier. if all p(~x|y) are gaussians then the
optimal decision Boundary is quadratic! have all the Gaussians the same covariance
matrices then the optimal decision Boundary is linear!
If the covariance matriceses are the Identity matrix then the classifier turns into a
nearest-neighbour.

8
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5 Naive Bayes

Naive Bayes assume that all components of the feature vector are mutually in-
dependent !

with this assumption you can factorize the class conditional pdf as follows:

p(~x|y) =
d∏
i=1

p(~xi|y) (5.1)

this means, each dimension is modeled by a pdf and all these pdfs are independent
of all the other dimensions.

this gives the following decision rule:

y∗ = arg max
y

p(y|~x) = arg max
y

p(y)p(~x|y) = arg max
y

p(y)
d∏
i=1

p(~xi|y) (5.2)

the covariance matrix is a diagonal matrix. The decision boundary is a linear one
if the classes share the same covariance matrix and is a quadratic one if they share
not the same.
Naive Bayes get better the higher the dimension of the feature vectors is.

5.1 Curse of Dimensionality

Assume a 100-dimensional feature vector ~x ∈ R100 belonging to class y which is
normally distributed and all components are mutually dependent.
For the ccpdf (used in a normal Gaussian classifier) N (~x; ~µ,Σ) means that:

~µy ∈ R100, and Σ = ΣT ∈ R100×100 (5.3)

so the total number of parameters to be estimated for each class is:

100 + 100 · (100 + 1)/2 = 5150 (5.4)

9
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5 Naive Bayes

In this case you have to estimate 5150 parameters with the ML-Estimation. The
optimization problem have 5150 unknowns.

now use the Naive Bayes with the assumption that all components of ~x are mu-
tually independent!
For the ccpdf N (~x; ~µ,Σ) means that:

p(~x|y) =
100∏
i=1

p(~xi|y) =
100∏
i=1
N (~xi;µi, σ2

i ) (5.5)

For each component i = {1, 2, ..., 100} we have to estimate the mean µi ∈ R and the
variance σ2

i ∈ R for the Gaussian.
so the total number of parameters to be estimated for each class is:

100 + 100 = 200 (5.6)

In this case you have to estimate 200 parameters with the ML-Estimation which is
feasible.

5.2 Decision Boundary

Folie 5-11 logit transform und generalized model abklären.

5.3 Statistical Dependencies of limited Order

This means dependencies between the components of feature vector between the two
extremes of Bayes(all dependent) and Naive Bayes(all indipendent).
this would be of Order one:

p(~x|y) = p(~xi|y) · p(~x2|y, x1) · p(x3|y, x2) · .... = p(x1|y)
d∏
i=2

p(xi|y, xi−1) (5.7)

of Order two:

p(~x|y) = p(~xi|y) · p(~x2|y, x1) · p(x3|y, x1, x2)· (x4|y, x2, x3) (5.8)

the order means the number of dependencies to the components before.

10
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6 Transformations

The following transformations will introduce because they full fill one of the following
three points:

• transform the features in a space where they are normally distributed with
a identity matrix as the covariance matrix. (then it is the nearest neighbour
classifier)

Φ : ~x 7→ ~x′ , ~x′ ∼ pdf︸ ︷︷ ︸
~x′have a certain pdf

(6.1)

• transform the features in a higher dimensional space, where the decision boun-
dary is linear

Φ :
~x 7→ ~x′

Rd → RD
, such that the decision boundary is linear (6.2)

• transform the features in a subspace where the classification problem can be
solved sufficiently.

Φ :
~x 7→ ~x′

Rd → RD
, D << d (6.3)

6.1 Transform to achieve a Gaussian ccpdf with identity
Matrix

To find a feature transform such that the transformed features share the same co-
variance matrices which are the identity matrix we have to do the following refor-
mulation: we start with the known Gaussian

N (~x; ~µ,Σ) = 1√
det 2πΣ

e−
1
2 (~x−~µ)TΣ−1(~x−~µ) (6.4)

11



Pattern Recognition Summary

6 Transformations

now use the SVD to decompose Σ:
normally the SVD would be Σ = UDV T but you take benefit that Σ is semi definite
symmetrical Matrix so it is:

Σ = UDUT = (UD
1
2 ) · I · (UD

1
2 )T , where I is the identity (6.5)

the covariance Matrix have to be full rank (which means it is invertible, and the
inverse is used in the formula of the Gaussian)
we can get the inverse with the SVD:

Σ−1 = UD+UT = (UD−
1
2 ) · I · (UD−

1
2 )T , where D+ means: invert the diagonal elements

(6.6)

now we can use the gained formulation for Σ−1 in our Gaussian:

N (~x; ~µ,Σ) = 1√
det 2πΣ

e−
1
2 (~x−~µ)T (UD−

1
2 )·I·(UD−

1
2 )T (~x−~µ) (6.7)

the goal is to get a normal distribution with an identity matrix as the covariance
matrix. so you need to mix (UD−

1
2 ) in (~x− ~µ):

N (~x; ~µ,Σ) = 1√
det 2πΣ

·e

− 1
2

(
(D−

1
2UT )~x︸ ︷︷ ︸

transformed ~x

− (D−
1
2UT )~µ︸ ︷︷ ︸

transformed ~µ

)T
·I·
(

(D−
1
2UT )~x︸ ︷︷ ︸

transformed ~x

−(D−
1
2UT )~µ︸ ︷︷ ︸

transformed ~µ

)

(6.8)
summary of the mathematical crazy stuff above:
transform the features with the following transformation:

~x′ = Φ(~x) = D
− 1

2
y UTy ~x (6.9)

then our Gaussian looks like:

p(~x′|y) = N (~x′; ~µ′y,Σ′y) = N (~x′;D−
1
2

y UTy ~µ, I) (6.10)

The problem is that the matrices are Class dependent! For the transformation we
need to know the class a feature belongs to!
This problem solve the Linear Discriminant Analysis.

6.2 Linear Discriminant Analysis

Linear Discriminant Analysis deal with the problem that the feature transform is
class dependent.

12
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You can say that the LDA is a PCA on the mean vectors. We have a training set
S = {(~xi, yi); i = 1....n)}

1. ML-Estimation of the joint covariance matrix:

Σ̂ = 1
n

n∑
i=1

(~xi − ~µyi)(~xi − ~µyi)T (6.11)

the interpretation is that you compute the mean of the covariance matrices
belonging to a class and use the mean covariance matrix for the classes.

2. Compute the SVD of the joint covariance matrix:

Σ̂ = UDUT (6.12)

3. Assign the transform:
Φ = D−

1
2UT (6.13)

4. Compute mean vectors for all y:

~µ′y = Φ(~µy) = D−
1
2UT ~µy (6.14)

Output: feature transform Φ, transformed mean vectors ~µ′y

the transformation in Step 3 generates spherical Data(important type of Data nor-
malisation).
with the output of the linear discriminant Analysis we can set up our decision rule:

y∗ = arg max
y

p(y|Φ(~x)) = arg max
y

(
log p(y)− 1

2(Φ(~x)−Φ(~µy)T · I · (Φ(~x)−Φ(~µy)
)

(6.15)
log p(y) is a constant, so you need to minimize the second term:

y∗ = arg min
y

(1
2

∥∥∥Φ(~x)− Φ(~µy)
∥∥∥2

2
− log p(y)

)
(6.16)

the feature transform Φ does not change the dimension of features!
the decision rule is the nearest neighbour (as we want to achieve with our transfor-
mation) and the prior probabilities are the offset the boundary.

6.2.1 Interesting knowledge about LDA and spherical Data

In 6.2.1 you can see that all points on the line can projected on the vector ~µ0 − ~µ1

and a valid classification is still possible. In a two class problem you can reduce the
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dimensionality to one and do the nearest neighbour classification in the 1-D subspace
and get the same results.
This can be formulated more general for K-classes with spherical Data:

• Class centroids span (K − 1)-dimensional subspace

• Relative difference are not affected by coordinates in the (d−K+1)-dimensional
subspace that is orthogonal to the (K − 1)-dimensional subspace spanned by
class centroids.

6.2.2 Rank-Reduced Linear Discriminant Analysis

The main target of Rank-Reduced LDA is to find a transformation Φ that project
feature onto a sub-manifold such that the spread/the variance of the projected fea-
tures is maximum.
The dimension of the sub-manifold is L < K−1. This works cause some dimensions
may not providing a lot of separation between the classes, but just noise.
Search a linear mapping Φ such that the spread of the projected features is maxi-
mized.
For that compute the mean vector ~̄µ from the mean vectors of the classes.

1. Compute covariance matrix of LDA transformed mean vectors

Σ̂inter = 1
K

K∑
y=1

(~µ′y − ~̄µ′)(~µ′y − ~̄µ′)T , where ~̄µ′ =
1
K
·
K∑
y=1

~µ′y (6.17)

cause the means are used in this equation the inter class distance is maximized.

2. Compute the L eigenvectors of the covariance matrix belongig to the largest
eigenvalue.

14
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3. The eigenvectors are the rows of the mapping Φ from the (K − 1) to the
L-dimensional feature space

output: matrix Φ

6.2.3 Fisher Transform

From the postulates of PR you know that the distance between to classes should
be maximized (that is done above) but also that the distance between the features
belonging to the same class should be minimized.
The Fisher Transform is a transform that transform the features with respect to
these two points of the Postulate.

~a∗ = arg max
~a

~aTΣinter~a

~aTΣintra~a
(6.18)

6.3 Principal Component Analysis PCA

The main difference between PCA and LDA is that the PCA don’t need the class
information.
PCA transformed features are approximately normally distributed.(cause of the cen-
tral limit theorem).
Components of PCA transformed features are mutually independent. This means its
a good idea to use naive Bayes here which assume that the features are independent.
Compute the scatter matrix (covariance matrix) Σ:

Σ = 1
N

N∑
i

~xi~x
T
i ∈ Rd×d (6.19)

Compute the eigenvector ~v and the eigenvalues λ:

Σ~v = λ~v (6.20)

then sort the eigenvectors with decreasing eigenvalues.
When you project the feature vectors on the greatest eigenvector, then you have a
dimensionality reduction and you can (not in all cases e.g adidas problem) separate
the classes with a simply threshold.
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6.4 Shape Modelling

Is used to get statistical Models.
Using principal component analysis, you can model shapes and their principal com-
ponents. This gives you a parametrized model, where you can change some parame-
ters and get new models which are realistic!

1. Sample an object at n surface points pk ∈ R3 and encode these points as a
feature Vector.So you get for each sampled object one feature Vector

~x =



~p1

~p2

.

.

~pn


=



~p1,1

~p1,2

~p1,3

~p2,1

.

.

~pn,3


∈ R3 (6.21)

2. Compute the covariance matrix from m shapes using

Σ = 1
m

m∑
i=1

~xi~x
T
i (6.22)

3. then compute the principal components to get the spectral decomposition of
Σ

Σ =
m∑
i=1

λi~ei~e
T
i (6.23)

4. where λi denote eigenvalues and ~ei are the corresponding eigenvectors.
You can change the λi to get new models: Shape vectors x∗ within the eigen-
vector space can be computed using linear combination of l eigenvectors:

x∗ = ~̄x+
l∑

i=1
ai~ei (6.24)
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7 Linear Regression

In the two class situation y ∈ {−1,+1} this decision rule can be used:

y∗ = sgn(~αT~x+ α0) (7.1)

to get ~α and α0 with the least square estimation, you need to use matrix notation
for a given set of learning data:

X =



~xT1 1
~xT2 1
. .

. .

~xTm 1


∈ Rm×(d+1), y =



y1

y2

.

.

ym


, define: ~θ =

(
~α

α0

)
(7.2)

You can solve the Problem with SVD

X~θ = y ⇔ ~θ = X+y, with X+ = (XTX)−1XT (7.3)

7.1 Ridge Regression

we extend the objective function ||X~θ−y||22 → min by an additional term constrai-
ning the Euclidean length of ~θ
The Way to achieve this can be expressed in two ways:

1 penalize the log-likeliood by −λ~θT ~θ

2 enforece ~θ to be normally distributed according to N (0,diag( 1
λ))

rewrite the objective function with added contraint gives you:

~̂θ = arg min
~θ

(X~θ − y)T (X~θ − y) + λ · ~θT ~θ (7.4)

which gives you this estimator:

~̂θ = (XTX + λI)−1XTy (7.5)
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The more weight you put on the length of ~θ the more the Term in the brackets looks
like a diagonal Matrix.

7.1.1 Lasso

Its the objective function from Ridge Regression except that the Lasso uses the
L1-norm for the constraint ~θ instead of the Euclidean

~̂θ = arg min
~θ

||X~θ − y||22 + λ · ||~θ||1 (7.6)

Cause of the L1-norm you get in the most cases a sparse solution.
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A norm is a measure for the length of a vector.

• the inner product of vectors ~x,~v ∈ Rd is defined by:

〈~x,~v〉 = ~xT~v =
d∑
i=1

xivi (8.1)

• the inner product of matrices XY,∈ Rm×n is defined by:

〈X,Y 〉 = tr(XTY) =
m∑
i=1

n∑
j=1

xi,jyi,j (8.2)

• The Forbenius norm in term of an inner matrix product corresponds to the
L2-norm for vectors:

||X||F =
√
〈X,X〉 =

√
tr(XTX) (8.3)

L0-norm: denotes the number of non-zero entries. The L0-norm is not a norm be-
cause it is not homogeneous

Lp-norm: (p > 0)

||~x||p =
(

d∑
i=1
|xi|p

) 1
p

(8.4)

L1-norm: sum of absolute values

||~x||1 =
d∑
i=1
|~xi| (8.5)

L2-norm: sum of squared values

||~x||2 =

√√√√ d∑
i=1

~x2
i (8.6)
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L∞-norm: maximum norm

||~x||∞ = max
i
{|xi|; i = 1, 2, ..., d} (8.7)

LP-norm: P is a symmetric positive definite matrix
the quadratic LP-norm is defined by:

||~x||P =
√
~xTP~x =

√
(P

1
2~x)TP

1
2~x = ||P

1
2~x||2 (8.8)

Norms can be also used to measure the distance between to vectors ~x and ~v:

dist(~x,~v) = ||~x− ~v|| (8.9)

The Malahanobis-Distance is a LP-norm where P is the inverse of the covariance
Matrix Σ:

||~x− ~v||Σ−1 =
√

(~x− ~v)TΣ−1(~x− ~v) (8.10)

The interpretation with respect to PR is that points in the direction of the first
principal axis of the covariance matrix are less penalized than points in the direction
of the last principal axis.

8.0.2 Unit Balls

The set of vectors of length less or equal to one according to the norm ||.|| is called
the unit ball.

L0-norm coordinate Axis

L1-norm diamond

L2-norm circle

L∞-norm square

LP -norm is usually an ellipsis

8.1 Norm Dependent Linear Regression

The different norms can be used in the linear Regression. its all about to minimize
the following:

~x∗ = arg min
~x

||A~x−~b||? (8.11)
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so minimizing with respect to a difference between vectors, here you can use different
norms and of course get different results.(For example use the L1-norm results in
the Lasso).

the estimation error ε is defined by:

ε = ||~x∗ − ~̂x||? (8.12)

where ~x∗ is the correct value. We also know that the residual A~x−~b will be zero, if
~b is in the range of A

8.1.1 Chebyshev Linear Regression

The Chebyshev linear regression minimizes the residual using the L∞-norm:

||A~x−~b||∞ → min = max{|r1|, |r2|, ..., |rm|} (8.13)

This problem can be rewritten such that the problem is convex.
minimize the residual subject to:

− r · 1 � A~x−~b � r · 1, 1 ∈ {1}m, r ∈ R (8.14)

� means component wise smaller or equal.

8.1.2 Sum of Absolute Residuals

Minimizing the residual using the L1-norm:

||A~x−~b||1 → min (8.15)

this optimization problem can be also rewritten such that the problem is a convex
one.
minimizing ~1T~r subject to:

− ~r � A~x−~b � ~r (8.16)

8.1.3 Compressed Sensing

Assume we have fewer measurements than required to estimate the parameter vector
~x in a regularized linear regression (i.e. ridge regression) problem. We need a solution
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for the underdetermined case. We can solve this by assuming the vector ~x is sparse,
i.e. by optimizing w.r.t. the L1-norm. We minimize ||~x||1 subject to

A~x = ~b (8.17)

Note that this is basically the Lasso method.

8.2 Penalty Functions

minimize
m∑
i=1

φ(ri), subject to ~r = (r1, r2, ..., rm)T = A~x−~b (8.18)

where φ : R→ R is the penalty function for the components of the residual vector.
The penalty function computes "costs"for the residual and these costs have to be
minimized. Norms are a special case of penalty functions. You can use norms to
calculate a value for the residual and minimize that with respect to the choosen
norm:

L1-norm φL1(r) = ||r||1 (8.19)

L2-norm φL2(r) = ||r||2 (8.20)

8.2.1 The Log Barrier Function

φbarrier(r) =

 −a2 log(1− ( ra)2) if |r| < a

∞ otherwise
(8.21)

the log barrier function only accepts solutions in a tube. This can be used to exlude
solutions that would not be feasible.

8.2.2 Dead Zone Linear Penalty Function

φbarrier(r) =

 0 if |r| < a

|r| − a otherwise
(8.22)

defines a dead zones where the penalty is 0 and otherwise behaves like the L1-norm.

8.2.3 The Large Error Penalty Function

φbarrier(r) =

 r2 if |r| < a

a2 otherwise
(8.23)
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penalize below a like the L2-norm and outside with a constant.

8.2.4 The Huber Function

φbarrier(r) =

 r2 if |r| < a

a · (2|r| − a) otherwise
(8.24)

The Huber function is an approxmiation of the absolute value, but is smooth at
the origin. It penalize below a like the L2-norm and over a like L1. The transition
between these two functions is smooth.

8.2.5 Overview Penalty Functions

In 8.2.5 all penalty functions are drawn.
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9.1 Rosenblatt’s Perceptron

The motivation is to compute a linear decision boundary. Assume we have linearly
separable classes.
The distance of the misclassified features is used to model the decision boundary.
This distance should be minimized.

y∗ = sgn(~αT~x+ α0) (9.1)

Assume the class numbers are y = ±1. ~αT~x+ α0 computes the distance to the line
/ hyperplane which is defined by ~α. On the basis of the sign of the distance you can
do the classification.
This leads to the optimization problem: The feature Vectors get classified with in-
itialized parameter α0, ~α.
The optimization will be done with respect to all misclassified Features!

minimize D(α0, ~α) = −
∑
xi∈M

yi · (~αT~xi + α0)︸ ︷︷ ︸
always negative

(9.2)

The misclassified features are inM.
The consequence is that the cardinality of M changes each time you change the
parameter α0, ~α.
To minimize this objective function we need the gradient with respect to α0, ~α:

δ

δα0
D(α0~α) = −

∑
xi∈M

yi (9.3)

δ

δ~α
D(α0~α) = −

∑
xi∈M

yi · ~xi (9.4)

This can be used to create a iterative scheme to update the parameter α0, ~α.
The following scheme will be done for every misclassified feature.(

α
(k+1)
0
~α(k+1)

)
=
(
α

(k)
0
~α(k)

)
+ λ

(
yi

yi · ~xi

)
(9.5)
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λ is the learning rate! After updating the parameter α0, ~α you classify all features
again with the updated parameters. This will be done till all features are correct
classified (if the classes are not linear separable this scheme wont end).
The interpretation is:
The parameter ~α of the decision boundary is a linear combination of feature vectors.
(Hint: cause of this its interesting to initialize with 0, so the initial value falls of the
equation).
This means you can interpret your decision Boundary F (x) as follow:

F (~x) =
(∑
i∈ε

yi · ~xi

)T
︸ ︷︷ ︸

~α

~x+
∑
i∈ε

yi︸ ︷︷ ︸
α0

=
∑
i∈ε

yi · 〈~xi, ~x〉+
∑
i∈ε

yi (9.6)

where ε is the set of indices that required an update. Theses sum are the summary
of the training process.
You can model your decision boundary just by the instances themselves. In contrast
to a NN where you have to test against all the instances in the dataset.

• the final linear decision boundary depends on the initialization

• the number of iterations can be rather large

9.1.1 Convergence of the learning algorithm

Assume that for all (i = 1, 2, ...,m)

yi(~xTi ~α∗ + α∗0) ≥ ρ (9.7)

where ρ > 0 and ||~α∗||2 = 1. Let M = maxi ||~xi||2
then the learning algorithm is converges to a linear decision boundary (if its possible)
after k iterations, where k is bounded by

k ≤ (α∗2
0 + 1)(1 +M2)

ρ2 (9.8)

The convergence of the algorithm thus depends on the maximum distance from the
coordinate origin, the offset of the decision boundary and the width of the area
around the decision boundary without any feature vectors.
Note:

• that the objective function changes in each iteration step → non-linear opti-
mization
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• the optimization problem is discrete

• that the number of iterations does not depend on the dimension of the feature
vectors!

9.2 Multi-Layer Perceptrons

A Multi-Layer Perceptron consists of several Perceptrons. The topology is shown in
9.2

One Perceptron in the Multi-Layer Perceptron can be modelled by:

net
(l)
j =

M(l−1)∑
i=1

y(l−1) w
(l)
ij︸︷︷︸
~α

−w(l)
0j︸︷︷︸
α0

(9.9)

y
(l)
j = f(net(l)j ) (9.10)

f(...) is the so called activation function, Rosenblatts Perceptron uses here the sign-
function. But its not limited to that, you can also use for example the sigmoid
function.
To train the mulit-layer perceptron, use the gradient descent method to ajust the
weights:

∆w{ij}(l) = −η δε

δw
(l)
ij

(9.11)

A typical error function is the mean squared error:

εMSE(w) = 1
2

M(L)∑
k=1

(tk − y
(L)
k )2 (9.12)

where tk is the expected result from the labeled sample and y(L)
k is the classification

from the output layer. Using the update rule and the mean square error, we can
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setup a backpropagation algorithm that will work layer by layer from the back to
estimate the input weights of any given layer l.
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10.1 general stuff

A short interpretation of Convexity:
The geometric interpretation is of the convexity of a function is that if you draw a
line between two points on the line, the line should be above the function and don’t
cross the function.

10.2 unconstrained optimization

Compute the minimum of f and assume that the function f : Rd → R is convex and
twice differentiable.
The unconstrained optimization is just the solution of the minimization problem

~x∗ = arg min
~x

f(~x) (10.1)

where ~x∗ denotes the optimal point. For this family of functions, a necessary and
sufficient condition for the minimum are the zero-crossings of the function’s gradi-
ent:

∆f(~x∗) = 0 (10.2)

In the most cases you don’t find a close form solution. So use iterative scheme e.g.
Newton-Raphson.

10.3 Descent Methods

The principal Idea is a iterative scheme of computing the gradient and go into the
negative direction of the gradient with a stepsize t.

~x(k+1) = g(~x(k)) = ~x(k) + t(k)∆~x(k) (10.3)
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where

∆~x(k) ∈ Rd : is the search direction in the k-th iteration (10.4)

t(k) ∈ R : denotes the step length in the k-th iteration (10.5)

and where we expect:

f(~x(k+1)) < f(~x(k)) except ~x(k+1) = ~x(k) = ~x∗) (10.6)

A good value for the Stepsize t is important. If t is oversized you jump back and
forth, if t will be reduced after each iteration step there is a high probability to get
stuck before you reach the optimal point. To find a stepsize its called line search.
You can see the it as a function F (~x(k)) + t(k)∆~x(k)) where ~x(k)) and ∆~x(k) is fixed,
so F (...) is a function in the variable t. This function can be optimized in t.
A very good algorithm to estimate t is the Armijo-Goldstein Algorithm

To get the Direction there is the very intuitive way to use the negative gradient
∆~x(k) = −∇f(~x(k)), which is the steepest descent direction.
A more general Method is ne normalized steepest Descent Method where you include
Norms:

∆~x = arg min
u
{∇f(~x)T~u; ||~u||p = 1} (10.7)

Which means the compute the inner product of the gradient and a normal vector ~u
(project the gradient on ~u).
And we use the normal vector where the projection of the gradient is maximum. If
you use the L2-norm then its the normal steepest descent method.
The steepest descent direction depends on the chosen norm.
Using the L1-norm leads to a coordinate descent method, which means you choose
always a coordinate axis as the direction.
Using the L∞-norm the direction will be always one of the 45◦ diagonals according
to the coordinate system.
Using the LP-norm means you project the gradient on the greatest principal com-
ponent.
That’s something you did already in the LDA. Use the transform to get spherical
data and there you can use the normal gradient descent method.
You can rewrite:

∆~x = arg min
u
{∇f(~x)T~u; ||~u||P = 1} (10.8)

and at the end you get the following to compute the direction in the LP-norm:

∆~x = −P−1∇f(~x) (10.9)
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10.4 Newton’s Method

The Newton’s Method finds the nearest Extrema.
It’s also a iterative scheme(shown in 10.4). At the Point x(k) you have to approximate
the function with a second order Taylor approximation and compute the minimum
of this approximation. This minimum is the new x(k+1). The second order Taylor

approximation is:

f(~x+ ∆~x) ≈ f(~x) +∇f(~x)T∆~x+ 1
2∆~xT (∇2f(~x))∆~x (10.10)

Compute the gradient of the Taylor approximation and set it to zero, then you get:

∆~x = − (∇2f(~x))−1︸ ︷︷ ︸
inverse of the Hessian

∇f(~x) (10.11)

Note: This is the same you see at the gradient descent method using the LP-norm
!
The Newton method is an ~x-dependent steepest descent methid regarding the LP-
norm, where P = ∇2f(~x) is the Hessian matrix.

30



Pattern Recognition Summary

11 Support Vector Machines

11 Support Vector Machines

SVM’s are very good in terms of their generalization properties.
Assume two linearly separable classes. Computation of a unique linear decision boun-
dary that allows the separation of training data and that generalizes well.
The main Idea is to look for an decision boundary that separates to classes but
maximize the distance the nearest points of each class. The solution is unique and
depends only on the features that a close to the decision boundary.

11.1 Hard Margin Problem

The hard margin SVM 11.1 needs linearly separable classes.

Let’s assume there is an affine function that defines the decision boundary:

f(~x) = ~αT~x+ α0 (11.1)

31



Pattern Recognition Summary

11 Support Vector Machines

Note: where ~α is the not normalized normal vector of the hyperplane.
There are three points to think about before you end up with a optimization:
Let’s introduce the following constraints:

~αT~xy=+1 + α0 ≥ 1

~αT~xy=−1 + α0 ≤ −1

this means, if you take a sample from the +1 class then the decision rule computes
a value equal or greater then 1. And for a sample from the -1 class the decision rule
returns a value smaller or equal to -1.
this constraint can be rewritten such that you have only one equation (y ∈ {+1,−1}):

yi · (~αT~xi + α0)− 1 ≥ 0 (11.2)

To compute the width of the margin, take a samples from both classes which lay
directly on the margin yi(~αT~xi +α0)− 1 = 0. Subtract them from each other if you
now project the resulting vector on a normalized vector which is orthogonal to the
hyperplane, then you get the width of the margin:

width = ~α

||~α||2
· (~xy=+1 − ~xy=−1) (11.3)

If you rewrite the constraint above for these two Vectors xy=+1;xy=−1

~α~xy=+1 = 1− α0 − ~α~xy=−1 = 1 + α0

you can use this to rewrite the equation of the width of the margin:

width = ~α · ~xy=+1
||~α||2

− ~α · ~xy=−1
||~α||2

width = 1− α0
||~α||2

− −(1 + α0)
||~α||2

the goal is to maximize the width, simplify the equation above leads to:

maxwidth = max 2
||~α||2

(11.4)

subject to yi · (~αT~xi + α0)− 1 ≥ 0
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instead of maximizing the fraction you can minimize the denominator. To get a
better optimization problem take the square of ||~α||2:

minimize 1
2 ||~α||

2
2

subject to yi · (~αT~xi + α0)− 1 ≥ 0

11.2 Soft Margin Problem

The Soft Margin SVM11.2 allows features to be on the wrong side of the decisi-
on boundary. So the classes are not linearly separable anymore. In this case the

optimization change to:

minimize 1
2 ||~α||

2
2 + µ

∑
i

ξi

subject to − (yi · (~αT~xi + α0)− 1 + ξi) ≤ 0

−ξi ≤ 0

ξi denotes misclassified features, so you minimizes like in the Hard Margin case and
add as a constraint that the sum over the misclassified features µ

∑
i
ξi should be also

minimum.
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11.3 Applying Constrained Optimization to SVM

Take the optimization problem from the Soft Margin SVM and set up the Lagrangian
Function L:

L( ~α, α0, ~ξ︸ ︷︷ ︸
this was
~x in the
explanation
Part

, ~λ, µ) = 1
2 ||~α||

2
2 + µ

∑
i

ξi︸ ︷︷ ︸
primal problem
f0(~x)

−
∑
i

µiξi︸ ︷︷ ︸
1. inequality
constraint

−
∑
i

λi(yi · (~αT~xi + α0)− 1 + ξi)︸ ︷︷ ︸
2. inequality
constraint

Now use the KKT-conditions.
First get the derivative of ∇L != 0 with respect to ~α, α0, ~ξ.

δL

δ~α
= ~α−

∑
i

λiyi~xi
!= 0⇐⇒ ~α =

∑
i

λiyi~xi (11.5)

the implication of this is that ~α, which defines the decision boundary, is a linear
combination of feature Vectors!

δL

δα0
= −

∑
i

λiyi
!= 0 (11.6)

The following is the derivative with respect to a particular ξi:

δL

δξi
= ~µ− µi − λi

!= 0 (11.7)

For the basic understanding its enough to go further with the Hard Margin SVM,
so the following equations are without the terms with the slack-variables ξ.
For a better overview here again the dual problem for the hard margin:

LD = 1
2~α

T ~α−
∑
i

λi(yi · (~αT~xi + α0)− 1) = L(~α, α0, ~λ)

this can be rewritten and then you can use your knowledge achieved by the deriva-
tives above how the function has to be that the 4th KKT-condition is fulfilled:

L(~α, α0, ~λ) = 1
2~α

T ~α−
(∑

i

λiyi · ~xi︸ ︷︷ ︸
~α

see 11.5

)T
~α−

∑
i

λiyi︸ ︷︷ ︸
= 0
see 11.6

α0 +
∑
i

λi
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this can be rewritten such that you get a function which depends neither on ~α nor
on α0:

L(~λ) = −1
2
∑
i

∑
j

λiλjyiyj · ~xTi ~xj +
∑
i

λi (11.8)

this yields a simpler optimization Problem which contains our original constraints:

maximize − 1
2
∑
i

∑
j

λiλjyiyj · ~xTi ~xj +
∑
i

λi (11.9)

subject to:
~λ ≥ 0∑

i
λiyi = 0 (11.10)

For strong convex functions the duality gap is zero (what you want to achieve), if
the KKT-conditions are satisfied. Especially the complementary slackness condition
must be fulfilled:

∀i : λi (yi · (~αT~xi + α0)− 1)︸ ︷︷ ︸
fi(~α,α0)

= 0 (11.11)

there are two possibilities that the complementary slackness is fulfilled.
Either the Lagrangian-multiplier λi or the feature Vector ~xi is Zero.
If λi > 0 then the following is left:

yi(~αT~xi + α0)− 1 = 0 (11.12)

yi(~αT~xi + α0) = 1 (11.13)

this are exactly the constraint 11.2 we introduce at the beginning with the purpose
that the feature vectors which lay exactly on the margin have the distance of one.
This means that the Lagrangian-multiplier λi for all samples which are not on the
margin has to be Zero. Remember 11.5:

~α =
∑
i

λiyi~xi (11.14)

The linear combination of the normal Vector ~α from the decision boundary can only
depend on Vectors with a λi > 0.
The Conclusion is that only the feature vectors exactly on the margin have a
Lagrangian-multiplier λi > 0 and only that Vectors generates ~α ! Using the know-
ledge from 11.5 you can rewrite the decision boundary as follows:

f(~x) =
( m∑
i=1

λiyi~xi
)T

︸ ︷︷ ︸
~α

~x+ α0 (11.15)
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11.4 Feature Transform in the case of SVM

Both hard and soft margin SVM’s can only generate a linear decision boundary.
Which have serious limitations:

• Non-linearly separable data cannot be classified

• Noisy data can cause problems

• Formulation deals with vectorial data only

To get rid of these problems you can use Feature Transform. Feature transform can
be easily applied cause of the rewritten decision function using the knowledge from
the dual Problem.
Map data into richer feature space using non-linear feature transform, then use a
linear classifier.
Select a feature transform Φ : R → RD such that the resulting features Φ(~xi); i =
1, 2, ...,m are linearly separable. A short Example for explanations: As already shown
in the Logistic Regression part, assume the decision boundary is given by the qua-
dratic function:

f(~x) = α0 + α1x
2
1 + α2x

2
2 + α3x1x2 + α4x1 + α5x2 = ~αTΦ(~x) (11.16)

By the following mapping you get features that have a linear decision boundary;

Φ(~x) =



1
x2

1
x2

2
x1x2

x1

x2


(11.17)

Because you kicked out ~α from the decision boundary, you don’t need to estimate
or compute the components of ~α for the transformation above.
You can rewrite the decision boundary with an inner product of the Φ:

f(~x) =
m∑
i=1

λiyi〈Φ(~xi),Φ(~x)〉+ α0 (11.18)
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The optimization problem changes as follow:

maximize − 1
2
∑
i

∑
j

λiλjyiyj · 〈Φ(~xi),Φ(~xj)〉+
∑
i

λi

subject to:
~λ ≥ 0∑

i
λiyi = 0

Now we have a linear decision boundary in a higher dimensional space.

Abstract this approach further using so called kernel-functions:

k(~x, ~x′) = 〈Φ(~x),Φ(~x′)〉 (11.19)

Typical kernel-functions are:

Linear:
k(~x, ~x′) = 〈~x, ~x′〉

Polynomial: the example above was a Polynomial Kernel with d = 2

k(~x, ~x′) = (〈~x, ~x′〉+ 1)d

Using kernel functions we can avoid modelling the transformation Φ(~x) but still get
the same result as if we had applied Φ.
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A kernel function k : X × X → R is a symmetric function that maps a pair of
features to a real number.
For a kernel function the following property holds:

k(~x, ~x′) = 〈Φ(~x),Φ(~x′)〉 (12.1)

for any feature mapping Φ.
If you have linear decision boundary and in their definition is an inner product
of feature Vectors, you can take the kernel function to get a non-linear decision
Boundary. We can use this Kernel trick as seen for the SVM but you can use this
also for the Perceptron:

Perceptron: F (~x) =
∑
i∈ε

yi · 〈~xi, ~x〉+
∑
i∈ε

yi

Another good thing about this is, you can pre-Compute a so called kernel matrix
for a given set of feature vectors ~x1, ~x2, ...~xm:

K = [Ki,j ], i, j = 1, 2, ...,m; whereKi,j = 〈Φ(~xi),Φ(~xj)〉 (12.2)

in this matrix are all inner products pre-computed and at the appropriate position.
The entries of the Matrix are a measurement for the similarity of the transformed
feature pairs.
The Kernel Matrix is positive semi definite!

We can compute for any kernel functionk(~x, ~x′) a feature mapping Φ such that
the kernel function can be written as an inner product (Mercer’s Theorem). This
means we don’t have to actually know Φ to use this technique.

12.1 The Kernel Trick

If any algorithm that is formulated in terms of a positive semidefinite kernel k, we
can derive an alternative algorithm by replacing the kernel function k by another
positive semidefinit kernel k′.
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The message is that you don’t have to know the feature transformation Φ. You
just have to know what the inner product is of the transformed features. And a
combination of the computation of the inner product and the transformation is the
Kernel. The Kernel function does both!

12.2 Kernel PCA

Assume you have feature Vectors ~x1, ~x2, ..., ~xm ∈ Rd with zero mean.
Compute the scatter matrix and after that the eigenvalues λ and the eigenvectors ~e.
Short facts about linear algebra:

• The eigenvectors ~ei span the same space as the feature vectors

• Each eigenvector ~ei can be written as a linear combination of feature vectors:

~ei =
∑
k

αi,k~xk (12.3)

with this knowledge the eigenvector/-value problem for the PCA computation can
be rewritten:

Σ~ei = λi~ei(
1
m

m∑
j=1

~xjx
T
j

)
︸ ︷︷ ︸

Σ

·
∑
k

αi,k~xk︸ ︷︷ ︸
~ei

= λi
∑
k

αi,k~xk︸ ︷︷ ︸
~ei∑

j,k

αj,k~xj~x
T
j ~xk = m · λi

∑
k

αi,k~xk

to come up with a inner product of the feature vectors we multiply the equation
with ~xl. The following equation have to be fulfilled for all projections on ~xl for all
indices l: ∑

j,k

αj,k~x
T
l ~xj~x

T
j ~xk = m · λi

∑
k

αi,k~x
T
l ~xk (12.4)

and now all feature vectors show up in terms of inner products and we can use the
kernel trick and express the inner prodcuts with the kernal function k!

∑
j,k

αj,kk(~xl, ~xj) · k(~xj~xk) = m · λi
∑
k

αi,kk(~xl, ~xk) (12.5)
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Instead of the kernel-function you can Write also the Kernel-Matrix. The equation
above holds for all l so you can sum up on both side.
This gives you the Key-Equation fpr Kernel-PCA:

K2 · ~αi = m · λi ·K (12.6)

rearrange the equation:

K (K~αi −mλi~αi)︸ ︷︷ ︸
=0

= 0

The Matrix K cant be zero, so the term in the brackets has to be Zero.
So K~α is a eigenvector of K And this term is again a eigenvalue/-vector problem:

K~αi = mλi~αi (12.7)

Kernel PCA (and thus also classical PCA) can be computed by solving an eigenvalue
problem for a m × m-matrix where m is the number of training samples. If you
want to compute the direction with respect to your new coordinate system that’s
given by your eigenvectors. Then you have to project your feature vectors on these
eigenvectors.
Projection c of transformed feature vector Φ(~x) on principal component ~ei:

c = Φ(~x)T~ei =
∑
k

αi,kΦ(~x)TΦ(~xk) =
∑
k

αi,kk(~x, ~xk) (12.8)

So you can compute the coordinates in the new system without knowing Φ!
You assumed that the transformed features have zero mean. Unfortunately you can’t
say that the transformation Φ (which you don’t know) have zero mean after the
transformation.
So look for a transformation Φ̃ such that the transformed features Φ̃(~x) have Zero
mean:

Φ̃(~xi) = Φ(~xi)−
1
2

m∑
k=1

Φ(~xk) (12.9)

You get the components of the centred Kernel-Matrix K̃ based on the old entries
without knowing Φ:

K̃i,j = Ki,j −
1
m

m∑
k=1

Ki,k −
1
m

m∑
k=1

Kk,j + 1
m2

m∑
k,l=1

Kk,l (12.10)
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This is an extension to Kernel SVMs and is state of the art in research.
The Laplacian SMV works on partially labeled training sets:
Training data S = L ∪ U

labeled data: L = {(~xi, yi), i = 1, ..., l}

unlabeled data: U = {~xi, i = l + 1, ...,m}︸ ︷︷ ︸
u

The Graph Laplacian L associated with S:

L = D−W (13.1)

where W is the adjacency matrix, this matrix tells you where the edges are. D is
the diagonal Matrix, with the degree of each node dii =

m∑
j=1

wij , so D tells you how

many edges leaving node i.
with K as the Kernel Matrix. The goal is the decision boundary:

f(~x) = [f(~xi), i = 1, ...,m]T

You can do this by minimizing the Loss-Function with certain constraints:

f∗ = arg min
f∈H‖

l∑
i=1

V (~xi, yi, f) + γA ‖f‖2A + γl ‖f‖2I (13.2)

with the Loss function V (~xi, yi, f):

• Squared loss function yi − f(~xi))2 for Regularized Least Squares (RLS)

• Hinge loss function max[0, 1− yif(~xi)] for SVM

the regularization terms are:

• Ambient norm ‖·‖A. It enforces a smoothness condition on the possible solu-
tions

• Intrinsic norm ‖·‖I .

– norm of the function f in the low dimensional manifold
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– enforces a smoothness along the sampledM

The definition of the Intrinsic norm is:

‖f‖2I =
m∑
i=1

m∑
j=1

wij(f(~xi)− f(~xj))2 = fTLf

which ensures points close to each other produce a similar result with f applied.
The solution is:

f∗(~x) =
m∑
i=1

α∗i k(~xi, ~x)

the primal optimization problem is:

min
~α∈Rd,ξ∈Rl

l∑
i=1

ξi + γA ~αTK~α︸ ︷︷ ︸
original primal problem

+ γL~α
TKLK~α︸ ︷︷ ︸

Intrinsic Norm

subject to
yi

(
m∑
j=1

~αik(~xi, ~xj) + α0

)
≥ 1− ξi, i = 1, ...., l

ξi ≥ 0, i = 1, ..., l

Setting up the Lagrangian multiplier and computing the gradients w.r.t. α0, ~α and ξi
allows us to simplify the Lagrangian further:

L(~α,~λ) = 1
2~α

T (2γAK + 2γIKLK) ~α− ~αTKJTLY~λ+
l∑

i=1
λi (13.3)

where JJ = (I0) ∈ Rl×m, i.e. a combination of a (l× l) identity matrix and a (l×u)
zero matrix and Y ∈ Rl×l is a diagonal matrix composed by the l class labels yi.
Computing the partial derivative with respect to ~α and substitute the expression in
the equation above leads to this simplified equation:

maximize
l∑

i=1
λi −

1
2
~λTQ~λ (13.4)

subject to
l∑

i=1
λiyi = 0

0 ≤ λi ≤ 1, i = 1, ...., l
(13.5)

(13.6)

where Q = YJLK(2γAI + 2γIKL)−1JTLY (13.7)
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14 Expectation Maximization Algorithm

14.1 Parameter Estimation Methods

The expectation maximization method are developed to deal with

• high dimensional parameter spaces

• latent, hidden, incomplete data

Maximum likelihood estimation and maximum a-posteriori estimation are known
parameter estimation techniques from statistics:

• Maximum likelihood estimation

– All observations are assumed to be mutually statistically independent

– the observations are kept fixed

– the log-likelihood function is optimized regarding the parameters

~̂θ = arg max
~θ

p(~x1, ~x2, ..., ~xm; ~θ) = arg max
~θ

m∏
i=1

p(~xi; ~θ) = arg max
~θ

m∑
i=1

log p(~xi; ~θ)

• Maximum a-posteriori estimation

– the probability density function of the parameters p(θ) to be estimated
is known

~̂θ = arg max
~θ

p(~θ|~x) = arg max
~θ

p(~θ)(~x|~θ)
p(~x) = arg max

~θ

log p(~θ) + log p(~x|~θ)

14.2 Gaussian Mixture Models

so far, you have consider parameter estimation for statistical models with:

• one class-dependent distribution component

• uni- or multivariate feature vectors

• the type was mostly Gaussian (normally distributed features)

43



Pattern Recognition Summary

14 Expectation Maximization Algorithm

Now extend this model by representing the observations with a set of K multivariate
Gaussian distributions, so called Gaussian Mixture Model (GMM)

p(~x; ~θ) =
K∑
k=1

pk · p(~x; ~θk) subject to
K∑
k=1

pk = 1 (14.1)

This is also a PDF because the Integral:
∫
p(~x; θ)d~x = 1.

Given m feature vectors in an d-dimensional space, find a set of K multivariate
Gaussian distribution that best represent the observations. GMMs are an example
of classification by unsupervised learning:

• it is not known which feature vector are generated by which of the K Gaussian

• the desire output is, for each feature vector, an estimate of the probability that
it is generated by distribution k

p(k|~xi) =: pik

is the probability that the feature vector ~xi was generated by the distribution k. The
variable which need to be estimated:

µk the K means

Σk the K covariance matrices of size d× d

pk fraction of all features in component k

p(k|~xi) ≡ pik the K probabilities for each of the m feature vectors ~xi

additional estimates:

p(~x) probability distribution of finding a feature at location ~x

L overall log-likelihood function of the estimaed parameter set

The key to the estimation problem is the overall log-likelihood objective function:

L =
m∑
i=1

log p(~xi)

split p(~xi) into its contributions from the K Gaussian.
This is the probability that a certain feature vector is generated:

p(~xi) =
K∑
i=1

p(~xi,k)︷ ︸︸ ︷
pkN (~xi;µk,Σk)︸ ︷︷ ︸

p(~xi|k)
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the individual probabilities for the K contributions are:

pik = p(k|~xi) = pk · N (~xi;µk,Σ)
p(~xi)

(14.2)

If you know the µk,Σk and the mixture wheight pk then you can estimate pik.
Similar to the ML estimate for on Gaussian, we maximize the log-likelihood by
deriving with respect to the unknown and end up with:

~̂µk =

∑
i
pik~xi∑
i
pik

Σ̂ =

∑
i
pik(~xi − ~̂µk)(~xi − ~̂µk)T∑

i
pik

p̂k = 1
m

m∑
i=1

pik

This are very similar to the formulas where you have only one Gaussian, but in this
case they Gaussians are weighted by pik. The probability that a feature vector ~xi
was generated by the distribution k is pik and instead saying ~xi is from k you say xi
is with a certain probability from k and all probabilities summed up to One. This
is called soft decision.
You need the parameter ~µk,Σk and pk to compute pik, this is the expectation step.
After you computed pik with initialized parameters you can compute new values for
these parameter with pik.
Instead of a closed form Solution this leads to an iterative scheme to compute the
Gaussian mixture models, which holds right at the ML solution for both the expec-
tation and the maximization step:

1. Initialize µ(0)
k = 0,Σ(0)

k = 0, p(0)
k = 0

2. Set j := 0, repeat

a) Expectation step: compute new values for pik, L

b) Maximization step: update values for µ(j)
k ,Σ(j)

k , p
(j)
k

c) Set j := j + 1

until L is no longer changing

3. Output: estimates µ̂k, Σ̂k, p̂k
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14.3 Hidden Information

Expectation Maximization is used when trying to model hidden information. We
formulate the missing information principle as follows:

observable information = complete information− hidden information

The GMMs are such a case where you don’t know which component generates which
samples.
Write this in a more mathematical way:

• observable random variable X

• hidden random variable Y parameter set: ~θ

the joint probability density of the events x and y is:

p(x, y; ~θ) = p(x; ~θ)p(y|x; ~θ)⇔ p(x; ~θ) = p(x, y; ~θ)
p(y|x; ~θ)

− log p(x; ~θ)︸ ︷︷ ︸
observable-

= − log p(x, y; ~θ)︸ ︷︷ ︸
complete-

− (− log p(y|x; ~θ))︸ ︷︷ ︸
hidden-

-information

The key to find a solution for this is marginalization!

∫
p(~x, y; ~θ)dy = p(x; ~θ) (14.3)

You can design an iterative scheme to estimate the parameters.
Consider the key equation (i+1)-st iteration:

log p(x; ~̂θ(i+1)) = log p(x, y; ~̂θ(i+1))− log p(y; ~̂θ(i+1)) (14.4)

multiply both sides with p(y|x; ~̂θ(i)) and integrate over the hidden event y. On the
left side this changes nothing, this is a Integral over a PDF so its 1 and the other
term is independent from y so its a factor in front of the integral.
The left Term on the right-hand side:
This is the Kulback-Leiber statistic (also called Q-function), with respect to θ′ given
θ this is the conditional expectation:

Q(θ, θ′) = E[log p(x, y; θ′)|x, θ] =
∫
p(y|x; ~θ) log p(x, y; ~θ′)dy (14.5)

(14.6)
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The right Term on the right hand side is called Entropy H(~θ, ~θ′). For the Entropy
the following inequation holds:

H(~θ; ~θ′) ≥ H(~θ; ~θ) (14.7)

cause of the, you don’t care about the Entropy in me maximization of this rewritten
key equation from the EM-Algorithm:

log p(x; ~̂θ(i+1)) = Q(~θ(i); ~̂θ(i+1)) +H(~θ(i); ~̂θ(i+1)) (14.8)

14.4 Expectation Maximization Algorithm

Instead of maximizing the log-likelihood function on the left side of the key-equation,
you maximize the Kullback-Leibler statistics iteratively while ignoring the entropy
term:

1. Initialize θ̂(0)

2. Set i := −1. Repeat

a) Set i := i+ 1

b) Expectation step:

Q
(
θ̂(i); θ

)
=
∫
p
(
y|x; θ̂(i)

)
log p(x, y; θ)dy

c) Maximization step:

θ̂(i+1) = arg max
θ

Q
(
θ̂(i); θ

)

until θ̂(i+1) = θ̂(i).

3. Output: estimate θ̂ := θ̂(i)

The maximum of the KL-statistics is usually computed using zero crossings of the
gradient.The iteration scheme is numerically robust and has constant memory re-
quirements.
The expectation maximization algorithm however also has a few drawbacks; it con-
verges very slowly. It also only is a local optimization method, i.e. the initialization
heavily influences the results.
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14.5 Constrained Optimization

Many optimization problems that are usually solved by the EM algorithm are of the
following form:

optimize f0(p1, p2, . . . , pK) =
K∑
k=1

ak log pk

subject to
K∑
k=1

pk = 1

pk ≤ 0

We apply the Lagrange multiplier method

L(p1, p2, . . . , pK , µ) =
K∑
k=1

ak log pk + µ

(
K∑
k=1

pk − 1
)

and compute the derivative

∂L
∂pk

= ak
pk

+ µ
!= 0

ak = −µpk

The pks however, are unknown. To get µ, we sum both sides over all k:

µ = −
K∑
k=1

ak

We can plug this in for µ and get an estimator for pk:

p̂k = ak∑K
l=1 al
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15 Independent Component Analysis

An Example to come into the Topc:
Cocktail-Party Problem: Imagine two microphones in a room at different location
which record the time signals x1(t), x2(t). Each recorded signal is a weighted sum of
two speakers s1(t), s2(t):

x1(t) = a11s1(t) + a12s2(t)

x2(t) = a21s1(t) + a22s2(t)

where the parameters aij depends on th distance of the microphones to the speakers.
Without knowing aij it’s not easy to solve these linear equations.
The core idea to solve this problem is to use information about the statistical pro-
perties of the signals si(t) to estimate aij . It is sufficient to assume that the si(t) are
statistically independent at each time point t.

15.1 Latent Variables and Factor Analysis

Rewrite the time series into n linear mixture observations x1, ..., xn. Each mixture
xi as well as each component sj are random variables:

xi =
m∑
j=1

aijsj , i = 1, ..., n (15.1)

in matrix notation:
~x = A~s (15.2)

where A is a constant mixing matrix, sj are latent random variables (independent
components) and both A and sj have to be estimated based on observation xi.
The first step is decorrelation ! Assuming we have de-meaned data ~̄x = 0. For
decorrelation you use the approach from the LDA. If the covariance matrix is the
Identity Matrix then the data are decorrelated! To get the Covariance Matrix you
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compute 1
n

∑
i ~xi~x

T
i which gives you a symmetric Matrix which means you have a

easier SVD:

Σ = UDUT

do the same trick to get a Identity Matrix:

Σ−1 = (UD−
1
2 ) · I · (UD−

1
2 )T

which gives you the mapping:
~̃x = D−

1
2UT~x

The mapped random variables x̃i are uncorrelated and the covariance matrix is the
identity.
This is called Whitening Transform.
You could interpret the mapped random variable ~̃x as an estimate of the latent
variable model

~s = ~̃x (15.3)

but this gives you a poor result.
The Problem is, the whitening transform is not unique, because it can be rotated,
or in other words you can apply any orthogonal matrix and it will not change the
statistical properties.
As the second step is Independence!
Now use the independency assumption. For two independent random variables y1,2

the following computation of the Expectation holds:

E{h1(y1)h2(y2)} = E{h1(y1)}E{h2(y2)}

this assumed independency allows you to identify the elements of A uniquely. Note
that any Gaussian independent components can be determined only up to a rotation,
but we want a unique solution, therefore, you assume that the si are independent
and non-Gaussian.
The whitening transform is usually done before ICA as a pre-processing step and
its transform the mixing Matrix A to Ã:

~̃x = D−
1
2UTA~s = Ã~s

the new mixing Matrix is orthogonal and has n(n−1)
2 degrees of freedom, while A had

n2.
Writing the ICA model in terms of the columns of A:

~x =
n∑
i=1

~aisi (15.4)
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Any scalar multiplier for si can be eliminated by scaling ~ai appropriately. The matrix
A can be adapted to restrict the si to have unit variance. This does not fix the
ambiguity of the sign: multiplying by ±1 does not affect the model - however this is
insignificant in most applications.
Another ambiguity is the order of the summation, which we can formalize using a
permutation matrix P:

~x = AP︸︷︷︸
A∗

P−1~s︸ ︷︷ ︸
~s∗

(15.5)

A∗ is just a new mixing matrix to be solved.

15.2 Basic Principle of ICA

If you knew A, you could compute its inverse A−1 to obtain the independent com-
ponents:

~s = A−1~x

That would lead you to si being a linear combination of xi with a weight vector ~w,
which is a row of A:

si
?= y = ~wT~x

so y equals one of the independent components if ~w is one of row of A−1.
You can rewrite this:

y = ~wT~x = ~wT A~s︸︷︷︸
~x

= ~zT~s; where ~z = AT ~w

The result of the central limit theorem is, that the tum of number of independent
random variables tends toward a normal distribution.
~z~s is more Gaussian than any of the si.
The implication of this is that ~zT~s is least Gaussian exactly when it is one of the si

The Key principle of ICA is:

Maximizing the non-Gaussianity of ~wT~x results in the independent components!

This is also a reason why you assumed non-Gaussianity of the components. Note
that if just one of the components is Gaussian, independent analysis will still work.
The Gaussian is the most random distribution, therefore it is the least informative
pdf!
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The randomness of a pdf can be measured using entropy. The entropy H(X) of a
continuous random Variable

X

with a density of p(x) is defined as:

H(p) = −
∫
p(x) log p(x) dx

The Gaussian is the distribution with the highest entropy given a certain mean and
a certain covariance.

15.2.1 ICA Estimation Algorithm

With all this knowledge you can build an algorithm:

1. Apply centering transform

2. Apply whitening transform

3. Set i := 1 and repeat

• Take a random vector ~wi

• Maximize non-Gaussianity of ~wTi subject to ‖[‖]~wi = 1 and ~wTj ~wi (where
j < i)

• Increase i

until i > n (where n is the number of independent components)

4. Use W =
(
~wT1 , ~w

T
2 , . . . , ~w

T
n

)
to compute ~s

5. Output: independent components ~s

You need a measurement for non-Gaussianity to do this.

15.3 Measures of Non-Gaussianity

Consider three measures of non-Gaussianity, the Kurtosis, the Negentropy and the
Mutual Information.
Note that we assume zero mean and the Identity Matrix as the covariance matrix
(spherical data).
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15.3.1 Kurtosis

The Kurtosis of a Gaussian is Zero.
If the random variable y is normally distributed then:

kurt(y) = 0

To find a function that is as non-Gaussian as possible we can thus maximize ‖kurt(y)‖.
The Kurtosis can be positive or negative (15.3.1) Some drawbacks are that the Kur-

tosis can be very sensitive to outliers, its not optimal for supergaussian variables.
Its not a robust measure for non-Gaussianity

15.3.2 Negentropy

15.3.2.1 Negentropy

The Negentropy J(y) of a random variable is defined as

J(y) = H(yGauss)−H(y)

where yGauss is a Gaussian random variable of the same covariance as y. If J(y) = 0
then y is Gaussian-distributed. In theory, negentropy is an optimal statistica esti-
mator of non-Gaussianity. But Computing the negentropy from a measures set of
samples requires the estimation of the pdf. The (non-parametric) estimation of a pdf
from samples is however non-trivial and computationally expensive. Instead, there
are approximations for negentropy.
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15.3.3 Mutual Information

Negentropy measures the difference to a Gaussian random variable. Instead, we can
measure statistical dependency between two random variables directly using mutual
information.
Instead of maximizing the negentropy, we can minimize the Mutual Information to
compute the direction of the highest non-Gaussianity.

Negentropy and Mutual Information are equivalent under certain conditions!
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16.1 No Free Lunch

Are there any reason to favor one algorithm over another? The no free lunch theorem
states that the sum over all cost functions given two algorithms is equal, i.e. an
algorithm might perform well regarding a specific cost function, but no algorithm
will perform well according to all possible cost functions.
The consequences of the Theorem are:

• if no prior assumptions about the problem are made, there is NO overall
superior or inferior classification method!

• if an algorithm achieves superior results on some problems, it must pay with
inferiority on other problems

• We have to focus on the aspects that matter most for the classification problem
at hand, e.g. prior information, the data distribution, the amount of training
data and/or cost functions.

So there is no general best classifier !

16.2 Off-Training Set Error

Specifies the error on samples that are not contained within the training set. For
large training data sets, the off-training set is necessarily small. We can use the
off-training set error to compare general classification performance of algorithms.
Consider a two class problem with training data set S = {(~xi, yi); i = 1....m)} with
two classes y ∈ {−1,+1}.
The class labels yi are generated by an underlying target function yi = F (~xi). This
unknown function contains a random component in most cases of interest: the same
input ~x could lead to different class labels y.
classification model h(~x)) described by the set of parameters h inH.
For stochastic classification methods is p(h|S) a probability mass function that th
algorithm trained in S leads to the trained model h.
For deterministic learning algorithms p(h|S) is 1 for exactly one trained model h.
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expected off-training set classification error for learning algorithm Ak and a given
true target function F (~x):

Ek{e|F, S} =
∑
h∈H

∑
~x/∈S

p(~x)
[
1− δ(F (~x), h(~x))︸ ︷︷ ︸

=1 if F (~x)=h(~x)

]
pk(h|S) (16.1)

16.3 Bias and Variance

You can analyse the bias-variance relation to assess the quality of a learning algo-
rithm in terms of the alignment to the given problem.

Bias The bias measures the accuracy of the match. In other words Bias is a syste-
matic error:

high bias means poor match

Variance The variance measures the precision of specificity for the match. In other
words variance is how things jump back and forth:

high variance implies a weak match

The bias-variance relation is very demonstrative in regression: Let g(~x) be the re-
gression function. The mean-square deviation from the true function F (~x) is:

E
{

(g(~x)− F (~x))2
}

= E {g(~x)− F (~x)}2︸ ︷︷ ︸
(bias)2

+E
{

(g(~x)− E {g(~x)})2
}

︸ ︷︷ ︸
variance

This formula shows you the bias-variance trade-off. Methods with high flexibility
to adapt to the training data generally have low bias, but yield a high variance.
Methods with few parameters and less degrees of freedom tend to have a high bias,
as they may not fit the data well, but have a lower variance. We can virtually never
get both zero bias and zero variance. You can reduce both values using as much
prior information as possible.

We can apply the same to a two-class classification problem. We cannot compare g(~x)
and F (~x) based on the mean-square error as in regression, because the classification
results are discrete variables. For simplicity, let you assume identical priors. We
can get a similar result where the bias and variance are multiplied together (vs
summation in regression).
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16.4 Estimating and Comparing Classifiers

How do we determine bias and variance for some learning algorithm applied to a
new problem with unknown distributions?

Suppose we want to estimate a parameter θ that depends on a random sample set
X = (x1, . . . , xn). Assume we have an estimator e.g. φn(X) = 1

n

n∑
i=1

xi) for θ but do
not know its distribution.
Resampling methods then try to estimate the bias and variance of φn(X) using
subsamples from X.

16.4.1 Jackknife

Let PSi(X) be the i-th pseudovalue of φn(X):

PSi(X) = nφn(X)− (n− 1)φn−1(X(i))

= φn(X)− (n− 1)(φn−1(X(i))− φn(X))︸ ︷︷ ︸
biasjack

where X(i) = (x1, ..., xi−1, xi+1, ..., xn) is the set without the i-th element. PSi(X)
can be interpreted as a bias-corrected version of φn(X), because the bias trend
is assumed to be in the estimators from φn−1

(
X(i)

)
to φn(X). We can treat the

pseudovalues as independent random variables and estimate their mean µPS and
variance σ2

PS using maximum likelihood estimators.

16.4.2 Bootstrap

A bootstrap data set is created by randomly selecting n points from the sample set
with replacement. In bootstrap estimation this selection process is independently
repeated B times. The B bootstrap data sets are treated as independent sets.

The bootstrap estimate of a statistic θ and its variance are the mean of the B
estimates θ̂B and its variance:

µBS = 1
B

B∑
i=1

θ̂Bi

σ2
BS = 1

B − 1

B∑
i=1

(
θ̂Bi − µBS

)2
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The bias is the difference between the bootstrap estimate and the estimator φn(X):

biasBS = µBS − φn(X)

Bootstrapping does not change the priors, because we choose with replacements.
The larger B the more the bootstrap estimate will tend towards the true statistic θ.
In contrast to the jackknife, the bootstrap does not require exactly n repetitions.

16.4.3 Estimating and Comparing Classifiers

In cross-validation, the training samples are split into two disjoint parts:

• the first set is the training set used for the traditional training

• the second set is the test set used to estimate the classification error

• in a second step, both sets are swapped

• by that, the classification error can be estimated on the complete data set

• yet, training and test set are always disjoint

An m-fold cross-validation splits the data into m disjoint sets of size n
m , where one

set is used as test set and the other m−1 sets are used for training. Cross-validation
degrades to the jackknife for m = n.
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17 AdaBoost

The core Idea is to combine many weak classifiers.

A weak classifier is one whose error rate is only slightly better than random guessing.

After the first classification, the missclassified features get a higher priority ("Weigh-
ted Sampleïn 17): The Algorithm-schema is:

1. Initialize weights wi = 1
N

2. Set m := 1, repeat

• Fit classifier Gm(~x) to training data using ~w

• Compute classification error

errm =
∑N
i=1wiI(yi 6= G(m(xi)))∑N

i=1wi
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• Compute classifier weights

αm = log
(1− errm

errm

)

• Compute new sample weights

wi ← wi exp (αmI(yi 6= Gm(xi)))

• Increase m

until m = M

3. Output: G(x) = sgn
(∑M

i=1 αmGm(~x)
)
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18.1 Maximum Likelihood Estimation

Used to Estimate Parameters. If we assume that the class conditional density func-
tion p(~x|y) is a Gaussian N (~x; ~µ,Σ). And we don’t know ~µ and Σ, we can estimate
them with the Maximum Likelihood.

Given a observed random variable X with a number of samples ~x1, ~x2, ..., ~xn ∈ Rd,
find parameters θ such that the log likelihood function is maximized:

θ̂ = arg max
θ

p(~x; θ) = arg max
θ

log p(~x; θ) (18.1)

The likelihood function is L(θ) = log p(~x; θ) For the estimation of the parameters
from the Gaussian the parameter θ = (~µ,Σ). You can setup the likelihood function
as follow(note that the assumption that ~xk are mutually independent is used):

L(~µ,Σ) =
n∑
k=1

log p(~xk; ~µ,Σ) (18.2)

now you can insert the formula for the Gaussian N (~x; ~µ,Σ):

L(~µ,Σ) =
n∑
k=1
−1

2 log(det(2πΣ))− 1
2(~xk − ~µ)TΣ−1(~xk − ~µ) (18.3)

To maximize the function L(~µ,Σ) its often necessary to use a numerical approach.
In this case there are existing close form solutions for the parameter ~µ and Σ. Just
compute the gradient with respect to ~µ / Σ and set it to zero.
Then you end up with:

~µ = 1
n

n∑
k=1

~xk Σ = 1
n

n∑
k=1

(~xk − ~µ)(~xk − ~µ)T (18.4)
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18.2 Constrained Optimization

Consider the primal optimization problem:

f0(~x) (18.5)

f0(~x) is not necessarily convex!
with constraints:

fi(~x) ≤ 0, i = 1, 2, ...,m

hi(~x) = 0, i = 1, 2, ...., p

To optimize a function with given constraints you have to use Lagrange-multiplier:

L(~x,~λ, ~ν) = f0(~x) +
m∑
i=1

λifi(~x)︸ ︷︷ ︸
sum over all inequality constraints

+
p∑
i=1

νihi(~x)︸ ︷︷ ︸
sum over all equality constraints

(18.6)

You add your constraint and weight them by multipliers λ, ν (dual variables). The
optimization of L(~x,~λ, ~ν) is the optimization of f0(~x) with respect to the constraints.
For ν there is no restriction but for λ there is the constraint : λ ≥ 0
The Lagrange dual function is defined as the infimum of L:

g(~λ, ~ν) = inf
~x

(
f0(~x) +

m∑
i=1

λifi(~x) +
p∑
i=1

νihi(~x)
)

(18.7)

This dual function is a pointwise affine function (which means after taking the inf~x
then ~x is fix) in the dual variables.
This resulting dual function is always concave!

If f(~x∗) = p∗ is our optimal Value of the original constrained optimization pro-
blem then the maximum of the dual function g is equal or below p∗:

g(~λ, ~ν) ≤ p∗; ~λ ≥ 0 (18.8)

Optimizing the dual function g gives you the best lower bound for the primal opti-
mization problem:

maximize g(~λ, ~ν)

subject to ~λ ≥ 0

Let d∗ the optimal value of the dual function:
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• the difference p∗ − d∗ is called optimal duality gap

• if p∗ = d∗ then its called strong duality. p∗ = f0(~x∗) = g(~λ∗, ~ν∗) = d∗

• if p∗ > d∗ then its called weak duality

The duality gap is zero when Slater’s Condition is fulfilled:
If the primal problem f0(~x) is convex and all inequalities are strikt smaller than 0
then the duality gap is 0.

If ~x∗ the optimal point for the primal problem and ~λ∗, ~ν∗ are the optimal points
for the dual Problem with a zero duality gap. The gradient of L at these optimal
point has to be zero:

∇L(~x∗, ~λ∗, ~ν∗) = ∇f0(~x∗) +
m∑
i=1

λ∗i∇fi(~x∗) +
p∑
i=1

ν∗i∇hi(~x∗)
!= 0 (18.9)

The Karush-Kuhn-Tucker Conditions are:

1. Primal constrains:

fi(~x) ≤ 0, i = 1, 2, ...,m

hi(~x) = 0, i = 1, 2, ..., p

2. Dual constraints: ~λ ≥ 0

3. Complementary slackness: λi · fi(~x) = 0. The most Important for SVMs

4. Gradient of Lagrangian is zero (as shown in 18.9)

The 4 condition is necessary and the most important condition is the Complemen-
tary slackness.

For any optimization problem with differentiable objective and constraint func-
tions for which strong duality holds: then you know any pair of primal~x∗ and dual
optimal points ~λ∗, ~ν∗ must satisfy the KKT-Conditions.
In the other direction this means: any pair of primal~x∗ and dual optimal points
~λ∗, ~ν∗ which satisfy the KKT-Conditions then these points are candidates for the
points we are looking for.

For any convex optimization problem with differentiable objective and and
constraint functions, any points that satisfy the KKT conditions are primal and
dual optimal, and have zero duality gap.
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19.1 Training of Bayesian Classifier with Gaussian ccpdf

We have a training set S = {(~x1, y1), (~x2, y2), ..., (~xn, yn)} with y ∈ {0, 1}.
we assume that:

• the class conditional p(~x|y) are Gaussian

• the covariance matrices are the same Σ = Σ0 = Σ1

Problem: Train the classifier based on S.

p(y|~x) ∼= p(y) · p(~x|y) (move from the discriminative to the generative model)

1. Step:
Estimate the priors:
p̂(y = 0) and p̂(y = 1)
with

p̂(p = 0) = 1
N

N∑
i=1

χ(yi = 0), where χ(x) =

0, if x is false,

1, if x is true.
(19.1)

p̂(y = 1) = 1− p(y = 0) (19.2)

2. Step:
Estimate the ~µ for the class conditional Gaussians N = (~x; ~µ,Σ).

For the estimation of the mean Vectors ~µ use the ML-estimate.

~µ1 = arg max
~µ0

log
N∏

i = 0
yi = 0

p(~xi|yi = 0) (19.3)

the product is limited to these sample out of the dataset s which have the class label
y = 0.
the following notation describe the number of samples belonging to the same class
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(here y = 0).
#{(~xi, yi); yi = 0}
Then you end uo with this formula:

~µ0 = 1
#{(~xi, yi); yi = 0}

N∑
i = 0
yi = 0

~xi (19.4)

~µ is the mean vector of class y = 0 and can be interpreted as the centroid of the
class.

3. Step:
Estimate the covariance matrix Σ
for the following formulas xk denotes all feature vectors which belong to class y = 0,
and k is the number of that samples.

Σ0 = 1
K

∑
k

~xk · ~xTk (19.5)

19.2 Training Logistic Regression Using Maximum
Likelihood Estimation

We have a training set S = {(~xi, yi); i = 1....n)} with two classes y ∈ {0,+1}.
Assume F (~x) to be parametric function and estimate the parameters using ML.
Known:

p(yi|~xi) = 1
1 + e±F (~x) (19.6)

We assume F (~x) is a linear decision boundary.
Then we have this parametric form:

F (~x) = a0 + a1~x1 + a2~x2 (19.7)

Know we need to estimate the three parameters a0, a1, a2 :
a0

a1

a2

 = ~a = arg max
~a

log
N∏
i=1

p(yi|~xi) (19.8)

and now plug in for the posterior the parametric form of F (~x) and this will be ma-
ximized.
(Hint: the log is cause of numerical problem on a computer multiplying a lot of
numbers between 0 and 1.)
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For the optimisation we reformulate the F (~x) in the sigmoid function as a inner
product of ~θ and ~x (like in 3.2.3).

p(y1|~x) = g(~θT~x) = 1
1 + e−~θT ~x

, and p(y0|~x) = 1− g(~θT~x) = 1
1 + e~θT ~x

(19.9)
with this formulation we can write our posteriori probability using our class number
{0,+1} as follows:

p(y|~x) = g(~θT~x)y(1− g(~θT~x))1−y (19.10)

To optimize our sigmoid function we set up the log-likelihood function L(~θ):

L(~θ) = log
n∏
i=1

p(yi|~xi) (19.11)

now use the formula and replace the posteriori with 19.10 and simplify it:

L(~θ) =
n∑
i=1

yi~θ
T~xi + log(1− g(~θT~xi)) (19.12)

L(~θ) needs to be maximized. There exist no close form solution.
To find the maximum we use numerical methods, e.g. Newton-Raphson algorithm.
Here is the iterative scheme of the Newton-Raphson method:

~θk+1 = ~θk −
(

δ2

δ~θδ~θT
L(~θk)

)
−1

︸ ︷︷ ︸
Inverse of the Hessian Matrix

δ

δ~θ
L(~θk) (19.13)

19.3 Naive Bayes and Guassians

Assume p(±1) = 1
2 , and the covariance matrices are both the identity matrix. Σ−1 =

Σ+1 = 1
classification:

y∗ = arg max
y

p(y|~x) = arg max
y

p(~x|y)

= arg max
y

log( 1√
det 2π1

)− 1
2(~x− ~µy)T 1(~x− ~µy)

= arg min
y

(~x− ~µy)T (~x− ~µy)

(19.14)

The interpretation is:
A Naive Bayes that use the identical matrix for the covariance matrices is a nearest
neighbor Classifier.
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the reference vectors for the nearest neighbor are the mean vectors of the classes.
If you have feature vectors with independent components and the classes are nor-
mally distributed with a variance of 1 then the nearest neighbour classifier is the
best classifier with respect to the 0/1-Loss function.

19.4 Note to PCA

You have 50 Images with 210× 210 Pixels with 32 bit each Pixel. The feature vector
have:

~x ∈ R210·210 (19.15)

if we try to use PCA we need the eigenvectors and eigenvalues.To get that we need
the covariance matrix:

Σ = 1
50
∑
i

~x~xT ∈ R220×220 (19.16)

This way leads to a Matrix which is way too big to store in a Computer.

19.5 Roseblatts Perceptron

We have a training set S = {(~xi, yi); i = 1....m)} with two classes y ∈ {−1,+1}.
initialization for the iterative scheme:
k = 0; α(0)

0 = 0 and ~α(0) = 0

19.6 Classical vs Kernel PCA

Consider m = 50 Images with 10242 pixels. The pixels define 10242-dimensional
feature vectors ~x1, ~x2, ..., ~x50 ∈ R220 The Scattermatrix for the classic PCA would
be:

Σ = 1
50

50∑
i=1

~xi · ~xTi (19.17)

if you say each entry is an int value with 4 Byte:

4Byte · 220 · 220 = 242Bytes = 4Tera-Byte (19.18)

the size of the scatter matrix for this small images is too large. So Classical PCA
don’t work here !
Lets have a look on the Kernel PCA.
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The Kernel-Matrix have the dimension of K ∈ R50×50 . And this you can handle on
a Computer.

19.7 String Kernels

In speech recognition we do not have feature vectors but sequences of feature vectors.
In order to use kernel methods we need a kernel for time series. Feature vectors are
considered in Rd = χ. Sequences of feature vectors are elements of χ∗. How can we
define a kernel over the sequence space χ∗? If we can define such a kernel, we can
use PCA and SVM on those sequences.

We compare these sequences using dynamic time warping. Given the feature se-
quences (p, q ∈ {1, 2, . . .}):

〈~x1, ~x2, . . . , ~xp〉 ∈ χ∗

〈~y1, ~y2, . . . , ~yq〉 ∈ χ∗

We want to map the features denoted by x on to the features denoted by y given
the constraint that ~x1 7→ ~y1 and ~xp 7→ ~yq, i.e. the top left and the bottom right
element in matrix form correspond to each other. This can be solved using dynamic
programming.

The distance between the two signals is given by DTW:

D(〈~x1, . . . , ~xp〉, 〈~y1, . . . , ~yq〉) = 1
p

p∑
k=1
||~xv(k) − ~yw(k)||2

where v, w define the mapping of indices. The DTW kernel can be defined as

k(~x, ~y) = e−D(〈~x1,...,~xp〉,〈~y1,...,~yq〉)

19.8 Maximum Likelihood Estimation Example

assume a Gaussian distributed random vector ~x1, ~x2, ..., ~xm:

p(~x; ~µ,Σ︸︷︷︸
θ

) = 1√
det(2πΣ)

e−
1
2 (~x−~µ)TΣ−1(~x−~µ) = N (~x; ~µ,Σ) (19.19)
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~̂µ, Σ̂ = arg max
~µ,Σ

m∏
i=1

p(~xi; ~µ,Σ)

= arg max
~µ,Σ

m∑
i=1

log p(~xi; ~µ,Σ)

= arg max
~µ,Σ

L(~x1, ~x2, ..., ~xm; ~µ,Σ)

set up the log-likelihood function:

L =
m∑
i=1

(
− 1

2 log(det(2πΣ))− 1
2(~xi − ~µ)TΣ−1(~xi − ~µ)

)

a necessary condition for the maximization of the log-likelihood function is:

δL
δ~µ

!= 0

δL
δ~µ

= Σ−1
m∑
i=1

(~xi − ~µ) != 0

The covariance Matrix is not Zero, so the sum has to be Zero:
m∑
i=1

(~xi − ~µ) = 0⇐⇒
m∑
i=1

~xi =
m∑
i=1

~µ⇐⇒
x∑
i=1

~xi = m~µ

~̂µ = 1
m

m∑
i=1

~xi

for the covariance it’s the same way:

δL
δΣ

!= 0 (19.20)

Σ̂ = 1
m

m∑
i=1

(~xi − ~µ)(~xi − ~µ)T (19.21)

19.9 EM Algorithm Example

Estimate the priors pk of classes k = 1, 2, ..., k from the ovservation x where the pro-
bability density function of observations os given by the marginal over all classes:

p(x, β) =
K∑
k=1

pkp(x|k;β) (19.22)

Application of the EM scheme:

• observable random measruement: x

• hidden random measurement: k
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• parameter set: θ = pk; k = 1, ...,K

In this case you only want to estimate the mixture weight pk the parameters for the
components are fixed.
Setup the Q-function:

Q(~̂θ(i); ~̂θ(i+1)) =
∫
p(y|x; ~̂θ(i)) log p(x, y; ~̂θ(i+1))dy

=
K∑
k=1

ak log
(
p̂k

(i+1)p(x|k;β)︸ ︷︷ ︸
p(k,x;β)

)

=
K∑
k=1

ak log p̂(i+1)
k +

K∑
k=1

ak log p(x|k;β)

where

ak = p̂
(i)
k p(x|k;β)∑

j
p̂

(i)
j p(x|j;β)

= p(k, x;β)
p(x;β) = p(k|x;β)

now maximize the Q-function with respect to p̂k: using the solution p̂k = ak∑K

l=1 al

you found by deriving the Lagrangian:

p̂
(i+1)
k = ak∑

l al
=

p̂
(i)
k p(x|k;β)∑
j p̂

(i)
j p(x|j;β)∑

l

p̂
(i)
l p(x|l;β)∑
j p̂

(i)
j p(x|j;β)︸ ︷︷ ︸
=1

= p̂
(i)
k p(x|k;β)∑
j p̂

(i)
j p(x|j;β)

Its very important to get a estimate for initialization, so you should use all prior
information that you have. If no prior is available, assume a uniform distribution.

19.10 Computation of Marginals

Assume five hidden variables l1, l2, . . . , l5.

p(~x1, . . . , ~xm; ~θ) =
K∑

l1...lm︸ ︷︷ ︸
O(Km)

m∏
i=1

plip
(
~xi; ~θli

)
︸ ︷︷ ︸

O(m)︸ ︷︷ ︸
O(Km·m)
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We can rearrange to reduce the complexity:

p(~x1, . . . , ~xm; ~θ) =

 K∑
l1...lm−1

m−1∏
i=1

plip
(
~xi; ~θli

) K∑
lm=1

plmp
(
~xm; ~θlm

)

=
m∏
i=1

 K∑
li=1

plip
(
~xi; ~θli

) ∈ O(m · k)

Let’s also consider discrete mixtures: assume qi(x) defining a discrete distribution.
We observe a random variable that uses qi(x) with a probability of pi. We know
neither qi(x) nor pi and want to estimate both. Our observable is given by

p(~x; ~θ) =
K∑
k=1

pk p(~x; ~θk)︸ ︷︷ ︸
qk(~x)

constrained by
k∑
k=1

pk = 1;
∑
~x

qk(~x) = 1

We can setup the Q-function to use expectation maximization:

Q
(
~θ, ~θ′

)
=

K∑
k=1

p
(
k|~x; ~θk

)
log p

(
k, ~x; ~θ′k

)

=
K∑
k=1

p
(
k, ~x; ~θk

)
p
(
~x; ~θk

) log p
(
k, ~x; ~θ′k

)

=
K∑
k=1

p
(
k, ~x; ~θk

)
∑K
l=1 p

(
l, ~x; ~θl

) log p
(
k, ~x; ~θ′k

)

=
K∑
k=1

pkqk(~x)∑K
l=1 plql(~x)

log p′kq′k(~x)

=:
K∑
k=1

pkqk(~x)
ak(~x)

(
log p′k + log q′k(~x)

)

where ~θ is fixed and ~θ′ is the variable we want to optimize for. Using the Q-function,
we can set up an objective function and thus an optimization problem:

L = Q
(
~θ, ~θ′

)
+

K∑
k=1

λk

(∑
~x

qk(~x)− 1
)

+ ν

(
k∑
k=1

pk − 1
)
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∂L
∂q′k(~x) = ak(~x) 1

q′k(~x) + λk
!= 0

ak(~x)
q′k(~x) = −λk

ak(~x) = −λkq′k(~x)∑
~x

ak(~x) = −λk
∑
~x

q′k(~x)

we can plus this into the equation we had before

ak(~x)
q′k(~x) =

∑
~x

ak(~x)

q′k(~x) = ak(~x)∑
~x ak(~x)

We can also compute p′k:

∂L
∂p′k

= ak(~x) 1
p′k)

+ ν
!= 0

p′k = ak(~x)∑K
k=1 ak(~x)∑

~x

p′k =
∑
~x

ak(~x)∑K
k=1 ak(~x)

p′k = 1
N

∑
~x

ak(~x)∑K
k=1 ak(~x)

And we thus have estimated qi(~x) and pi as wanted.
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20 Big Picture

The whole Lecture is about to estimate the posterior probability p(y|~x) !

20.1 Classification

Classification: reading a feature Vector ~x and mapping the feature Vector to a Class
index y

δ(~x) = y (20.1)

20.2 Regression

Regression: mapping a feature Vector ~x to a real valued number

y = δ(~x), y ∈ R (20.2)

20.3 supervised vs. unsupervised Learning

supervised learning mean you get feature Vectors ~x and the assigned Class num-
ber y.

unsupervised learning mean you just observe features without any knowledge
to which class number they belong to.

20.4 discriminative vs. generative model

discriminative modelmeans you compute the posterior probability p(y|~x) directly

generative model means you compute the prior p(y) and the class conditional
p(~x|y) and multiply them together to get the posterior probability
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20.5 Bayesian Classifier

The Bayesian classifier decide for the class y that maximizes the posterior probabi-
lity

y∗ = δ(~x) = arg max
y

p(y|~x) = arg max
y

p(y) · p(~x|y)
p(~x) (20.3)

the Probability of p(~x) is independent of y.
To find the position of the maximum its enough to maximize the nominator !

y∗ = arg max
y

p(y) · p(~x|y) (20.4)

Why is p(~x|y) easier to compute / model than p(y|~x)?
because y is a discrete variable. For each class you have to setup a density function.
In a 2-Class problem that are only 2 pdf’s.
~x is a continuous Variable, in this case you have to setup an unlimited Number of
density functions !

The Bayesian Classifier is optimal with respect to the 1/0-loss function!

20.6 optimal classifier

a optimal classifier minimize the average loss!

20.7 Gaussian Classifier

if you use a generative modelling of the posterior probability and the class conditional
pdf is a Gaussian, then this is a Gaussian classifier. if all p(~x|y) are Gaussians
then the optimal decision Boundary is quadratic! have all the Gaussians the same
covariance matrices then the optimal decision Boundary is linear!

20.8 logistic regression

• discriminative model
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logistic regression means you can compute the posterior probability directly:

p(y = 0|~x) = 1
1 + e−F (x) p(y = 1|~x) = 1

1 + eF (x) (20.5)

F (~x) = 0 is the decision boundary. A point on the decision boundary full fill following
equation:

log p(y = 0|~x)
p(y = 1|~x) = 0 (20.6)

20.9 logistic Function | Sigmoid Function

g(x) = 1
1 + e−x

, x ∈ R (20.7)
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20.10 The Big Picture

Pattern Recognition is the problem of classification: y∗ = δ(~x).

• Bayesian classifier
y∗ = arg maxy p(y|~x) = arg maxy

p(y)p(~x|y)
p(~x) = arg maxy p(y)p(~x|y)

• Optimal classifier
Minimizes the average loss. The Bayesian classifier is optimal w.r.t/ the 0-1-
loss function

• Logistic Regression
p(y = 0|~x) = 1

1+eyF (~x) , where F (~x) = 0 is the decision boundary. log p(y=1|~x)
p(y=0|~x) =

0. A decision boundary is quadratic, if F (~x) = ~xTA~x+ ~αT~x+ α0 = 0.

• Gaussians
p(~x|y) = N (~x;µ,Σ). If Σ1 = Σ−1 = Σ, then we get a linear decision boundary.
If Σ = I, we get the nearest neighbour classifier.

• NaÃ¯ve Bayes
Assumes components of ~x are statistically independent. Reduces dimensiona-
lity of the result space! The covariance matrix is a diagonal matrix.

• Perceptrons
Linear decision boundary, minimize the number of misclassified samples.

• Norms, Penalty Functions
Different norms and their unit balls, penalty functions as abstractions of norms.
Difference of classification and regression.

• Linear Regression
And its derivation with constraints, e.g. Ridge Regression, Lasso

• Optimization Problems
Unconstrained (gradient descent, steepest descent) and constrained optimiza-
tion (Lagrange multiplier)

• Support Vector Machines
Minimize 1

2 ‖~α‖
2 subject to yi(~αT~xi + α0) ≥ 1 ∀i. Complimentary slackness

and KKT conditions can be used to show only support vectors influence the
decision boundary. δ(~x) = ~αT~x+ α0. Where is ~α?

• Kernels
Allow us to compute non-linear decision boundaries using transformed feature
vectors without knowing the transformation φ(~x).
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• Kernel PCA
Optimal if we have few, but high-dimensional samples; the covariance matrix
cannot be computed, but the Kernel PCA can.

• Gaussian Mixture Models
Model an arbitrary pdf as a combination of Gaussians. Estimate the Gaussian
parameters using EM.

• Expectation Maximization
Deals with estimation of hidden variables.

• Independent Component Analaysis
Estimate ~s,A from ~x = A~s by maximizing the non-Gaussianity of a projection
of ~x.

• Model Assassement
Bootstrap, Jackknife, Cross-Validation

• Boosting
AdaBoost, Viola & Jones
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