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1 Introduction

o Regression: Vector X € R — y € R™

e Example: quadratic function fitting

e Training Set: S ={X,%, ..., Xn}

o f(X) quadratic function: x, = y1x% + yax1 + y3

34!
Estimation of y = | y»

3
Objective function for {X, %, ..., Xy }:

N

J= Z (xi2 = (yxiy + yoxia + }/3))2

i=1

1,392, 93 = argmin J
Yi.y2,y3

(Distance in squared L2 norm.)

N
o) |
a—yl = ;2 (X,',z — (ylx,-%l + yoxi1 + }/3)) 'Xi2,1 =0
0 _ Ny , | .
s = 252 (2 = Oy £ ) 0 =
N
o) !
By = 22 (xi2 = (wdy yaxia +93) 120

i=1

|
(Factor —1 does not matter due to = 0)
System of linear equations:
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(This is “homework”, so it's not checked!)
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Classification (pattern recognition)
e feature vector X € RY

e class number y € {1,2,..., K}
e classification: ((X) =y
PR:
e d is constant
o ye {1}
Example: Bayes classifier

e Loss function: compute the classifier  that minimizes the average loss.

e Common loss function: (0, 1)-loss function

e Optimal decision rule (Bayes classifier):

=((X) =ar maxM
y =< gr E)

— argmax p(y)p(<ly)
y

= argmax p(X,y)
y

p(y|X) posterior probability

evidence

b

(X
(v
p(Xly
p(X,y) joint density

)]

class conditional

><¢

X)
X)
) prior (probability)
)
)

2 Clustering (unsupervised learning)

Properties of distance meassures (4)
e non-negativity: d(X,%) >0

[ d()_<'1,)_<'2) =0 << )?1 = )?2
e symmetry: d(X, %) = d(%, %)

° triangle equation: d()_<’1,)_('3) < d()?l,>"<’2) + d()?z,)?::,)

=
=

. fix, C = argmin ZZch Xi, fj) s.t. Vi Zcu—l
Jj=1

71 ..... 'MKClljl

e Hard Clustering

-g=1
- Cj € {0, 1}
— Optimize p; by setting the derivative of the Lagrangian to zero

k-Means Algo.: L3-norm => ¢; = 1 for closest j;, pj = mean {X:|c; = 1}

Generalized Hard Clustering (arbitrary norm)
o Soft Clustering
- g >1, larger g — ¢ "fuzzier" / closer to a uniform distribution

— Optimize both 1; and ¢j; by setting the derivative of the Lagrangian to zero

Using 1 = Eszl cj = ... allows direct computation of A;, used in ¢;

Soft Clustering Algo.: Repeatedly compute c¢;; and p; until p; converged

e Variations of Clustering / additional regularizers (added to the lagragians)

Include a feature transform (PR)

1 controls the ratio between the regularizer and the original optimization

Maximize distance between clusters —p Zf’,:l [|fik — ]| (— due to max.!)

, , , N o e -
Covariance matrix of cluster j: ¥; = ZN% S iR — @)% — )"
i=1"U

% s shall be close to C': + 37, ;||X; — C'||f, e.g. C' =102 (diagonal)

3 PDF Estimation

Core assumption: The data points X; are sampled from the underlying PDF.

Properties of PDFs (3)
e non-negativity: p(X) > 0 (possibly > 1!)

e integration to 1: f_oo p(X)dx =1

e probability of intervals: p(3 < X < B = f p(X) dX € [0, 1]

3.1 Parametric Density Estimation

Justification of parametric PDE
e PDF is known by the construction of the samples (result of PCA)

e Statistical testing, e.g. Kolmogorov Smirnov test for Gaussianity (neg. Kurtosis)

e Engineering approach (choose parametric family, estimate parameters and test)



Maximum Likelihood Estimation (MLE)
e assumption 1: independency

e assumption 2: equal priors (MLE = MAP with p(f) = uniform distrib. / const.)

_ . !
e example: assume normal distrib., derive params.  and o2 by 3% 25\1:1 log N =0

R N N
6 = argmax p(0|xy, ..., Xn) = ... = arg mapr x,|9 = arg maxz log p(X;|6)
2 0 i=1 2 i=1
Maximum a-posteriori estimation (MAP)

e assumption 1: independency

. N

0 =arg Qﬁaxp( X1, ..., Xn) = ... = arg [naxp(ﬁ) . Hp()‘(’,|€)

0 ¢ i=1

N
= arg max log p(6) + Z log p(xi|0)
g —

3.2 Non-parametric Density Estimation
For a fixed #pixels and #intensities, there are #intensities”P*®* different images.

Histograms
e Piecewise constant approximation of a pdf

e K bins, bin j represents the region R;

=l

e Approximate probability of samples falling in R; by relative frequencies: Pg, =
Problems
1. How many bins? (K)

2. Can we compute (the size of) R; in an optimal and non-uniform manner?

3. What do we do with sparse estimates?

Parzen Window Estimation
e Assumption (1): PDF p(X) is constant inside the regions R;:

e Ris a d-dim. hyper cube, edge length h = Vx = h?

lim p(X) = IinooNZK)‘ )/K)\(

e Training: Parameter estimation with Leave-one-out cross validation

1 v A < h
Ka(Xi, X) = {(’)"’ |O|);V Hlloo < 2 A=h  [DIFF] (h9 inside kernel)

Ky(X;, X) = ;e—%(Z—?)TZ*l(z_;) A=Y

Platziere den Kernel um jedes Xx;,
summiere an der Stelle X auf.

e Convolution and Parzen Kernels [DIFF]

— K, needs to depend on the difference of X; and X

(1) When integrating over all possible X;, each single X; occurs with probability
p(X;), as the samples are drawn from the exact distribution.

(2) Definition of convolution

— The convolution shows that p(X), with sufficent samples, is a low-pass
filtered version of the exact density p(X).

—

2)

X)p(%;) d%i (= E[p(X)]) = KA(X) * p(X)

For each test“set” {X;}

Do a parzen estimate with the remaining N — 1 training samples

Pﬁ,/\/f Z Kx(%

l#f

Optimize A such that the probability of drawing the Xjs out of the es-
timated pdfs is maximized (indep. samples (MLE) = maximize the product)

X = arg max £(\) = arg max P’ Xi) = arg max log P X
gA () g 11_11 NlJ) g ;g,\NﬂJ)

cont. optimization problem = compute zero crossings of gradient, O(n?)!

Estimation of specific A; for each sample possible, drawbacks (high dim.)

Discretization of the Parzen Window Estimator with Histograms
e How many bins?

e Hot to compute adaptive bin sizes?
[DIFF] renamed b to K, hy(X;) to hn(j), x;i to p; (it is a bin center, NOT a sample)



e K: #bins

hn(j): relative frequency / fraction of samples that fall into bin j.

fij: center of bin j.

Caution: This is a sum over the bins / the feature space, not over samples
K
Pn(X) = Z hn() - Ka(X = i)
j=1

For infinitesimal small bins, this converges to the parzen estimate: [ = X;
because the "bin" only contains a single value, hyn(j) becomes the probability of
that single value (p(X;)):

/ p(%) - Ka(% — %) d%: = Kn (%) % p(%) = P(%)

Objective function for minimizing the approximation error of the histogram
e 1d case!, use parzen window estimation to estimate p(x)

J=Zl[j1(x—uj)2-p(x) dx

e set derivatives to zero

for %_: integration is linear = pull the derivation into the integral
J

9 .
for o

— derivative of integration borders: put them into the antiderivative (Stamm-
funktion) and derive these, which is zero for F(/j+1)

— use p(/;) >0, Iy = min, Ix = max, different signs in the 2 resulting cases.

HW: if p(x) is the uniform distribution, this approach chooses /J-(i+1) as the middle

of the middles of /;_1, /; and I;, l;;1. Thereby, the bin sizes are averaged. Note:
For a uniform distribution, the actual bin sizes are completely irrelephant :-)

3.3 Histogram Layout by Regression Trees

[DIFF] rename ¢ to h; as it is just the relative frequency of the prev. chapters
K
p(x) = Z hil(X € R)) (I just selects h; of the correct bin)
j=1

Problems

e Estimate the number of bins (K)
e Compute the K regions (R;)
e Estimate probability for each bin (h;)
h; = arg min/ (p(X) — p(X)) dX = arg min/ (p(X) — h;) dX
hj R; hj R;

Optimization problem

| Xk
| Xk

X1 XU

: : 2\ _ h)2 : 2\ )2 Ri(k,s) ={

mindmin 37 (p(R)— M) min D (p(R) - o) ¢ where G110 |

XERy(k,s) XERy(k,s)

1. Stop splits if number of required bins (pre defined “engineering constant”) is
reached

2. Apply a regularizer that penalizes a large number K of bins: +aK

4 Mean Shift Algorithm

Set derivative of pdf to zero until convergence (at the maximum)
L
p(x) =3 Z; Kx (%, %)
P

N
o 1 I
Vp(X) = N E VKX, X) 20
i=1

Ke(%, %) = c-(1—|¥=x%3) l[x=%l3<1 Epanechnikov kernel
B0 oW. leads to mean of sphere

Don’t miss the conditional when deriving the Epanechnikov kernel!
Hill climber — local optima, depends on initialization
The gradient and therefore the step size gets smaller near the optimum
Use adaptive window size / kNN, or sparse regions could cause problems
Edge Preserving Smoothing:
e Use (x,y,L,uv)" €R5 replace the color part by that of the found maximum

e Intuition: Meanshift walks along the pdf of colors to maxima

e Edges are preserved, because at edges, the near gradients of the color space
point away from the edge, therefore the mean shift procedure walks away from
the edge, the edge is preserved and forms the cluster boundary (colors on the
other side of the edge are not even taken into account for gradient computation,
as they do not fall into the kernel-sphere due to the higher distance in the color
components)

VA
n »

i



e the x and y coordinate assures, that for this estimation process, only local pixels 5.3 Multidimensional Scaling (MDS)

are evaluated, so the color pdf is not distracted by other parts of the image
(where the edge color could have a high probability and therefore would distract
the gradient)

5 Manifold Learning

5.1 Curse of Dimensionality

“Human intuition breaks down in high dimensional spaces.”
e uniformly distributed samples in a volume, capture fraction r of samples
e required volume: r -V
e For a cubic fraction inside a unit cube: e =r-1=> e =ra

o Let N samples be uniformly distributed within a sphere (||X;|| < 1)
The expected median distance of the nearest neighbor to the origin is

d(d, N) = (1 (5)¥)7

N -

= Most of the data points rae close to the boundary

e Exponential explosion of samples: To achieve the same density of samples as
with N samples in d = 1, N samples are necessary

5.2 Principal Component Analysis (PCA) [DIFF]

e X; are assumed to be zero mean, if not, replace with X; —

e Objective function with ® is wrong (result is a constant, constrain does not
enforce ||7||2 = 1, orthogonality constraints for 2nd, 3rd, ... components missing)

Objective function for the first PC:

N
argfnax:z (i"%)? +A(1 —13)
! =L s Fis unit length,
this is the length of
X;s projection
N N N
Note: Y “((A7%)A)T (A7) =Y (i %)? (A" A) = Z Na=nr"sA

e linear - projections in lower dimensions very similar to PCA (with its problems)!
e X; are assumed to be zero mean (1), if not, replace with X; — i
e Problem: Reconstruct a set of points out of differences
e Differences don't include translation, rotation and reflection
[%1,..., Xn] € RIXN
e Distance matrix: D? = [d,f] = [||I% — Xi||3]
= diag(XTX) - 17 +1-diag” (X7 X) — 2XT X, where diag() is a column vector
(1 - 31-17)
e Formal Problem: Reconstruct X from D? by applying SVD on

e Sample matrix: X =

e Centering matrix: C =
—-1icpC
(1) X-1=0, Bis a (2) symmetric, (3) positive matrix, (4) ¥ is symmetric

1
——crcYx"x =8 B2 uTsu@uTsistu® (=i (ziu) = xTX
2 N
=X
5.4 Sammon Transform
dj = |15 — %13 dj = [1% = %113
1 dl/ — dj; 2
min Z( j — %)
Sy dh d.
’<J y IJ Ul
i<j

e “Optimization w.r.t. X is awkward.”

5.5 Local(ly) Linear Embedding (LLE)

1. Define a local neighborhood (sphere or kNN)
2. Find wy:

N N N
minZH)?,- —ZW,J)?JH% s.t. ZW,'J' =1 where w; =0 if X; ¢ N(X;)

w4 " :
i=1 j=1 j=1

[DIFF] X; = ZJN:1 W X; as jN:1 wjj = 1 (same result, 7, j are just swapped, symmetric)

N N
=min > [|) w(% - %)l =m Z||MW,||2whereM (X — X1, X — Xn)



Each summand is independent of the others when optimizing w;.
The columns of M/ are set to 0, if i and j are no neighbours.

= Vi o min || Mjw;|[3 + M(1 — ||W][3) = min %" (M;T M))W; + A1 — W' w)
Apply SVD like for PCA, but as we minimize, take the eigenvectors that belong to

the lowest eigenvalues.
3. Use wj; to optimize X; in lower dim. space:

N N N .
min >R = Y wiK| G st Y% =0,
=1 Jj=1 i=1

=]

N

ol T
E X =1
i=1

We (in the exercise) (and the paper) just proofed the 1D case:

i=1

N N
D= wpx) =11 = W)R'|3
j=1

0 /T /
= —X'"MX' + X1 -
ox’ (
NOTES: If we don't use the zero-mean constrain, the smallest eigenvector is always
a vector with all-equal entries corresponding to the eigenvalue zero. This eigenvector
translates all samples equally, which is what we want to prevent with the constrain.

1
FX TR =0

-WT=1T-Wi=1-1=0=_0 - 1
~—

=\ X/

The other constrain fixes the scaling (which shall be uniform and of order 1 in each
dimension (1s in the diagonal), therefore the error is measured in the same scale) and
rotation (to the solution where all axes are uncorrelated).

5.6 Isometric Feature Mapping (ISOMAP)

Target: Preserve geodesic manifold interpoint distance (graphs)

Problem 1: How to measure geodesic distances on the unknown manifold?
e Problem 2: How to map feature vectors on the Euclidean space in lower dim.?

e ISOMAP = Classical MDS with D based on geodesic distances
1. Construct a neighborhood graph (sphere or kNN):

X — X:
d’J:{|0| ! JH2

2. Compute the shortest path between all pairs of points (Floyd Warshall) — D

X € N(%)

O.W.

3. Perform MDS on D (SVD on —3CDC)
+ non-linear (in contrast to MDS distances esp. of non-neighbors are not preserved)

+ non-iterative polynomial algorithm
+ globally optimal
+ manifolds of arbitrary dimension

— very sensitive to noise

5.7 Laplacian Eigenmaps (LEM)

+ Noisy Data
1. Build the adjacency graph on S (guess what? sphere or kNN!)

2. Choose weights wj; € [0, 1] for the edges in the graph. 2 examples:

wijj =

{II % € N(%)

0 o.W.

(actually the upper

0 o.w. weights with t — 00)

W_{l%eN@)

3. Eigendecomposition of the graph’s Laplacian
(There are special routines for LV = ADV decompositions.)
4. Low dimensional embedding (Each eigenvector (starting at the (second) lowest

eigenvalue) contains one dimension of the projected samples X'.)
1D Case:

N N
B /! N2 =T of — T _ .
min (xi —x;j)"w; st X' DX'=1 (X'D1 =0 removes transl. invar.)
X
i=1 j=1

2
(]
Iz
I
S
o

ZI{V:]. WNi

(Here, D is not a distance matrix, but a diagonal matrix!)

Xy 0
D7lIX = \X

=min2%' LY st. XTDX =1 -
X

[DIFF] Without the additional translation invariance constrain, again remove the
eigenvector belonging to the eigenvalue zero. Proof:

DY D-W)T=X < D HDI-WI)=A < D 0=A < A=0



6 Hidden Markov Models (HMMs) G %) Z - Ha pr\s

p((4, ... %)) = (marginalization over the states)
Checklist SteeesSn
e Marginal: Dynamic programming (sums)
e Most probable state sequence: Viterbi (max) - Zﬂslp (%als1) - Zas" 201 P(n1[5n-1) Zas“ 15,P(%alsn)
Sn—1

e Training: EM (fancy)
dynamic programming ~ time € O(n- m?),  space € O(m)
6.1 Orders of dependency
Computation of the most probable state sequence / VITERBI algorithm

n _ _ p(X.y)
(%1, Zdly) = HP(ZD’) (stat. independency) e Reminder: y* = argmax, p(y[X) = arg max, Y S
i e Instead of marginalizing over the states, we maximize
n
P((X1, ..., Xn)|y) :P(EI‘Y)HP(Z'W—LY) (1st order model) (84,...,5,) = argmax p((X1, ... X,), {s1, ..., Sn))
i=2 (S1,..,5n)
n n n
p((%1, ... Z)ly) = p(Rily)p(%2|%1, y) [ [ P(%|%i—2, %1, ¥)  (2nd order model) = argmaxy, [[as_.s - [[ P(%ilsi)
j=2 S51,..-Sn . _
6.2 Mistures / Gaussian Mixture Models (GMMs)
o GMM = HMM mit ¥S;, S; : s, = as;s;, v max s, p(Xs1) - ( {g:alxasn_zsn_lp(?n—llsn—l) : {msgxasn_lsnp(inlsn)H >
p((F1, ... %) |(s1 HP S dynamic programming ~ time € O(n- m?), space € O(m)

6.4 HMM training
e A= (7 A B)

p(<)—<»1, )—<»n>) — Z p(()?], -.-)—<on>v <5]_, HZ s, - X,|S, ® T input probabi“ties

P((%1, - Xn), (S, -2 $n)) = st,.p(ms,-)

SLernsSn i=1 s e A= [ass]: transition probabilities
—— ——
€0(m") €0(n-m) e B: output pdfs (one for each state)

e NOTE: Simple al ive: Viterbi traini
6.3 Hiden Markov Models (HMMs) 0] Simple alternative: Viterbi training

e When drawing HMMs, don’t miss the self loops a;s!

— Do some model initialization, then repeat:

— Compute most probable state sequence with Viterbi
e If feature sequence and state sequence are known ) . ) ) ) )
— Now we can estimate 7, a5s, and p(Xi|s;) using relative frequencies (engi-

neering: add one to each probability)
Reminder EM:

e the first = is correct, as we don't start with the posterior but the joint density!

p((X, - Xn), (51, -, $n)) = ({51, 8n)) - P((K1, . Xn)[(s1, -+ 1 $n))

i ﬁas’ . 'ﬁp()_(”si) — X: observable random variable, (s, ..., s,)
— Y: hidden random variable, (X1, ..., X,)



p(X,Y)

p(X) =

)=o)

—log p(X) = —log p(X, Y) —(—log p(Y|X))
observable info. complete info. hidden info.

Assumption: parametric pdfs, multiply p(Y|X, X)) (index!) and integrate over Y

LS = —log p(X|AU+Y)) = —/p(Y|X, M) log p(X|ATHD) dY = LS -1

RS = —/p(Y|X,)\(’)) log p(X, Y|AU+Dy dy

Q
- (—/P(YIX, ADY - log p(Y|X, AGHD)Y)

H

QU AU ) = [ p(¥1X,X9) -log p(X, YIAG) dY

(= Ellog p(X, YA+ x, A1)

[y

. Step: p(Y|X, A(D)

pOX, YD) p(X, YIAD)

Y|X, A = ) ,
PIYCA) = 200y = To(x, YD) v

N

Q(A(’>,A<"+1))=/ p(YIX, AD) log p(X, V)T dy
N———

independent of AU+

w

. Step: log p(X, Y|AU+1)
log p(X, Y|AUHD) = log 7, (i+1) . H as:+1153 Hp (4D (%)
= log 7y, (i+1) 4 Z log a§:+11s, + Z log p :+1)( Is1)

i=1

4. Step (Maximization):

. Step (Expectation): Q(A(), \(i+1)) (integrals — sums over s, ..., s,, discrete)

DIFF: I think we need V., (capital S). My notes are very chaotic / wrong from here
on, so what follows is only similar to the lecture.

m
Vyen QA AHDY S0 st Zws =1, V5:) ass, =1, VS;: /p(X|Sk) dx =1
k=1
. ) 1
vﬂ(i+1) Q(}\(’) )\ ’+1 /1/ l—Zﬂ'S = Z p(<5k,52,...,$n>|X,>\(’))'m —,UZO
% S0,y Sn ﬂ-Sk
=:ak =Pk
=[P = > A=Y ppk S Y a=pY pk
k k k k

=1

ax
ax = a 54 S —
K Z kPx Pe=

Derivative for as;s, and p(X|Sk): HW! ;-)
Spoiler:

’/T(H_l): (<Sk,52,...,5n>|x,)\(i)) _ p(<5k,52,...,5n>‘X,>\(i))
ST S o pUsLh,  sHX AD) 1

Ji41) _ Lo P(S1, 12, Sy Sk St - 50X, A)
5%k S p((S1y vy Sim2, Sju Sy Sig1s -1 Sa) | X, A))
oy A Sl Si1, Sk Sints s SoYX, A X=X
p(%]S,) = Dico P(,S 1 1, Sk, Sit1 >| ). (() )
Z’-:2 p(<51, ey Si—1, Sk, Sit1r e S,7>|X, AU )
e What these formulas do is basically just computing relative frequencies with the

training data, where the probability of being in a state Sy is estimated with the
previous parameter set \(/).

e These formulas only consider one training sequence, you will have to average
between multiple ones, this is especially obvious for computing 7s,s.

e In contrast to Viterbi training, we do not only take the most probable state
assignment into consideration, but all of them.

6.5 Different Types of HMMs

1. discrete vs. continuous HMMs (depends on the pdfs p(X|s))
2. left-right-HMMs: Vj < i : as;s, = 0

3. ergodic HMMs: Vi, j : ass, > 0

4. higher order HMM: n-th order: s, _(_1)5i15i



7 Markov Random Fields (MRFs) and Gibbs Random

Fields (GRFs)

Definition of MRF

1. Positivity: p(X1, ..., Xn) > 0 (non-zero!)
Xn) = (XN (%)

e Neighborhoods N are symmetric and irreflexive (x; € N (X))

2. Markov Property: p(Xk|X1, ..

e Aclique is a complete subgraph (edges between all pairs of nodes in the subgraph)

e Unsecure guess: The idea with the cliques is that we can define p(X) as the
product of all p(x;|c) where ¢ C S are all cliques containing the random variable

Xi

Definition of GRF
e DIFF: Z is defined in a way that ) _p(x) actually sums up to 1

1 —H)

p(x) = e where Z = Z e MK

e Z is called the partition function
(calculating it directly is almost always computationally prohibitive)

2mes Vim(x)

e H(x) is called the energy function, set H(x) =

—

o A potential is a family {V,,, m C S}, Vjp =0, Vi, (x) g

e H(x) is not unique:

log Z

— gelog p(x)elogz _ p(X)
= Vin(

mCS

—log p(x) —

1 —H(x) _ 1 log p(x)+log Z
z¢ T Z°

set Z=e"=1= H(x) =

H(x) =
p(x)

— log p(x

Hammerslay Clifford Theorem
e MRF and GRF are equivalent

GRF = MRF
p(X) is GRF, X% means all random variables except xx, C is the set of cliques

Vi(y) if xNm=

DIFF: renamed some variables (X are the random variables, ¢ are cliques)

P(Xk|>?k) = P) p()?) = %EXP ceC Ve(X))
P(X¥) ZX“ P(% Zxk %exp cEC Ve(X))

G:={cc(Cx e c} G:={cC Clx ¢&c}
o exp(= e Ve(X)) - exp(— D cec, Ve(X))
2oxlexp(—= 2 ccq Ve(X)) -exp(— 2, Ve(X))]

VeC G:xk € c
_ exp(— ZCECl V ()?)) - €Xp ceCy )
[Zxk exp( c€C1 VC(; ] exp{— ceEC
e g Vel)
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Image smoothing

ynm

DIFF: In the lecture, f (here: smoothed / output) and g (here: input) where
swapped at some point

The neighborhood for image computations is usually a 4 (cross) or 8 neighbor-
hood.

Assume independency between the pixels in the input image gjJ:

)= Hp(g,y)

pr([ei]

The pixel of the noisy image depends on its true value (which we want to restore):

p(&ilf;)

This dependency becomes the £ part of the MAP estimator

Smooth images have a higher probability (— pixels depend on their neighbors)

HP fi| N (£) j Z'ng fil N (7))

ij ij

p([fi])

This dependency (over all cliques) will become the R part of the MAP estimator



[7s] = arg max p([;] &)

u

© arg max p([f;]) - P(lgy]l[f;])

ij

=:—&  (Energy function)

= argmax log p([f;]) + log p([gy]|[f])
[f;_/] T —r

=argmax»_[[VAHIE+AD (i — &)
L7 ij
(*) is just the bayesian rule in our context

By choosing R as the gradient (which is then minimized), smooth images have
a higher prior probability / are favored (why not the second order derivative?)
With this simple model, the smoothing is not edge preserving.

By choosing L to be the difference of the pixel value in the original and smoothed
image, we favor images that are close to the original image

A defines just which one of our 2 optimization goals should be focused more



	Introduction
	Clustering (unsupervised learning)
	PDF Estimation
	Parametric Density Estimation
	Non-parametric Density Estimation
	Histogram Layout by Regression Trees

	Mean Shift Algorithm
	Manifold Learning
	Curse of Dimensionality
	Principal Component Analysis (PCA) [DIFF]
	Multidimensional Scaling (MDS)
	Sammon Transform
	Local(ly) Linear Embedding (LLE)
	Isometric Feature Mapping (ISOMAP)
	Laplacian Eigenmaps (LEM)

	Hidden Markov Models (HMMs)
	Orders of dependency
	Mistures / Gaussian Mixture Models (GMMs)
	Hiden Markov Models (HMMs)
	HMM training
	Different Types of HMMs

	Markov Random Fields (MRFs) and Gibbs Random Fields (GRFs)

