Optimization for Engineers

Final Exam

18.07.2016 SS 2016 Dr. Johannes Hild Department Mathematik Universität Erlangen-Nürnberg

Assignment 1: Karush-Kuhn-Tucker

Consider the equality constrained problem

minimize
$$f(x)$$
 s.t. $x \in \Omega := \{x \in \mathbb{R}^3 : h_1(x) = h_2(x) = 0\}$

with $x = (u, v, w)^{\top}$ and $f(x) = \frac{4}{3}u^3 - v - 2w$ and $h_1(x) = u + v - 1$ and $h_2(x) = w - u$.

- a) (2 pts) Show that the (LICQ) is satisfied at any point $x \in \Omega$.
- b) (6 pts) Formulate the Lagrangian function $L(x, \lambda_1, \lambda_2)$ and find all points $(x^*, \lambda_1^*, \lambda_2^*)$ solving the (KKT) conditions for this problem.
- c) (2 pts) Compute the Hessian $\nabla^2 f(x)$ and decide, which kind of definiteness holds for the Hessian at the (KKT)-points from b).

Assignment 2: Levenberg Marquardt Step

Consider a least squares problem

minimize
$$f(u, v) := \frac{1}{2}R(u, v)^{\mathsf{T}}R(u, v)$$
, s.t. $x = (u, v)^{\mathsf{T}} \in \mathbb{R}^2$

with error vector $R(u, v) = (v - 3, uv - 3, u^2v - 3)^{\top}$ and $x_0 := (1, 0)^{\top}$.

- a) (6 pts) Find d_{α} satisfying $\left(J(x_0)^{\top}J(x_0) + \alpha E\right)d_{\alpha} = -\nabla f(x_0)$ and compute $x_{\alpha} = x_0 + d_{\alpha}$ in dependence of $\alpha > 0$. E is the unit matrix and J(u, v) is the Jacobian of R(u, v).
- **b)** (2 pts) Compute $\lim_{\alpha\to 0} R(x_{\alpha})$ and conclude the (GMP) x_* of f on \mathbb{R}^2 .
- c) (2 pts) Prove in general: If a vector set $\{p_i\}_{i=1}^n$ is both A-conjugate and B-conjugate, it is also (A+B)-conjugate.

Assignment 3: Projected Steepest Descent / Exact Line Search Consider the problem

minimize $f(u, v) := u^3 + \frac{2}{v} + v^2$, s.t. $x = (u, v)^{\top} \in \Omega_{\square} := [\frac{1}{2}, 3]^2$

and the projection into box constraints $P: \mathbb{R}^2 \to \Omega_{\square}$ and $x_0 := (1,1)^{\top}$.

- a) (6 pts) Compute $x_1 := P(x_0 + t_0 d_0)$ with d_0 is the steepest descent. t_0 is resulting from exact line search with respect the unconstrained problem: minimize f(u, v) s.t. $x \in \mathbb{R}^2$.
- b) (3 pts) Use second order optimality conditions to decide if $x_* = (\frac{1}{2}, 1)^{\top}$ is a nondegenerate (LMP).
- c) (1 pts) Consider the general convex line search problem minimize $\phi(t) := F(x_k + td_k)$, s.t. $t \in [0,1]$. Name an algorithm that can be used to find a step size t_k that is reliably close to the (GMP) t_* of ϕ on [0,1].

Assignment 4: Linear Programming

Consider the linear program in standard form

minimize
$$f(x) := c^{\top} x$$

 $x \in \Omega := \{x \in \mathbb{R}^n : Ax = b \text{ and } x_i > 0 \text{ for } i = 1, \dots, n\}$

with data

$$A = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}, \qquad b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \qquad c = \begin{pmatrix} 3 & 2 & 1 \end{pmatrix}^{\mathsf{T}}$$

- a) (1 pts) Formulate the Phase I-Data \tilde{A} , \tilde{b} , \tilde{c} for this problem.
- **b**) (2 pts) Show that $x_0 = (\frac{1}{3}, \frac{4}{3}, 0)^{\top}$ is a (BFP) for Phase II and state the basis index set \mathcal{B}_0 .
- c) (6 pts) Execute Phase II with x_0 to solve the linear program.
- d) (1 pts) State a reason, why *conjugate gradient* cannot be used to solve the linear equation systems occurring in simplex steps in general.